Resistor
Network
8
18
Data
Buffer A
DAC
Register A
Data
Buffer D
DAC
Register D
DAC A
DAC D
Buffer
Control
Register
Control
Power−Down
Control Logic
V
OUT
A
V
OUT
B
V
OUT
C
V
OUT
D
V
REF
LA0 A1 A2 A3GND
I2C Block
SCL
SDA
LDAC
V
REF
H
IOV
DD
V
DD
QUAD, 10-Bit, LOW-POWER, VOLTAGE OUTPUT,
I2C INTERFACE DIGITAL-TO-ANALOG CONVERTER
FEATURES DESCRIPTION
• Micropower Operation: 500 µA at 3 V V
• Fast Update Rate: 188 kSPS
• Power-On Reset to Zero
• 2.7-V to 5.5-V Analog Power Supply
• 10-Bit Monotonic
• I2C™ Interface up to 3.4 Mbps
• Data Transmit Capability
• Rail-to-Rail Operation Output Buffer Amplifier
• Double-Buffered Input Register
• Address Support for up to Sixteen DAC6573s
• Synchronous Update for up to 64 Channels
• Voltage Translators for all Digital Inputs
• Operation From –40 ° C to 105 ° C
• Small 16 Lead TSSOP Package
APPLICATIONS
• Process Control
• Data Acquisition Systems
• Closed-Loop Servo Control
• PC Peripherals
• Portable Instrumentation
DAC6573
SLAS402 – NOVEMBER 2003
DD
The DAC6573 is a low-power, quad channel, 10-Bit
buffered voltage output DAC. Its on-chip precision
output amplifier allows rail-to-rail output swing. The
DAC6573 utilizes an I2C compatible two wire serial
interface supporting high-speed interface mode with
address support of up to sixteen DAC6573s for a total
of 64 channels on the bus.
The DAC6573 requires an external reference voltage
to set the output range of the DAC. The DAC6573
incorporates a power-on-reset circuit that ensures
that the DAC output powers up at zero volts and
remains there until a valid write takes place in the
device. The DAC6573 contains a power-down feature, accessed via the internal control register, that
reduces the current consumption of the device to 200
nA at 5 V.
The low power consumption of this part in normal
operation makes it ideally suited to portable battery
operated equipment. The power consumption is less
than 3 mW at V
=5 V reducing to 1 µW in
DD
power-down mode.
The DAC6573 is available in a 16-lead TSSOP
package.
I2C is a trademark of Philips Corporation.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2003, Texas Instruments Incorporated
3
A3
A2
A1
1
2
3
4
5
6
7
8
16
15
14
1
12
11
10
9
V
OUT
A
V
OUT
B
V
REF
H
V
DD
V
REF
L
GND
V
OUT
C
V
OUT
D
A0
IOV
DD
SDA
SCL
LDAC
DAC6573
DAC6573
SLAS402 – NOVEMBER 2003
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated
circuits be handled with appropriate precautions. Failure to observe proper handling and installation
procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision
integrated circuits may be more susceptible to damage because very small parametric changes could
cause the device not to meet its published specifications.
PACKAGE/ORDERING INFORMATION
PRODUCT PACKAGE PACKAGE SPECIFICATION PACKAGE ORDERING TRANSPORT MEDIA
DAC6573 16-TSSOP PW –40 °C TO +105 °C D6573I DAC6573IPW 90 Piece Tube
DRAWING TEMPERATURE MARKING NUMBER
NUMBER RANGE
DAC6573IPWR 2000 Piece Tape and Reel
PW PACKAGE
(TOPVIEW)
PIN NAME DESCRIPTION
1 V
2 V
3 V
4 V
5 V
6 GND
7 V
8 V
9 LDAC H/W synchronous V
10 SCL Serial clock input
11 SDA Serial data input
12 IOV
13 A0 Device address select - I2C
14 A1 Device address select - I2C
15 A2 Device address select - Extended
16 A3 Device address select - Extended
ABSOLUTE MAXIMUM RATINGS
V
to GND –0.3 V to +6 V
DD
Digital input voltage to GND –0.3 V to V
V
to GND –0.3 V to V
OUT
Operating temperature range –40 °C to +105 °C
Storage temperature range –65 °C to +150 °C
Junction temperature range (T
Power dissipation Thermal impedance (
Lead temperature, soldering Vapor phase (60s) 215 °C
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute
maximum conditions for extended periods may affect device reliability.
max) +150 °C
J
Thermal impedance (R
Infrared (15s) 220 °C
(1)
) 161 °C/W
R ΘJA
) 29 °C/W
ΘJC
PIN DESCRIPTIONS
A Analog output voltage from DAC A
OUT
B Analog output voltage from DAC B
OUT
H Positive reference voltage input
REF
Analog voltage supply input
DD
L Negative reference voltage input
REF
Ground reference point for all circuitry on the
part
C Analog output voltage from DAC C
OUT
D Analog output voltage from DAC D
OUT
OUT
I/O voltage supply input
DD
update
+ 0.3 V
DD
+ 0.3 V
DD
2
DAC6573
SLAS402 – NOVEMBER 2003
ELECTRICAL CHARACTERISTICS
V
= 2.7 V to 5.5 V, RL= 2 k Ω to GND; CL= 200 pF to GND; all specifications -40 ° C to +105 ° C, unless otherwise specified.
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
STATIC PERFORMANCE
Resolution 10 Bits
Relative accuracy ± 0.5 ± 2 LSB
Differential nonlinearity Specified monotonic by design ± 0.1 ± 0.5 LSB
Zero-scale error 5 20 mV
Full-scale error -0.15 ± 1.0 % of FSR
Gain error ± 1.0 % of FSR
Zero code error drift ± 7 µV/ °C
Gain temperature coefficient ± 3 ppm of FSR/ °C
OUTPUT CHARACTERISTICS
Output voltage range 0 V
Output voltage settling time (full scale) RL= ∞ ; 0 pF < CL< 200 pF 7 9 µs
Slew rate 1 V/ µs
dc crosstalk (channel-to-channel) 0.01 LSB
ac crosstalk (channel-to-channel) 1 kHz Sine Wave -100 dB
Capacitive load stability RL= ∞ 470 pF
Digital-to-analog glitch impulse 1 LSB change around major 12 nV-s
Digital feedthrough 0.3 nV-s
dc output impedance 1 Ω
Short-circuit current VDD= 5 V 50 mA
Power-up time Coming out of power-down 2.5 µs
REFERENCE INPUT
V
H Input range 0 V
REF
V
L Input range V
REF
Reference input impedance 25 k Ω
Reference current V
LOGIC INPUTS
(3)
Input current ± 1 µA
V
, Input low voltage 0.3xIOV
IN_L
V
, Input high voltage 0.7xIOV
IN_H
Pin Capacitance 3 pF
POWER REQUIREMENTS
VDD, IOV
DD
IDD(normal operation), including reference current Excluding load current
IDD@ VDD=+3.6V to +5.5V VIH= IOV
IDD@ V
IDD(all power-down modes)
(1) (2)
(3)
=+2.7V to +3.6V VIH= IOV
DD
H V
REF
RL= ∞ ; CL= 500 pF 12 µs
RL= 2 k Ω 1000 pF
carry
VDD= 3 V 20 mA
mode, VDD= +5 V
Coming out of power-down 5 µs
mode, VDD= +3 V
DD
L<V
REF
=V
REF
V
=V
REF
H 0 GND VDD/2 V
REF
= +5 V 185 260 µA
DD
= +3 V 122 200
DD
DD
DD
2.7 5.5 V
and VIL=GND 600 900 µA
DD
and VIL=GND 500 750 µA
DD
V
V
V
(1) Linearity tested using a reduced code range of 12 to 1012; output unloaded.
(2) V
(3) Specified by design and characterization, not production tested.
H = V
REF
- 0.1, V
DD
L = GND
REF
3
DAC6573
SLAS402 – NOVEMBER 2003
ELECTRICAL CHARACTERISTICS (continued)
V
= 2.7 V to 5.5 V, RL= 2 k Ω to GND; CL= 200 pF to GND; all specifications -40 ° C to +105 ° C, unless otherwise specified.
DD
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
IDD@ VDD=+3.6V to +5.5V VIH= IOV
IDD@ V
=+2.7V to +3.6V VIH= IOV
DD
POWER EFFICIENCY
I
/I
OUT
DD
I
LOAD
TEMPERATURE RANGE
Specified performance -40 +105 °C
TIMING CHARACTERISTICS
V
= 2.7 V to 5.5 V, RL= 2 k Ω to GND; all specifications -40 ° C to +105 ° C, unless otherwise specified.
DD
SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
tHD; t
tSU; t
tSU; t
tHD; t
f
SCL
t
BUF
STA
t
LOW
t
HIGH
STA
DAT
DAT
t
RCL
t
RCL1
SCL clock frequency
High-Speed mode, CB= 100 pF max 3.4 MHz
High-speed mode, CB= 400 pF max 1.7 MHz
Bus free time between a
STOP and START condition
Hold time (repeated) START
condition
LOW period of the SCL clock
High-speed mode, CB= 100 pF max 160 ns
High-speed mode, CB= 400 pF max 320 ns
HIGH period of the SCL clock
High-Speed Mode, CB= 100 pF max 60 ns
High-speed mode, CB= 400 pF max 120 ns
Setup time for a repeated
START condition
Data setup time Fast mode 100 ns
Data hold time
High-speed mode, CB= 100 pF max 0 70 ns
High-speed mode, CB= 400 pF max 0 150 ns
Rise time of SCL signal
High-speed mode, CB= 100 pF max 10 40 ns
High-speed mode, CB= 400 pF max 20 80 ns
Rise time of SCL signal after
a repeated START condition
and after an acknowledge
BIT
High-speed mode, CB= 100 pF max 10 80 ns
High-speed mode, CB= 400 pF max 20 160 ns
and VIL=GND 0.2 1 µA
DD
and VIL=GND 0.05 1 µA
DD
= 2 mA, VDD= +5 V 93%
Standard mode 100 kHz
Fast mode 400 kHz
Standard mode 4.7 µs
Fast mode 1.3 µs
Standard mode 4.0 µs
Fast mode 600 ns
High-speed mode 160 ns
Standard mode 4.7 µs
Fast mode 1.3 µs
Standard mode 4.0 µs
Fast mode 600 ns
Standard mode 4.7 µs
Fast mode 600 ns
High-speed mode 160 ns
Standard mode 250 ns
High-speed mode 10 ns
Standard mode 0 3.45 µs
Fast mode 0 0.9 µs
Standard mode 1000 ns
Fast mode 20 + 0.1C
B
300 ns
Standard mode 1000 ns
Fast mode 20 + 0.1C
B
300 ns
4
TIMING CHARACTERISTICS (continued)
V
= 2.7 V to 5.5 V, RL= 2 k Ω to GND; all specifications -40 ° C to +105 ° C, unless otherwise specified.
DD
SYMBOL PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
Standard mode 300 ns
tSU; t
t
FCL
Fall time of SCL signal
High-speed mode, CB= 100 pF max 10 40 ns
Fast mode 20 + 0.1C
High-speed mode, CB= 400 pF max 20 80 ns
Standard mode 1000 ns
t
RDA
Rise time of SDA signal
High-speed mode, CB= 100 pF max 10 80 ns
Fast mode 20 + 0.1C
High-speed mode, CB= 400 pF max 20 160 ns
Standard mode 300 ns
t
FDA
Fall time of SDA signal
High-speed mode, CB= 100 pF max 10 80 ns
Fast mode 20 + 0.1C
High-speed mode, CB= 400 pF max 20 160 ns
Standard mode 4.0 µs
STO
Setup time for STOP
condition
Fast mode 600 ns
High-speed mode 160 ns
C
B
t
SP
Capacitive load for SDA and
SCL
Pulse width of spike
suppressed
Fast mode 50 ns
High-speed mode 10 ns
Noise margin at the HIGH Standard mode
V
NH
level for each connected
device (including
hysteresis)
Fast mode
High-speed mode
Noise margin at the LOW Standard mode
V
NL
level for each connected
device (including
hysteresis)
Fast mode
High-speed mode
0.2 V
0.1 V
B
B
B
DD
DD
DAC6573
SLAS402 – NOVEMBER 2003
300 ns
300 ns
300 ns
400 pF
V
V
5
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Channel B VDD = 5 V
Digital Input Code
LE − LSBDLE − LSB
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Digital Input Code
Channel A VDD = 5 V
LE − LSBDLE − LSB
−0.5
−0.25
0
0.25
0.5
0 128 256
384 512 640 768 896 1023
Channel C VDD = 5 V
Digital Input Code
−2
−1
0
1
2
LE − LSBDLE − LSB
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Channel D VDD = 5 V
Digital Input Code
LE − LSBDLE − LSB
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Channel A VDD = 2.7 V
Digital Input Code
LE − LSBDLE − LSB
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Channel B VDD = 2.7 V
Digital Input Code
LE − LSBDLE − LSB
DAC6573
SLAS402 – NOVEMBER 2003
LINEARITY ERROR vs DIGITAL INPUT CODE LINEARITY ERROR vs DIGITAL INPUT CODE
LINEARITY ERROR vs DIGITAL INPUT CODE LINEARITY ERROR vs DIGITAL INPUT CODE
TYPICAL CHARACTERISTICS
At TA= +25 ° C, unless otherwise noted.
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR AND DIFFERENTIAL
Figure 1. Figure 2.
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR AND DIFFERENTIAL
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR AND DIFFERENTIAL
LINEARITY ERROR vs DIGITAL INPUT CODE LINEARITY ERROR vs DIGITAL INPUT CODE
6
Figure 3. Figure 4.
Figure 5. Figure 6.
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Channel D VDD = 2.7 V
Digital Input Code
LE − LSBDLE − LSB
−2
−1
0
1
2
−0.5
−0.25
0
0.25
0.5
0 128 256 384 512 640 768 896 1023
Channel C VDD = 2.7 V
Digital Input Code
LE − LSBDLE − LSB
0
3
6
9
−40 −10 20 50 80
VDD = 5 V
CH A
CH D
CH C
CH B
TA − Free-Air Temperature − °C
Zero-Scale Error − mV
−2
0
2
4
−40 −10 20 50 80
CH A
CH D
CH C
CH B
T
A
− Free-Air Temperature − °C
Zero-Scale Error − mV
VDD = 2.7 V
−4
−3
−2
−1
−40 −10 20 50 80
CH A
CH D
CH C
CH B
T
A
− Free-Air Temperature − °C
Full-Scale Error − mV
VDD = 5 V
−2
−1.75
−1.5
−1.25
−1
−40 −10 20 50 80
CH A
CH D
CH C
CH B
T
A
− Free-Air Temperature − °C
Full-Scale Error − mV
VDD = 2.7 V
TYPICAL CHARACTERISTICS (continued)
At TA= +25 ° C, unless otherwise noted.
LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR AND DIFFERENTIAL
LINEARITY ERROR vs DIGITAL INPUT CODE LINEARITY ERROR vs DIGITAL INPUT CODE
ZERO-SCALE ERROR ZERO-SCALE ERROR
DAC6573
SLAS402 – NOVEMBER 2003
Figure 7. Figure 8.
vs TEMPERATURE vs TEMPERATURE
FULL-SCALE ERROR FULL-SCALE ERROR
vs TEMPERATURE vs TEMPERATURE
Figure 9. Figure 10.
Figure 11. Figure 12.
7
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0 1 2 3 4 5
I
SINK
- Sink Current - mA
V
OUT
- Output Voltage - V
VDD = 2.7 V
VDD = 5.5 V
DAC Loaded With 000
H
Typical For All Channels
5.30
5.35
5.40
5.45
5.50
0 1 2 3 4 5
I
SOURCE
− Source Current − mA
V
OUT
− Output Voltage − V
DAC Loaded With CFF
H
VDD = 5.5 V
Typical For All Channels
2.3
2.4
2.5
2.6
2.7
0 1 2 3 4 5
I
SOURCE
− Source Current − mA
V
OUT
− Output Voltage − V
DAC Loaded With CFF
H
VDD = 2.7 V
Typical For All Channels
Digital Input Code
0
100
200
300
400
500
600
700
800
0 128 256 384 512 640 768 896
I
DD
− Supply Current − µA
VDD = 2.7 V
VDD = 5.5 V
All Channels Powered, No Load
1023
TA - Free-Air Temperature - °C
0
100
200
300
400
500
600
700
-40 -10 20 50 80 110
I
DD
- Supply Current - µA
VDD = 2.7 V
VDD = 5.5 V
All Channels Powered, No Load
VDD - Supply Voltage - V
200
250
300
350
400
450
500
550
600
650
700
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5
I
DD
- Supply Current - µA
All DACs Powered, No Load
DAC6573
SLAS402 – NOVEMBER 2003
TYPICAL CHARACTERISTICS (continued)
At TA= +25 ° C, unless otherwise noted.
SINK CURRENT CAPABILITY SOURCE CURRENT CAPABILITY
SOURCE CURRENT CAPABILITY SUPPLY CURRENT
AT NEGATIVE RAIL AT POSITIVE RAIL
Figure 13. Figure 14.
AT POSITIVE RAIL vs DIGITAL INPUT CODE
SUPPLY CURRENT SUPPLY CURRENT
vs TEMPERATURE vs SUPPLY VOLTAGE
8
Figure 15. Figure 16.
Figure 17. Figure 18.
IDD - Current Consumption - µA
0
500
1000
1500
2000
500 520 540 560 580 600 620 640 660 680 700 720 740
VDD = 5 V
Frequency
V
Logic
− Logic Input Voltage − V
200
400
600
800
1000
1200
0 1 2 3 4 5
I
DD
− Supply Current − µA
TA = 25°C
A0 Input (All Other Inputs = GND)
VDD = 2.7 V
VDD = 5.5 V
−1
0
1
2
3
4
5
6
Time (2 µs/div)
V
OUT
− Output Voltage − V
VDD = 5 V
Powerup to Code 1000
IDD - Current Consumption - µA
0
500
1000
1500
2000
400 420 440 460 480 500 520 540 560 580 600 620
VDD = 2.7 V
Frequency
0
1
2
3
4
5
Time (25 µs/div)
V
OUT
- Output Voltage - V
VDD = 5 V
Output Loaded with
200 pF to GND
10% to 90% FSR
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Time (25 µs/div)
V
OUT
- Output Voltage - V
VDD = 2.7 V
Output Loaded with
200 pF to GND
10% to 90% FSR
TYPICAL CHARACTERISTICS (continued)
At TA= +25 ° C, unless otherwise noted.
vs LOGIC INPUT VOLTAGE OF CURRENT CONSUMPTION
DAC6573
SLAS402 – NOVEMBER 2003
SUPPLY CURRENT HISTOGRAM
Figure 19. Figure 20.
OF CURRENT CONSUMPTION POWER-DOWN MODE
HISTOGRAM EXITING
Figure 21. Figure 22.
LARGE SIGNAL LARGE SIGNAL
SETTLING TIME SETTLING TIME
Figure 23. Figure 24.
9
−6
−2
2
6
10
14
18
0 128 256 384 512 640 768 896 1023
Channel A Output
Channel B Output
VDD = 2.7 V, TA = 25°C
Digital Input Code
Output Error − mV
Channel D Output
Channel C Output
0
4
8
12
16
20
24
0 128 256 384 512 640 768 896 1023
Channel A Output
Channel D Output
Channel B Output
Channel B Output
VDD = 5 V, TA = 25°C
Digital Input Code
Output Error − mV
DAC6573
SLAS402 – NOVEMBER 2003
TYPICAL CHARACTERISTICS (continued)
At TA= +25 ° C, unless otherwise noted.
ABSOLUTE ERROR
†
ABSOLUTE ERROR
Figure 25. Figure 26.
†
Absolute error is the deviation from ideal DAC characteristics. It includes affects of offset, gain, and integral
linearity.
†
10