Texas Instruments CDCM6208V1F Datasheet

CDCM6208
Synthesizer
Mode
TMS320TCI6616/18
DSP
AIF ALT
CORE
PCIePacket
Accel
DR
Base Band DSP
Clocking
Pico Cell Clocking
DPLL
CDCM6208
APLL
GPS receiver
IEEE1588
timing extract
Ethernet
SyncE
Ethernet
Timing
Server
1pps
1pps
Core
Packet
network
FBADC
RXADC
TXDAC
RF LO
RF LO
Product Folder
Sample & Buy
Technical Documents
Tools & Software
Support & Community
CDCM6208V1F 2:8 Clock Generator, Jitter Cleaner with Fractional Dividers

1 Features 2 Applications

1
Superior Performance with Low Power: – Low Noise Synthesizer (265 fs-rms Typical
Jitter) or Low Noise Jitter Cleaner (1.6 ps-rms
Typical Jitter) – 0.5 W Typical Power Consumption – High Channel-to-Channel Isolation and
Excellent PSRR – Device Performance Customizable Through
Flexible 1.8 V, 2.5 V and 3.3 V Power
Supplies, Allowing Mixed Output Voltages
Flexible Frequency Planning: – 4x Integer Down-divided Differential Clock
Outputs Supporting LVPECL-like, CML, or LVDS-like Signaling
– 4x Fractional or Integer Divided Differential
Clock Outputs Supporting HCSL, LVDS-like Signaling, or Eight CMOS Outputs
– Fractional Output Divider Achieve 0 ppm to < 1
ppm Frequency Error and Eliminates need for Crystal Oscillators and Other Clock Generators
– Output frequencies up to 800 MHz
Two Differential Inputs, XTAL Support, Ability for Smart Switching
SPI, I2C™, and Pin Programmable
Professional user GUI for Quick Design Turnaround
7 x 7 mm 48-QFN package (RGZ)
-40 °C to 85 °C temperature range
Base Band Clocking (Wireless Infrastructure)
Networking and Data Communications
Keystone C66x Multicore DSP Clocking
Storage Server, Portable Test Equipment,
Medical Imaging, High End A/V

3 Description

The CDCM6208V1F is a highly versatile, low jitter, low-power frequency synthesizer that can generate eight low jitter clock outputs, selectable between LVPECL-like high-swing CML, normal-swing CML, LVDS-like low-power CML, HCSL, or LVCMOS, from one of two inputs that can feature a low frequency crystal or CML, LVPECL, LVDS, or LVCMOS signals for a variety of wireless infrastructure baseband, wireline data communication, computing, low power medical imaging and portable test and measurement applications. The CDCM6208V1F also features an innovative fractional divider architecture for four of its outputs that can generate any frequency with better than 1ppm frequency accuracy. The CDCM6208V1F can be easily configured through I2C or SPI programming interface and in the absence of serial interface, pin mode is also available that can set the device in 1 of 32 distinct pre-programmed configurations using control pins.
Device Information
PART NUMBER PACKAGE BODY SIZE (NOM)
CDCM6208V1F VQFN (48) 7.00 mm × 7.00 mm (1) For all available packages, see the orderable addendum at
the end of the datasheet.
CDCM6208V1F
SCAS943 –MAY 2015
(1)

4 Simplified Schematics

1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

Table of Contents

1 Features.................................................................. 1
2 Applications ........................................................... 1
3 Description ............................................................. 1
4 Simplified Schematics........................................... 1
5 Revision History..................................................... 2
6 Description (continued)......................................... 3
7 Pin Configuration and Functions......................... 3
8 Specifications......................................................... 6
8.1 Absolute Maximum Ratings ..................................... 6
8.2 ESD Ratings.............................................................. 6
8.3 Recommended Operating Conditions....................... 7
8.4 Thermal Information, Airflow = 0 LFM ..................... 7
8.5 Thermal Information, Airflow = 150 LFM ................. 8
8.6 Thermal Information, Airflow = 250 LFM ................. 8
8.7 Thermal Information, Airflow = 500 LFM ................. 8
8.8 Single Ended Input Characteristics .......................... 9
8.9 Single Ended Input Characteristics (PRI_REF,
SEC_REF) ................................................................. 9
8.10 Differential Input Characteristics (PRI_REF,
SEC_REF) ............................................................... 10
8.11 Crystal Input Characteristics (SEC_REF) ............. 10
8.12 Single Ended Output Characteristics (STATUS1,
STATUS0, SDO, SDA) ............................................ 11
8.13 PLL Characteristics............................................... 11
8.14 LVCMOS Output Characteristics .......................... 12
8.15 LVPECL (High-Swing CML) Output
Characteristics ......................................................... 13
8.16 CML Output Characteristics.................................. 13
8.17 LVDS (Low-Power CML) Output Characteristics. 14
8.18 HCSL Output Characteristics............................... 14
8.19 Output Skew and Sync to Output Propagation Delay
Characteristics ......................................................... 15
8.20 Device Individual Block Current Consumption...... 16
8.21 Worst Case Current Consumption........................ 17
8.22 I2C TIMING .......................................................... 18
8.23 SPI Timing Requirements ..................................... 19
8.24 Typical Characteristics ......................................... 20
9 Parameter Measurement Information................ 22
9.1 Characterization Test Setup ................................... 22
10 Detailed Description ........................................... 28
10.1 Overview............................................................... 28
10.2 Functional Block Diagram ..................................... 28
10.3 Feature Description............................................... 29
10.4 Device Functional Modes...................................... 30
10.5 Programming......................................................... 38
10.6 Register Maps....................................................... 42
11 Application and Implementation........................ 53
11.1 Application Information.......................................... 53
11.2 Typical Applications .............................................. 53
12 Power Supply Recommendations..................... 72
12.1 Power Rail Sequencing, Power Supply Ramp Rate,
and Mixing Supply Domains .................................... 72
13 Layout................................................................... 74
13.1 Layout Guidelines ................................................. 74
13.2 Layout Example .................................................... 74
14 Device and Documentation Support................. 80
14.1 Trademarks........................................................... 80
14.2 Documentation Support ....................................... 80
14.3 Electrostatic Discharge Caution............................ 80
14.4 Glossary................................................................ 80
15 Mechanical, Packaging, and Orderable
Information........................................................... 80

5 Revision History

DATE REVISION NOTES
May 2015 * Initial release.
2 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
48
VDD_PLL1
47
RESETN/PWR
46
PDN
45
SYNCN
44
Y7_N
43
Y7_P
42
41
VDD_Y7
40
Y6_N
39
Y6_P
38
VDD_Y6
VDD_Y5
36
37
35
34
33
STATUS0
STATUS1/PIN0
ELF
17
18
19
20
21
22
23
24
28
27
26
29
25
30
31
32
Y0_P
Y1_N
Y1_P
VDD_Y0_Y1
VDD_Y2_Y3
Y2_P
Y2_N
VDD_Y0_Y1
SDI/SDA/PIN1
SDO/AD0/PIN2
SCS/AD1/PIN3
REF_SEL
SCL/PIN4
1
2
3
4
5
6
7
8
9
10
11
131214
15
16
Y5_P
PRI_REFN
Y0_N
PRI_REFP
SI_MODE0
Y4_N
Y3_N
REG_CAP
VDD_VCO
SEC_REFP
SEC_REFN
Y3_P
VDD_Y2_Y3
Y4_P
VDD_Y4
Y5_N
VDD_PLL2
SI_MODE1
DVDD
DVDD
VDD VDD_Y 2_Y3
VDD_Y4
VDD_Y5
VDD_Y6
VDD_Y7
VDD_PRI_REF
VDD_SECI_REF
VDD_SEC_REF
_Y0_Y1
VDD_PRI_REF
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

6 Description (continued)

In synthesizer mode, the overall output jitter performance is less than 0.5 ps-rms (10 k - 20 MHz) or 20 ps-pp (unbound) on output using integer dividers and is between 50 to 220 ps-pp (10 k - 40 MHz) on outputs using fractional dividers depending on the prescaler output frequency.
In jitter cleaner mode, the overall output jitter is less than 2.1 ps-rms (10 k - 20 MHz) or 40 ps-pp on output using integer dividers and is less than 70 ps to 240 ps-pp on outputs using fractional dividers. The CDCM6208V1F is packaged in a small 48-pin 7 mm x 7 mm QFN package.

7 Pin Configuration and Functions

RGZ Package
48 Pin VQFN
Top View
PIN
NAME NO.
PRI_REFP 8 Input Universal Primary Reference Input + PRI_REFN 9 Input Universal Primary Reference Input –
VDD_PRI_REF 7 PWR Analog
SEC_REFP 11 Input Universal Secondary Reference Input + SEC_REFN 12 Input Universal Secondary Reference Input –
VDD_SEC_REF 10 PWR Analog
(1) If Secondary input buffer is disabled (Register 4 Bit 5 = 0), it is possible to connect VDD_SEC_REF to GND.
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 3
I/O TYPE DESCRIPTION
Product Folder Links: CDCM6208V1F
Pin Functions
Supply pin for reference inputs to set between 1.8 V, 2.5 V, or 3.3 V or connect to VDD_SEC_REF.
Supply pin for reference inputs to set between 1.8 V, 2.5 V, or 3.3 V or connect to VDD_PRI_REF
(1)
.
CDCM6208V1F
SCAS943 –MAY 2015
Pin Functions (continued)
PIN
NAME NO.
REF_SEL 6 Input
ELF 41 Output Analog External loop filter pin for PLL Y0_P 14 Output Universal Output 0 Positive Terminal Y0_N 15 Output Universal Output 0 Negative Terminal Y1_P 17 Output Universal Output 1 Positive Terminal Y1_N 16 Output Universal Output 1 Negative Terminal
VDD_Y0_Y1 (2 13,
pins) 18 Y2_P 20 Output Universal Output 2 Positive Terminal Y2_N 21 Output Universal Output 2 Negative Terminal Y3_P 23 Output Universal Output 3 Positive Terminal Y3_N 22 Output Universal Output 3 Negative Terminal
VDD_Y2_Y3 (2 19,
pins) 24 Y4_P 26 Output Universal Output 4 Positive Terminal Y4_N 25 Output Universal Output 4 Negative Terminal
VDD_Y4 27 PWR Analog Supply pin for output 4 to set between 1.8 V, 2.5 V or 3.3 V
Y5_P 29 Output Universal Output 5 Positive Terminal Y5_N 28 Output Universal Output 5 Negative Terminal
VDD_Y5 30 PWR Analog Supply pin for output 5 to set between 1.8 V, 2.5 V or 3.3 V
Y6_P 32 Output Universal Output 6 Positive Terminal Y6_N 33 Output Universal Output 6 Negative Terminal
VDD_Y6 31 PWR Analog Supply pin for output 6 to set between 1.8 V, 2.5 V or 3.3 V
Y7_P 35 Output Universal Output 7 Positive Terminal Y7_N 36 Output Universal Output 7 Negative Terminal
VDD_Y7 34 PWR Analog Supply pin for output 7 to set between 1.8 V, 2.5 V or 3.3 V
VDD_VCO 39 PWR Analog supply of this pin and the VDD_PLL2 supply pin can be combined as they are both
VDD_PLL1 37 PWR Analog Analog Power Supply Connections
VDD_PLL2 38 PWR Analog supply of VDD_PLL2 and VDD_VCO can be combined as these pins are both
DVDD 48 PWR Analog
GND PAD PWR Analog Power Supply Ground and Thermal Pad
STATUS0 46 Output LVCMOS Status pin 0 (see Table 7 for details)
STATUS1/PIN0 45 and
SI_MODE1 47 Input mode;SI_MODE[1:0]=01: I2C mode;SI_MODE[1:0]=10: Pin Mode (No serial
SI_MODE0 1
SDI/SDA/PIN1 2 I/O
I/O TYPE DESCRIPTION
LVCMOS selection is also controlled through Register 4 bit 12.REF_SEL = 0 (VIL): selects
w/ 50kΩ pull-up PRI_REFREF_SEL = 1 (VIH): selects SEC_REF (when Reg 4.12 = 1). See
PWR Analog Supply pin for outputs 0, 1 to set between 1.8 V, 2.5 V or 3.3 V
PWR Analog Supply pin for outputs 2, 3 to set between 1.8 V, 2.5 V or 3.3 V
Output
Input
LVCMOS STATUS1: Status pin in SPI/I2C modes. For details see Table 6 for pin modes and
no pull resistor Table 7 for status mode. PIN0: Control pin 0 in pin mode.
LVCMOSw
50kΩ pull-up
LVCMOSw
50kΩ pull-down
LVCMOS in
Open drain out SDI: SPI Serial Data Input SDA: I2C Serial Data (Read/Write bi-directional), open
LVCMOS in drain output; requires a pull-up resistor in I2C mode;PIN1: Control pin 1 in pin mode
no pull resistor
Manual Reference Selection MUX for PLL. In SPI or I2C mode the reference
Table 36 for detail.
Analog power supply for PLL/VCO; This pin is sensitive to power supply noise; The analog and sensitive supplies;
Analog Power Supply Connections; This pin is sensitive to power supply noise; The power-sensitive, analog supply pins
Digital Power Supply Connections; This is also the reference supply voltage for all control inputs and must match the expected input signal swing of control inputs.
Serial Interface Mode or Pin mode selection.SI_MODE[1:0]=00: SPI programming);SI_MODE[1:0]=11: RESERVED
www.ti.com
4 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015
Pin Functions (continued)
PIN
NAME NO.
SDO/AD0/PIN2 3
SCS/AD1/PIN 3 4 Input
SCL/PIN4 5 Input SCL: SPI/I2C ClockPIN4: Control pin 4 in pin mode
RESETN/PWR 44 Input up).
REG_CAP 40 Output Analog
PDN 43 Input the entire device and defaults all registers. It is recommended to connect a capacitor
SYNCN 42 Input
(2) Note: the device cannot be programmed in I2C while RESETN is held low.
I/O TYPE DESCRIPTION
LVCMOS out
Output/I LVCMOS in SDO: SPI Serial Data AD0: I2C Address Offset Bit 0 inputPIN2: Control pin 2 in pin
nput LVCMOS in mode
no pull resistor
LVCMOS no pull SCS: SPI Latch EnableAD1: I2C Address Offset Bit 1 inputPIN3: Control pin 3 in pin
resistor mode
LVCMOS no pull
resistor
In SPI/I2C programming mode, external RESETN signal (active low). RESETN = VIL: device in reset (registers values are retained) RESETN = VIH: device active. The device can be programmed via SPI while
LVCMOS
w/ 50kΩ pull-up
RESETN is held low (this is useful to avoid any false output frequencies at power
(2)
In Pin mode this pin controls device core and I/O supply voltage setting. 0 = 1.8 V, 1 = 2.5/3.3 V for the device core and I/O power supply voltage. In pin mode, it is not possible to mix and match the supplies. All supplies should either be 1.8 V or 2.5/3.3 V.
Regulator Capacitor; connect a 10 µF cap with ESR below 1 Ω to GND at frequencies above 100 kHz
Power Down Active low. When PDN = VIHis normal operation. When PDN = VIL, the
LVCMOS
w/ 50kΩ pull-up
device is disabled and current consumption minimized. Exiting power down resets to GND to hold the device in power-down until the digital and PLL related power
supplies are stable. See section on power down in the application section.
LVCMOS Active low. Device outputs are synchronized on a low-to-high transition on the
w/ 50kΩ pull-up SYNCN pin. SYNCN held low disables all outputs.
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: CDCM6208V1F
CDCM6208V1F
SCAS943 –MAY 2015

8 Specifications

www.ti.com

8.1 Absolute Maximum Ratings

(1)
over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN MAX UNIT
Supply Voltage Range, VDD_PRI, VDD_SEC, VDD_Yx_Yy, VDD_PLL[2:1], DVDD -0.5 4.6 V
4.6
Input Voltage Range CMOS control inputs, V
IN
-0.5 and V V
+ 0.5
DVDD
4.6
Input Voltage Range PRI/SEC inputs and V
Output Voltage Range, V Input Current, I
IN
Output Current, I Junction Temperature, T
OUT
OUT
J
Storage temperature range, T
V
VDDPRI.SEC
-0.5 V
stg
-65 150 °C
+ 0.5
+ 0.5 V
YxYy
20 mA 50 mA
125 °C
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

VALUE UNIT
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins
V
(ESD)
Electrostatic discharge V
Charged device model (CDM), per JEDEC specification JESD22-C101, all
(2)
pins
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
(1)
±2000
±500
6 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD_Yx_Yy Output Supply Voltage 1.71 1.8/2.5/3.3 3.465 V VDD_PLL1
VDD_PLL2 DVDD Core Digital Supply Voltage 1.71 1.8/2.5/3.3 3.465 V VDD_PRI,
VDD_SEC ΔVDD/Δt 50 < t T
A
SDA and SCL in I2C MODE (SI_MODE[1:0] = 01)
V
I
d
R
V
IH
V
IL
C
BUS_I2C
(1) For fast power up ramps under 50 ms and when all supply pins are driven from the same power supply source, PDN can be left floating.
For slower power up ramps or if supply pins are sequenced with uncertain time delays, PDN needs to be held low until DVDD, VDD_PLLx, and VDD_PRI/SEC reach at least 1.45V supply voltage. See application section on mixing power supplies and particularly
Figure 58 for details.
Core Analog Supply Voltage 1.71 1.8/2.5/3.3 3.465 V
Reference Input Supply Voltage 1.71 1.8/2.5/3.3 3.465 V VDD power-up ramp time (0 to 3.3 V) PDN left open, all VDD tight
together PDN low-high is delayed
(1)
PDN
ms
Ambient Temperature -40 85 °C
Input Voltage
Data Rate kbps
High-level input voltage V
DVDD = 1.8 V –0.5 2.45 V DVDD = 3.3 V –0.5 3.965 V
100 400
0.7 x
DVDD Low-level input voltage 0.3 x DVDD V Total capacitive load for each bus line 400 pF

8.4 Thermal Information, Airflow = 0 LFM

(1) (2) (3) (4)
CDCM6208
THERMAL METRIC
(1)
RGZ UNIT
48 PINS VQFN
R
θJA
R
θJC(top)
R
θJB
ψ
JT
ψ
JB
R
θJC(bot)
Junction-to-ambient thermal resistance 30.27 Junction-to-case (top) thermal resistance 16.58 Junction-to-board thermal resistance 6.83 Junction-to-top characterization parameter 0.23 Junction-to-board characterization parameter 6.8 Junction-to-case (bottom) thermal resistance 1.06
°C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board). (3) Connected to GND with 36 thermal vias (0.3 mm diameter). (4) θJB(junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: CDCM6208V1F
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

8.5 Thermal Information, Airflow = 150 LFM

(1) (2) (3) (4)
CDCM6208
THERMAL METRIC
(1)
RGZ UNIT
48 PINS
R
θJA
R
θJC(top)
R
θJB
ψ
JT
ψ
JB
R
θJC(bot)
Junction-to-ambient thermal resistance 21.8 Junction-to-case (top) thermal resistance Junction-to-board thermal resistance 6.61 Junction-to-top characterization parameter 0.37 Junction-to-board characterization parameter Junction-to-case (bottom) thermal resistance 1.06
°C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board). (3) Connected to GND with 36 thermal vias (0.3 mm diameter). (4) θJB(junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.

8.6 Thermal Information, Airflow = 250 LFM

(1) (2) (3) (4)
CDCM6208
THERMAL METRIC
(1)
RGZ UNIT
48 PINS
R
θJA
R
θJC(top)
R
θJB
ψ
JT
ψ
JB
R
θJC(bot)
Junction-to-ambient thermal resistance 19.5 Junction-to-case (top) thermal resistance Junction-to-board thermal resistance 6.6 Junction-to-top characterization parameter 0.45 Junction-to-board characterization parameter Junction-to-case (bottom) thermal resistance 1.06
°C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board). (3) Connected to GND with 36 thermal vias (0.3 mm diameter). (4) θJB(junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.

8.7 Thermal Information, Airflow = 500 LFM

(1) (2) (3) (4)
CDCM6208
THERMAL METRIC
(1)
RGZ UNIT
48 PINS
R
θJA
R
θJC(top)
R
θJB
ψ
JT
ψ
JB
R
θJC(bot)
Junction-to-ambient thermal resistance 17.7 Junction-to-case (top) thermal resistance Junction-to-board thermal resistance 6.58 Junction-to-top characterization parameter 0.58 Junction-to-board characterization parameter Junction-to-case (bottom) thermal resistance 1.05
°C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board). (3) Connected to GND with 36 thermal vias (0.3 mm diameter). (4) θJB(junction to board) is used for the QFN package, the main heat flow is from the junction to the GND pad of the QFN.
8 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.8 Single Ended Input Characteristics

(SI_MODE[1:0], SDI/SDA/PIN1, SCL/PIN4, SDO/ADD0/PIN2, SCS/ADD1/PIN3, STATUS1/PIN0, RESETN/PWR, PDN, SYNCN, REF_SEL), DVDD = 1.71V to 1.89V, 2.375V to 2.625V, 3.135V to 3.465V, TA= –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V
IH
V
IL
I
IH
I
IL
ΔV/ΔT 20% - 80% 0.75 V/ns
minPulse 10 ns C
IN
RESETN, PWR, SYNCN, PDN, REF_SEL, SI_MODE[1:0]:
R Input Pullup and Pulldown Resistor 35 50 65 kΩ
SDA and SCL in I2C Mode (SI_MODE[1:0]=01)
V
HYS_I2C
I
H
V
OL
C
IN
Input High Voltage 0.8 x DVDD V Input Low Voltage 0.2 x DVDD V
Input High Current 30 µA
DVDD = 3.465V, VIH= 3.465 V (pull-up
resistor excluded) Input Low Current DVDD = 3.465V, VIL= 0 V -30 µA PDN, RESETN, SYNCN, REF_SEL Input
Edge Rate PDN, RESETN, SYNCN low pulse to
trigger proper device reset Input Capacitance 2.25 pF
Input hysteresis
DVDD = 1.8 V 0.1 V
DVDD = 2.5/3.3 V 0.05 V
DVDD DVDD
High-level input current VI= DVDD –5 5 µA Output Low Voltage IOL= 3mA 0.2 x DVDD V Input Capacitance terminal 5 pF
V V

8.9 Single Ended Input Characteristics (PRI_REF, SEC_REF)

VDD_PRI, VDD_SEC = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA= –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
IN
V
V
V I
IH
I
IL
IH
IL
HYST
Reference and Bypass Input Frequency
Input High Voltage VDD_PRI/V V
Input Low Voltage VDD_PRI/V V
Input hysteresis 20 65 150 mV Input High Current VDD_PRI/VDD_SEC = 3.465 V, VIH= 3.465 V 30 µA Input Low Current VDD_PRI/VDD_SEC = 3.465 V, VIL= 0 V -30 µA
ΔV/ΔT Reference Input Edge Rate 20% - 80% 0.75 V/ns
IDC
C
SE
IN
Reference Input Duty Cycle
Input Capacitance 2.25 pF
VDD_PRI/SEC = 1.8 V 0.008 200 MHz VDD_PRI/SEC = 3.3 V 0.008 250 MHz
0.8 x
DD_SEC
0.2 x
DD_SEC
f
200MHz 40% 60%
PRI
200 f
250 MHz 43% 60%
PRI
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: CDCM6208V1F
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

8.10 Differential Input Characteristics (PRI_REF, SEC_REF)

VDD_PRI, VDD_SEC = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA= –40°C TO 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
IN
V
I
V
ICM
V
ICM
V
HYST
I
IH
I
IL
ΔV/ΔT Reference Input Edge Rate 20% - 80% 0.75 V/ns IDC
DIFF
C
IN
Reference and Bypass Input Frequency 0.008 250 MHz Differential Input Voltage Swing, Peak-to-
Peak
Input Common Mode Voltage CML input signaling, R4[7:6] = 00 DD_SEC- DD_SEC- V
Input Common Mode Voltage 0.8 1.2 1.5 V
Input hysteresis
Input High Current VDD_PRI/SEC = 3.465 V, VIH= 3.465 V 30 µA Input Low Current VDD_PRI/SEC = 3.465V, VIL= 0 V -30 µA
Reference Input Duty Cycle 30% 70% Input Capacitance 2.7 pF
VDD_PRI/SEC = 2.5/3.3 V 0.2 1.6 V
VDD_PRI/SEC = 1.8 V 0.2 1 V
VDD_PRI/V VDD_PRI/V
0.4 0.1
LVDS, VDD_PRI/SEC
= 1.8/2.5/3.3 V,
R4[7:6] = 01, R4.1 = d.c.,
R4.0 = d.c.
LVDS (Q4[7:6,4:3] = 01) 15 65 mV
CML (Q4[7:6,4:3] = 00) 20 85 mV

8.11 Crystal Input Characteristics (SEC_REF)

VDD_SEC = 1.71 to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V,TA= –40°C to 85°C
PARAMETER MIN TYP MAX UNIT
MODE OF OSCILLATION FUNDAMENTAL
Frequency
See note
See note
10 MHz 150
Equivalent Series Resistance (ESR) 25 MHz 70
50 MHz 30
1.8 V / 3.3 V SEC_REFP 3.5 4.5 5.5
On-chip load capacitance 1.8 V SEC_REFN 5.5 7.25 8.5 pF
3.3 V SEC_REFN 6.5 7.34 8.5
Drive Level See note
(1) Verified with crystals specified for a load capacitance of CL=8pF, the pcb related capacitive load was estimated to be 2.3pF, and
completed with a load capacitors of 4pF on each crystal terminal connected to GND. XTALs tested: NX3225GA 10MHz EXS00A­CG02813 CRG, NX3225GA 19.44MHz EXS00A-CG02810 CRG, NX3225GA 25MHz EXS00A-CG02811 CRG, and NX3225GA
30.72MHz EXS00A-CG02812 CRG.
(2) For 30.73 MHz to 50 MHz, it is recommended to verify sufficient negative resistance and initial frequency accuracy with the crystal
vendor. The 50 MHz use case was verified with a NX3225GA 50MHz EXS00A-CG02814 CRG. To meet a minimum frequency error, the
best choice of the XTAL was one with CL= 7pF instead of CL= 8pF. (3) With NX3225GA_10M the measured remaining negative resistance on the EVM is 6430 Ω (43 x margin) (4) With NX3225GA_25M the measured remaining negative resistance on the EVM is 1740 Ω (25 x margin) (5) With NX3225GA_50M the measured remaining negative resistance on the EVM is 350 Ω (11 x margin) (6) Maximum drive level measured was 145 µW; XTAL should at least tolerate 200 µW
(1) (2)
(6)
10 30.72 MHz
30.73 50 MHz
(3) (4) (5)
200 µW
PP PP
pp pp
Ω
10 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.12 Single Ended Output Characteristics (STATUS1, STATUS0, SDO, SDA)

VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71V to 1.89V, 2.375V to 2.625V, 3.135V to 3.465V; TA= –40°C to 85°C (Output load capacitance 10 pF unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Status 1, Status 0, and SDO only;
V
OH
V
OL
V
slew
I
OZH
I
OZL
t
LOS
t
LOCK
Output High Voltage V
Output Low Voltage IOL= 1 mA V Output slew rate 30% - 70% 0.5 V/ns
3-stat Output High Current DVDD = 3.465 V, VIH= 3.465 V 5 µA 3-stat Output Low Current DVDD = 3.465 V, VIL= 0 V -5 µA Status Loss of Signal Detection
Time
Status PLL Lock Detection Time 1/f
SDA is open drain and relies on 0.8 x external pullup for high output; IOH= DVDD 1 mA
0.2 x
DVDD
LOS_REFfvco 1 2 1/f Detect lock 2304
Detect unlock 512
PFD
PFD

8.13 PLL Characteristics

VDD_PLLx, VDD_VCO = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA= –40°C TO 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
VCO
K
VCO
f
PFD
I
CP-L
f
FOM
t
STARTUP
VCO Frequency Range 2.39 2.55 GHz
2.39 GHz 178
VCO Gain 2.50 GHz 204 MHz/V
2.55 GHz 213 PFD Input Frequency 0.008 100 MHz High Impedance Mode Charge
Pump Leakage Estimated PLL Figure of Merit
(FOM)
Measured in-band phase noise at the VCO output minus 20log(N- –224 dBc/Hz divider) at the flat region
±700 nA
Power supply ramp time of 1ms from 0 V to 1.7 V, final frequency
Startup time (see Figure 42 )
accuracy of 10 ppm, f C
PDN_to_GND
= 22nF
= 25 MHz,
PFD
w/ PRI input signal 12.8 ms w/ NDK 25 MHz crystal 12.85 ms
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: CDCM6208V1F
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

8.14 LVCMOS Output Characteristics

VDD_Yx_Yy = 1.71 V to 1.89V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA= –40°C TO 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Fract Out divVDD_Yx_Yy = 2.5/3.3 V 0.78 250
f
OUT-F
f
ACC-F
V
OH
V
OL
V
OH
V
OL
I
OH
I
OL
t
SLEW-RATE-N
t
SLEW-RATE-S
PN-floor Phase Noise Floor f ODC Output Duty Cycle Not in bypass mode 45% 55%
R
OUT
(1) The User's GUI calculates exact frequency error. It is a fixed, static offset. If the desired output target frequency is with the exact reach
of a multiple 1 over 220, the actual output frequency error is 0. Note: In LVCMOS Mode, positive and negative outputs are in phase.
Output Frequency Integer out divVDD_Yx_Yy = 2.5/3.3 V 1.55 250 MHz
Int or frac out divVDD_Yx_Yy = 1.8 V 0.78/1.5 200
Output Frequency Error Output High Voltage (normal mode) VDD_Yx = min to max, IOH= -1 mA V
Output Low Voltage(normal mode) VDD_Yx = min to max, IOL= 100 µA V
Output High Voltage (slow mode) VDD_Yx = min to max, IOH= -100 µA V
Output Low Voltage(slow mode) VDD_Yx = min to max, IOL= 100 µA V
(1)
Fractional Output Divider –1 1 ppm
0.8 x
VDD_Yx_Yy
0.2 x
VDD_Yx_Yy
0.7 x
VDD_Yx_Yy
0.3 x
VDD_Yx_Yy
V
= VDD_Yx_Yy/2
OUT
Output High Current Normal mode –50 -8 mA
Slow mode –45 -5 mA
V
= VDD_Yx_Yy/2
OUT
Output Low Current Normal mode 10 55 mA
Slow mode 5 40 mA
Output Rise/Fall Slew Rate (normal mode)
Output Rise/Fall Slew Rate (normal mode)
Output Rise/Fall Slew Rate (slow mode)
Output Rise/Fall Slew Rate (slow mode)
Output Impedance
20% to 80%, VDD_Yx_Yy = 2.5/3.3 V, CL= 5 pF
20% to 80%, VDD_Yx_Yy = 1.8 V, CL= 5 pF
20% to 80%, VDD_Yx_Yy = 2.5/3.3 V, CL= 5 pF
20% to 80%, VDD_Yx_Yy = 1.8 V, CL= 5 pF
= 122.88 MHz –159.5 –154 dBc/Hz
OUT
V
= VDD_Yx/2
OUT
5.37 V/ns
2.62 V/ns
4.17 V/ns
1.46 V/ns
Normal mode 30 50 90
Slow mode 45 74 130
Ω
12 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.15 LVPECL (High-Swing CML) Output Characteristics

VDD_Yx_Yy = 1.71 V to 3.465 V, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135 V to 3.465 V, TA= –40°C TO 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
OUT-I
V
CM-DC
|VOD| Differential output voltage
V
OUT
tR/t
t
slew
PN-floor Phase noise floor VDD_Yx_Yy = 3.3 V (See Figure 54) –161.4 –155.8 dBc/Hz ODC Output duty cycle Not in bypass mode 47.5% 52.5% R
OUT
Output frequency Integer Output Divider 1.55 800 MHz Output DC coupled common mode
voltage
DC coupled with 50 Ω external termination to VDD_Yx_Yy V
100 Ω diff load AC coupling (See Figure 12), f
250 MHz
OUT
VDD_Yx
_
Yy – 0.4
VDD_Yx_Yy 1.89 V 0.45 0.75 1.12 V VDD_Yx_Yy 2.375 V 0.6 0.8 1.12 V 100 Ω diff load AC coupling (See Figure 12), f
250 MHz
OUT
VDD_Yx_Yy 1.89 V 0.73 V VDD_Yx_Yy 2.375 V 0.55 0.75 1.12 V
Differential output peak-to-peak voltage
Output rise/fall time
F
±200 mV around crossing point 109 217 ps 20% to 80% V
OD
2 x |VOD| V
211 ps
Output rise/fall slew rate 3.7 5.1 7.3 V/ns
Output impedance measured from pin to VDD_Yx_Yy 50 Ω

8.16 CML Output Characteristics

VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71V to 1.89V, 2.375V to 2.625V, 3.135V to 3.465V, TA= –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
OUT-I
V
CM-AC
V
CM-DC
|VOD| Differential output voltage 100 Ω diff load AC coupling, (See Figure 12) 0.3 0.45 0.58 V V
OUT
tR/t
F
PN-floor Phasenoise floor at > 5 Hz offset f
ODC Output duty cycle Not in bypass mode 47.5% 52.5% R
OUT
Output frequency Integer Output Divider 1.55 800 MHz Output AC coupled common
mode voltage Output DC coupled common
mode voltage
Differential output peak-to-peak voltage
Output rise/fall time 20% to 80%
AC coupled with 50 Ω receiver termination VDD_Yx_Yy – 0.46 V DC coupled with 50 Ω on-chip termination
to VDD_Yx_Yy
VDD_Yx_Yy – 0.2 V
2 x |VOD| V
VDDYx = 1.8 V 100 151 300 ps VDDYx = 2.5 V/3.3 V 100 143 200 ps
= 122.88 MHz
OUT
VDD_Yx_Yy = 1.8 V –161.2 –155.8 dBc/Hz VDD_Yx_Yy = 3.3 V –161.2 –153.8 dBc/Hz
Output impedance measured from pin to VDD_Yx_Yy 50 Ω
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: CDCM6208V1F
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

8.17 LVDS (Low-Power CML) Output Characteristics

VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71 V to 1.89 V, 2.375 V to 2.625 V, 3.135V to
3.465V, TA= –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
OUT-I
f
OUT-F
f
ACC-F
V
CM-AC
V
CM-DC
|VOD| Differential output voltage 100 Ω diff load AC coupling, (See Figure 12) 0.247 0.34 0.454 V V
OUT
tR/t
F
PN-floor Phase noise floor f
ODC Output duty cycle Not in bypass mode
R
OUT
Output frequency
Output frequency error Output AC coupled
common mode voltage Output DC coupled
common mode voltage
Differential output peak-to­peak voltage
Output rise/fall time ±100mV around crossing point 300 ps
Output impedance Measured from pin to VDD_Yx_Yy 167 Ω
(1) The User's GUI calculates exact frequency error. It is a fixed, static offset. If the desired output target frequency is with the exact reach
of a multiple of 1 over 220, the actual output frequency error is 0.
Integer output divider 1.55 400 MHz Fractional output divider 0.78 400 MHz
(1)
Fractional output divider -1 1 ppm AC coupled with 50 Ω receiver termination VDD_Yx_Yy – 0.76 V
DC coupled with 50 Ω on-chip termination to VDD_Yx_Yy VDD_Yx_Yy – 0.13 V
2 x |VOD| V
= 122.88 MHz
OUT
VDD_Yx = 1.8 V –159.3 –154.5 dBc/Hz VDD_Yx = 2.5/3.3 V –159.1 –154.9 dBc/Hz Y[3:0] 47.5% 52.5% Y[7:4] 45% 55%

8.18 HCSL Output Characteristics

VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.71 to 1.89 V, 2.375 V to 2.625 V,3.135 V to 3.465 V, TA= –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f
OUT-I
f
OUT-F
f
ACC-F
V
CM
Output frequency
Output Frequency Error
(1)
Output Common Mode Voltage
|VOD| Differential Output Voltage
V
tR/t
OUT
F
Differential Output Peak-to-peak Voltage
Output Rise/Fall Time ps
PN-floor Phase Noise Floor f
ODC Output Duty Cycle Not in bypass mode 45% 55%
(1) The User's GUI calculates exact frequency error. It is a fixed, static offset. If the desired output target frequency is with the exact reach
of A 1/220multiple, the actual output frequency error is 0.
Integer Output Divider 1.55 400 MHz Fractional Output Divider 0.78 400 MHz Fractional Output Divider -1 1 ppm VDD_Yx_Yy = 2.5/3.3 V 0.2 0.34 0.55 V VDD_Yx_Yy = 1.8 V 0.2 0.33 0.55 V VDD_Yx_Yy = 2.5/3.3 V 0.4 0.67 1.0 V VDD_Yx_Yy = 1.8 V 0.4 0.65 1.0 V VDD_Yx_Yy = 2.5/3.3 V 1.0 2.1 V VDD_Yx_Yy = 1.8 V 2 x|VOD| V Measured from V
V
= +100mV, VDD_Yx_Yy = 2.5/3.3 V
DIFF
Measured from V V
= +100 mV, VDD_Yx_Yy = 1.8 V
DIFF
= 122.88 MHz
OUT
= –100 mV to
DIFF
= –100 mV to
DIFF
100 167 250
120 192 295
VDD_Yx_Yy = 1.8 V –158.8 –153 dBc/Hz VDD_Yx = 2.5/3.3 V –157.6 –153 dBc/Hz
14 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.19 Output Skew and Sync to Output Propagation Delay Characteristics

VDD_Yx_Yy = 1.71 to 1.89 V, 2.375 V to 2.625 V, 3.135V to 3.465 V, TA= –40°C to 85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t
PD-PS
Propagation delay SYNCNto output toggling high
f
= 2.5 GHz PS_A = 5 9 10.2 11 1/f
VCO
Part-to-Part Propagation delay
Δt
PD-PS
variation SYNCNto output toggling Fixed supply voltage, temp, and device setting
(1)
high
OUTPUT SKEW – ALL OUTPUTS USE IDENTICAL OUTPUT SIGNALING, INTEGER DIVIDERS ONLY; PS_A = PS_B = 6, OutDiv = 4
t
SK,LVDS
t
SK,LVDS
t
SK,LVDS
t
SK,CML
t
SK,PECL
t
SK,HCSL
t
SK,SE
Skew between Y[7:4] LVDS Y[7:4] = LVDS 40 ps Skew between Y[3:0] LVDS Y[3:0] = LVDS 40 ps Skew between Y[7:0] LVDS Y[7:0] = LVDS 80 ps Skew between Y[3:0] CML Y[3:0] = CML 40 ps Skew between Y[3:0] PECL Y[3:0] = LVPECL 40 ps Skew between Y[7:4] HCSL Y[7:4] = HCSL 40 ps Skew between Y[7:4] CMOS Y[7:4] = CMOS 50 ps
OUTPUT SKEW - MIXED SIGNAL OUTPUT CONFIGURATION, INTEGER DIVIDERS ONLY; PS_A = PS_B = 6, OutDiv = 4
t
SK,CMOS-LVDS
t
SK,CMOS-PECL
t
SK,PECL-LVDS
t
SK,PECL-CML
t
SK,LVDS-PECL
t
SK,LVDS-HCSL
Skew between Y[7:4] LVDS and CMOS mixed
Skew between Y[7:0] CMOS and LVPECL mixed
Skew between Y[3:0] LVPECL and LVDS mixed
Skew between Y[3:0] LVPECL and CML mixed
Skew between Y[7:0] LVDS and LVPECL mixed
Skew between Y[7:4] LVDS and HCSL mixed
Y[4] = CMOS, Y[7:5] = LVDS 2.5 ns
Y[7:4] = CMOS, Y[3:0] = LVPECL 2.5 ns
Y[0] = LVPECL, Y[3:1] = LVDS 120 ps
Y[0] = LVPECL, Y[3:1] = CML 40 ps
Y[7:4] = LVDS, Y[3:0] = LVPECL 180 ps
Y[4] = LVDS, Y[7:5] = HCSL 250 ps
OUTPUT SKEW - USING FRACTIONAL OUTPUT DIVISION; PS_A = PS_B = 6, OutDiv = 3.125
Skew between Y[7:4] LVDS using all
t
SK,DIFF, frac
fractional divider with the same Y[7:4] = LVDS 200 ps divider setting
(1) SYNC is toggled 10,000 times for each device. Test is repeated over process voltage and temperature (PVT).
PS_A = 4 9 10.5 11 1/f
PS_A = 6 9 10.0 11 1/f
(1)
0 1 1/f
PS_A PS_A PS_A
PS_A
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: CDCM6208V1F
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

8.20 Device Individual Block Current Consumption

VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 1.8 V, 2.5 V, or 3.3 V, TA= –40°C to 85°C, Output Types = LVPECL/CML/LVDS/LVCMOS/HCSL
BLOCK CONDITION TYPICAL CURRENT CONSUMPTION (mA)
Core CDCM6208V1F Core, active mode, PS_A = PS_B = 4 75
CML output, AC coupled w/ 100 Ω diff load 24.25 LVPECL, AC coupled w/ 100 Ω diff load 40
Output Buffer 1.8 + V x f
LVCMOS output, transient, 'CL' load, 'f' MHz output frequency, 'V' output swing
x (CL+ 12 x 10
OUT
LVDS output, AC coupled w/ 100 Ω diff load 19.7 HCSL output, 50 load to GND on each output pin 31 Integer Divider Bypass (Divide = 1) 3
Output Divide Circuitry
Integer Divide Enabled, Divide > 1 8 Fractional Divider Enabled 12 additional current when PS_A differs from PS_B 15 Device Settings (V2)
1. PRI input enabled, set to LVDS mode
2. SEC input XTAL
3. Input bypass off, PRI only sent to PLL
4. Reference clock 30.72 MHz
5. PRI input divider set to 1 (excl. I
termination_resistors
(1.8 V: 251 mA
2.5 V: 254 mA
(incl. I
termination_resistors
(1.8 V: 310 mA
2.5 V: 313 mA
Total Device, CDCM6208V1F
6. Reference input divider set to 1
7. Charge Pump Current = 2.5 mA
8. VCO Frequency = 3.072 GHz 3.3 V: 257 mA)
9. PS_A = PS_B divider ration = 4
10. Feedback divider ratio = 25
11. Output divider ratio = 5 3.3 V: 316 mA)
12. Fractional divider pre-divider = 2
13. Fractional divider core input frequency = 384 MHz
14. Fractional divider value = 3.84, 5.76, 3.072, 7.68
15. CML outputs selected for CH0-3 (153.6 MHz)
LVDS outputs selected for CH4-7 (100 MHz, 66.66 MHz, 125 MHz, 50 MHz)
Total Device, CDCM6208V1F Power Down (PDN = '0') 0.35
-12
)
)
) x 10
3
Helpful Note: The CDCM6208V1F User GUI does an excellent job estimating the total device current consumption based on the actual device configuration. Therefore, it is recommended to use the GUI to estimate device power consumption.
The individual supply terminal current consumption for Pin mode P23 was measured to come out the following:
Table 1. Individual Supplies Measured
Y0-1 Y2-3 Y4 Y5 Y6 Y7 PRI PLL1 PLL2 VCO DVDD TOTAL
PWR PIN 39 = GND V
= 1.8 V 61 mA 40 mA 21 mA 29 mA 30 mA 31 mA 12 mA 70 mA 1.5 mA 295.5 mA
PRI
V
= 1.8 V
OUT
Customer EVM
16 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
SEC SEC
(V
= 1.8V) (V
SEC
SEC
= 2.5V)
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.21 Worst Case Current Consumption

VDD_Yx_Yy, VDD_PRI, VDD_SEC, VDD_PLLx, DVDD, VDD_VCO = 3.45 V, TA= T-40°C to 85°C, Output Types = maximum swing, all blocks including duty cycle correction and fractional divider enabled and operating at maximum operation
BLOCK CONDITION CURRENT CONSUMPTION
TYP / MAX
All conditions over PVT, AC coupled outputs with all outputs terminated, device configuration: Device Settings (V2)
1. PRI input enabled, set to LVDS mode
2. SEC input XTAL
3. Input bypass off, PRI only sent to PLL
4. Reference clock 30.72 MHz
5. PRI input divider set to 1
6. Reference input divider set to 1
Total Device, CDCM6208V1F
7. Charge Pump Current = 2.5 mA
8. VCO Frequency = 3.072 GHz 3.3 V: 318 mA / +21% (excl term)
9. PS_A = PS_B divider ration = 4
10. Feedback divider ratio = 25
11. Output divider ratio = 5
12. Fractional divider pre-divider = 2
13. Fractional divider core input frequency = 384 MHz
14. Fractional divider value = 3.84, 5.76, 3.072, 7.68
15. CML outputs selected for CH0-3 (153.6 MHz)
LVDS outputs selected for CH4-7 (100MHz, 66.66 MHz, 125 MHz, 50 MHz)
1.8 V: 310 mA / +21% (excl term)
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: CDCM6208V1F
SCL
SCS
SDO
t
4
t
5
t
2
t
3
t
7
t
6
t
1
SDI
t
8
A31 D0D1
D15 D1 D0
A30
'21¶7&$5(
'21¶7&$5(
tri-state
CDCM6208V1F
SCAS943 –MAY 2015
www.ti.com

8.22 I2C TIMING

(1)
PARAMETER STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
f
SCL
t
su(START)
t
h(START)
t
w(SCLL)
t
w(SCLH)
t
h(SDA)
t
su(SDA)
t
r-in
t
f-in
t
f-out
t
su(STOP)
t
BUS
t
glitch_filter
SCL Clock Frequency 0 100 0 400 kHz START Setup Time (SCL high before SDA low) 4.7 0.6 μs START Hold Time (SCL low after SDA low) 4.0 0.6 μs SCL Low-pulse duration 4.7 1.3 μs SCL High-pulse duration 4.0 0.6 μs SDA Hold Time (SDA valid after SCL low) 0
(2)
3.45 0 0.9 μs SDA Setup Time 250 100 ns SCL / SDA input rise time 1000 300 ns SCL / SDA input fall time 300 300 ns SDA Output fall time from VIHmin to VILmax with a bus 250 250 ns
capacitance from 10 pF to 400 pF STOP Setup Time 4.0 0.6 μs Bus free time between a STOP and START condition 4.7 1.3 μs Pulse width of spikes suppressed by the input glitch filter 75 300 75 300 ns
(1) For additional information, refer to the I2C-Bus specification, Version 2.1 (January 2000); the CDCM6208V1F meets the switching
characteristics for standard mode and fast mode transfer.
(2) The I2C master must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge
of SCL.
Figure 2. CDCM6208V1F SPI Port Timing
18 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
STOP
~
~
START
STOP
~
~
~
~
~
~
~
~
t
BUS
t
SU(START)
SDA
SCL
t
h(START)
t
r(SM)
t
SU(SDATA)
t
W(SCLL)tW(SCLH)
t
h(SDATA)
t
r(SM)
t
f(SM)
t
f(SM)
t
SU(STOP)
V
IH(SM)
V
IL(SM)
V
IH(SM)
V
IL(SM)
ACK
www.ti.com

8.23 SPI Timing Requirements

PARAMETER MIN NOM MAX UNIT
f
Clock Frequency for the SCL 20 MHz
Clock
t
SPI_LE to SCL setup time 10 ns
1
t
SDI to SCL setup time 10 ns
2
t
SDO to SCL hold time 10 ns
3
t
SCL high duration 25 ns
4
t
SCL low duration 25 ns
5
t
SCL to SCS Setup time 10 ns
6
t
SCS Pulse Width 20 ns
7
t
SDI to SCL Data Valid (First Valid Bit after SCS) 10 ns
8
CDCM6208V1F
SCAS943 –MAY 2015
Figure 3. I2C Timing Diagram
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: CDCM6208V1F
Frequency (Hz)
Jitter
2.9 ps
-50
10M10K100 1000 100k 1M
9.2 ps
0.92 ps
-60
0.29 ps
-70
-100
-80
-90
0.092 ps
-65
-55
-75
-85
-95
PSRR (dBc)
Frequency (MHz)
Jitter
0 ps-pp
60 ps-pp
100 ps-pp
120 ps-pp
140 ps-pp
180 ps-pp
200 ps-pp
400220 280 380
160 ps-pp
80 ps-pp
20 ps-pp
40 ps-pp
200 240 260 300 320 340 360
MSB-9, (1/1024) typ
all zero, (0) typ
MSB, (1/2) typ
MSB-1, (1/4) typ
MSB-2, (1/8) typ
MSB-3, (1/16) typ
MSB-4, (1/32) typ
MSB-5, (1/54) typ
MSB-6, (1/128) typ
MSB-7, (1/256) typ
MSB-13, (1/16384) typ
0x50A33D (÷x.315) typ
LSB, (1/1048576) typ
0x828F5 (÷x.51) typ
0xBAE14 (÷x.73) typ
Frequency (MHz)
Jitter
0
60
100
120
140
180
200
400
160
80
20
40
200 250 300 350
all zero, (0) max
MSB-9, (1/1024) typ
MSB-9, (1/1024) max
MSB-4, (1/32) max
MSB-13, (1/16384) max
MSB-13, (1/16384) typ
LSB, (1/1048576) max
LSB, (1/1048576) typ
MSB, (1/2) max
MSB, (1/2) typ
CDCM6208V1F
SCAS943 –MAY 2015

8.24 Typical Characteristics

www.ti.com
f
= 300 MHz
FRAC
Figure 4. Fractional Divider Bit Selection Impact on Jitter
Figure 6. Fractional Divider Bit Selection Impact on T
J
(Typical)
Using Divide by x.73 Example
Figure 5. Fractional Divider Input Frequency Impact on Jitter
Figure 7. Fractional Divider Bit Selection Impact on T
(Maximum Jitter Across Process, Voltage & Temperature)
J
20 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
f
= 122 MHz
OUT
Figure 8. PSRR (in dBc and DJ [ps]) Over Frequency [Hz] and Output Signal Format
Product Folder Links: CDCM6208V1F
(spur/20)
-12
p-p
CLK
2 x 10
x fp
CDCM6208V1F
www.ti.com
SCAS943 –MAY 2015

8.24.1 Fractional Output Divider Jitter Performance

The fractional output divider jitter performance is a function of the fraction output divider input frequency as well as actual fractional divide setting itself. To minimize the fractional output jitter, it is recommended to use the least number of fractional bits and the highest input frequency possible into the divider. As observable in Figure 4, the largest jitter contribution occurs when only one fractional divider bit is selected, and especially when the bits in the middle range of the fractional divider are selected. Tested using a LeCroy 40 Gbps RealTime scope over a time window of 200 ms. The RJimpact on TJis estimated for a BERT 10
(–12)
– 1. This measurement result is overly pessimistic, as it does not bandwidth limit the high-frequencies. In a real system, the SERDES TX will BW limit the jitter through its PLL roll-off above the TX PLL bandwidth of typically bit rate divided by 10.

8.24.2 Power Supply Ripple Rejection (PSRR) versus Ripple Frequency

See Figure 8 for reference. Many system designs become increasingly more sensitive to power supply noise rejection. In order to simplify
design and cost, the CDCM6208V1F has built in internal voltage regulation, improving the power supply noise rejection over designs with no regulators. As a result, the following output rejection is achieved:
The DJ due to PSRR can be estimated using Equation 1:
(1)
Example: Therefore, if 100 mV noise with a frequency of 10 kHz were observed at the output supply, the according output jitter for a 122.88 MHz output signal with LVDS signaling could be estimated with DJ = 0.7ps.
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: CDCM6208V1F
CDCM6208
LVCMOS
Phase Noise/
Spectrum
Analyzer
50
CDCM6208
LVCMOS
Oscilloscope
High impedance probe
1mA
CDCM6208
LVCMOS
Oscilloscope
High impedance probe
1mA
VDD_Yx
CDCM6208
LVCMOS
5pF
Oscilloscope
High impedance probe
CDCM6208V1F
SCAS943 –MAY 2015

9 Parameter Measurement Information

9.1 Characterization Test Setup

This section describes the characterization test setup of each block in the CDCM6208V1F.
www.ti.com
Figure 9. LVCMOS Output AC Configuration During Device Test (VOH, VOL, t
Figure 10. LVCMOS Output DC Configuration During Device Test
SLEW
)
22 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Figure 11. LVCMOS Output AC Configuration During Device Phase Noise Test
Product Folder Links: CDCM6208V1F
Signal
Generator
LVCMOS
CDCM6208
50
Offset = VDD_PRI/SEC/2
CDCM6208
HCSL
HCSL
50 50
Balun
Phase Noise/
Spectrum
Analyzer
50
CDCM6208
HCSL
HCSL
50
50
Oscilloscope
High impedance differential probe
Set to one of the following signaling
levels: LVPECL, CML, LVDS
CDCM6208
50 O
50
50
50 Balun
Phase Noise/
Spectrum
Analyzer
Y
N
Y
P
www.ti.com
Characterization Test Setup (continued)
Figure 12. LVDS, CML, and LVPECL Output AC Configuration During Device Test
CDCM6208V1F
SCAS943 –MAY 2015
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 23
Figure 13. HCSL Output DC Configuration During Device Test
Figure 14. HCSL Output AC Configuration During Device Test
Figure 15. LVCMOS Input DC Configuration During Device Test
Product Folder Links: CDCM6208V1F
Signal
Generator
CDCM6208
Differential
100
100
VDD_PRI/SEC
100
100
Signal
Generator
LVPECL
LVPECL
50 50
CDCM6208
VDD_PRI/SEC - 2
Signal
Generator
LVDS
CDCM6208
LVDS
100
Signal
Generator
CML
CDCM6208
50
50
VDD_PRI/SEC
CML
CDCM6208V1F
SCAS943 –MAY 2015
Characterization Test Setup (continued)
Figure 16. CML Input DC Configuration During Device Test
Figure 17. LVDS Input DC Configuration During Device Test
www.ti.com
Figure 18. LVPECL Input DC Configuration During Device Test
Figure 19. Differential Input AC Configuration During Device Test
24 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
CDCM6208
Signal
Generator
Sine wave
Modulator
Reference
Input
Device Output
Power Supply
50 50
Balun
Phase Noise/
Spectrum
Analyzer
50
CDCM6208
Signal
Generator
Sine wave
Modulator
Reference
Input
Device Output
50 50
Balun
Phase Noise/
Spectrum
Analyzer
50
CDCM6208
www.ti.com
Characterization Test Setup (continued)
Figure 20. Crystal Reference Input Configuration During Device Test
CDCM6208V1F
SCAS943 –MAY 2015
Figure 21. Jitter transfer Test Setup
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 25
Figure 22. PSNR Test Setup
Product Folder Links: CDCM6208V1F
V
OUT,SE
t
t
20%
80%
V
OD
Yx_N
V
OUT,DIFF,PP
= 2 x V
OD
0 V
20%
80%
t
R
t
F
CDCM6208V1F
SCAS943 –MAY 2015
Characterization Test Setup (continued)
Figure 23. Differential Output Voltage and Rise and Fall Time
www.ti.com
Figure 24. Single Ended Output Voltage and Rise and Fall Time
26 Submit Documentation Feedback Copyright © 2015, Texas Instruments Incorporated
Product Folder Links: CDCM6208V1F
VCXO_P
Yx_P
Yx_N
Yx_P
Yx_N
Yx_P
Yx_N
Yx_P/N
Yx_P/N
Differential
Differential, Integer Divide
Differential, Integer Divide
Differential, Fractional Divide
Single Ended, Integer Divide
Single Ended, Integer Divide
t
PD, SE
t
SK,SE,FRAC
t
PD,DIFF
t
SK,DIFF,INT
t
SK,DIFF,FRAC
Yx_P/N
t
SK,SE,INT
Single Ended, Fractional Divide
VCXO_P
Single Ended
t
SK,SE-DIFF,INT
www.ti.com
Characterization Test Setup (continued)
CDCM6208V1F
SCAS943 –MAY 2015
Figure 25. Differential and Single Ended Output Skew and Propagation Delay
Copyright © 2015, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Links: CDCM6208V1F
Loading...
+ 62 hidden pages