Texas Instruments 5962-9566603QHA, 5962-9564004Q2A, 5962-9564004NYDR, 5962-9564003NXDR Datasheet

TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Output Swing Includes Both Supply Rails
D
D
Low Input Bias Current ...1 pA Typ
D
Fully Specified for Both Single-Supply and Split-Supply Operation
D
Very Low Power ...35 µA Per Channel Typ
D
Common-Mode Input Voltage Range Includes Negative Rail
D
Low Input Offset Voltage
850 µV Max at TA = 25°C (TLC225xA)
D
Macromodel Included
D
Performance Upgrades for the TS27L2/L4 and TLC27L2/L4
D
Available in Q–Temp Automotive
HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards
description
The TLC2252 and TLC2254 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC225x family consumes only 35 µA of supply current per channel. This micropower operation makes them good choices for battery-powered applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Looking at Figure 1, the TLC225x has a noise level of 19 nV/√Hz
at 1kHz; four times lower than competitive micropower solutions.
The TLC225x amplifiers, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC225xA family is available and has a maximum input offset voltage of 850 µV . This family is fully characterized at 5 V and ±5 V.
The TLC2252/4 also makes great upgrades to the TLC27L2/L4 or TS27L2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage ranges, see the TLV2432 and TLV2442 devices. If the design requires single amplifiers, please see the TL V221 1/21/31 family . These devices are single rail-to-rail operational amplifiers in the SOT -23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Figure 1
VN – Equivalent Input Noise Voltage – nv//Hz
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
V
n
40
20
10
0
60
30
50
10
1
10
2
10
3
10
4
VDD = 5 V RS = 20 TA = 25°C
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLC2252 A VAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP
(PW)
CERAMIC
FLATPACK
(U)
0°C to 70°C 1500 µV TLC2252CD TLC2252CP TLC2252CPWLE
°
°
850 µV TLC2252AID TLC2252AIP TLC2252AIPWLE
40°C to 85°C
µ
1500 µV
TLC2252ID TLC2252IP
°
°
850 µV TLC2252AQD
40°C to 125°C
µ
1500 µV
TLC2252QD
–55°C to 125°C
850 µV
1500 µV
— —
TLC2252AMFK TLC2252MFK
TLC2252AMJG TLC2252MJG
— —
— —
TLC2252AMU TLC2252MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR).
The PW package is available only left-ended taped and reeled.
§
Chip forms are tested at 25°C only.
TLC2254 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC DIP
(N)
TSSOP
(PW)
CERAMIC
FLATPACK
(W)
0°C to
70°C
1500 µV TLC2254CD TLC2254CN TLC2254CPWLE
–40°C to 850 µV TLC2254AID TLC2254AIN
TLC2254AIPWLE
85°C
µ
1500 µV
TLC2254ID TLC2254IN
–40°C to 850 µV TLC2254AQD
125°C
µ
1500 µV
TLC2254QD
–55°C to 850 µV TLC2254AMFK TLC2254AMJ
TLC2254AMW
125°C
µ
1500 µV
TLC2254MFK TLC2254MJ
TLC2254MW
The D packages are available taped and reeled. Add R suffix to the device type (e.g., TLC2254CDR).
The PW package is available only left-end taped and reeled. Chips are tested at 25°C.
§
Chip forms are tested at 25°C only.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLC2252M, TLC2252AM . . . JG PACKAGE
(TOP VIEW)
TLC2252C, TLC2252AC
TLC2252I, TLC2252AI TLC2252Q, TLC2252AQ D, P, OR PW PACKAGE
(TOP VIEW)
1 2 3 4
8 7 6 5
1OUT
1IN– 1IN+
V
DD–
/GND
V
DD+
2OUT 2IN– 2IN+
NC V
CC
+ 2OUT 2IN – 2IN +
NC
1OUT
1IN – 1IN +
V
CC–
/GND
1 2 3 4 5
10
9 8 7 6
TLC2262M, TLC2252AM ...U PACKAGE
(TOP VIEW)
1 2 3 4
8 7 6 5
1OUT
1IN– 1IN+
V
DD–
/GND
V
DD+
2OUT 2IN– 2IN+
3 2 1 20 19
910111213
4 5 6 7 8
18 17 16 15 14
NC 2OUT NC 2IN– NC
NC
1IN–
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC
NC
NC
NC
V
DD+
V
DD–
TLC2252M, TLC2252AM . . . FK PACKAGE
(TOP VIEW)
/GND
1 2 3 4 5 6 7
14 13 12 11 10
9 8
1OUT
1IN– 1IN+
V
DD+
2IN+ 2IN–
2OUT
4OUT 4IN– 4IN+ V
DD–
/GND 3IN+ 3IN– 3OUT
3212019
910111213
4 5 6 7 8
18 17 16 15 14
4IN+ NC V
CC–
/GND NC 3IN+
1IN+
NC
V
CC+
NC
2IN+
1IN –
1OUT
NC
3OUT
3IN –
4OUT
4IN –
2IN –
2OUT
NC
TLC2254M, TLC2254AM
FK PACKAGE
(TOP VIEW)
TLC2254C, TLC2254AC
TLC2254I, TLC2254AI TLC2254Q, TLC2254AQ D, N, OR PW PACKAGE
(TOP VIEW)
1 2 3 4 5 6 7
14 13 12 11 10
9 8
1OUT
1IN– 1IN+
V
DD+
2IN+ 2IN–
2OUT
4OUT 4IN– 4IN+ V
DD–
/GND 3IN+ 3IN– 3OUT
TLC2254M, TLC2254AM
J OR W PACKAGE
(TOP VIEW)
TLC225x, TLC225xA
Advanced LinCMOS
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
Template Release Date: 7–11–94
RAIL-TO-RAIL
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
Q2 Q5 Q7 Q8 Q10 Q11
D1
Q17Q15Q13
Q4Q1
R5
C1
V
DD+
IN+
IN–
R3 R4 R1 R2
OUT
V
DD–/ GND
R6
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLC2252 TLC2254
Transistors 38 76 Resistors 30 56 Diodes 9 18 Capacitors 3 6
Includes both amplifiers and all ESD, bias, and trim circuitry
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V
DD+
(see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, V
DD–
(see Note 1) –8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, V
ID
(see Note 2) ±16 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI (any input, see Note 1) ±8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V
DD+
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of V
DD–
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix –40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V
DD+
and V
DD –
.
2. Differential voltages are at IN+ with respect to IN–. Excessive current flows when input is brought below V
DD–
– 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
T
25°C DERATING FACTOR T
= 70°C T
= 85°C T
= 125°C
PACKAGE
A
POWER RATING ABOVE TA = 25°CAPOWER RATINGAPOWER RATINGAPOWER RATING
D–8 724 mW 5.8 mW/°C 464 mW 377 mW 144 mW
D–14 950 mW 7.6 mW/°C 608 mW 450 mW 190 mW
FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
J 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 546 mW 275 mW
N 1150 mW 9.2 mW/°C 736 mW 736 mW
P 1000 mW 8.0 mW/°C 640 mW 520 mW
PW–8 525 mW 4.2 mW/°C 336 mW 273 mW
PW–14 700 mW 5.6 mW/°C 448 mW 448 mW
U 700 mW 5.5 mW/°C 246 mW 330 mW 150 mW W 700 mW 5.5 mW/°C 246 mW 330 mW 150 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, V
DD±
±2.2 ±8 ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 V
Input voltage range, V
I
V
DD–VDD+
–1.5 V
DD–VDD+
–1.5 V
DD–VDD+
–1.5 V
DD–VDD+
–1.5 V
Common-mode input voltage, V
IC
V
DD–VDD+
–1.5 V
DD–VDD+
–1.5 V
DD–VDD+
–1.5 V
DD–VDD+
–1.5 V
Operating free-air temperature, T
A
0 70 –40 85 –40 125 –55 125 °C
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLC2252C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
p
25°C 200 1500
VIOInput offset voltage
Full range 1750
µ
V
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
0.5µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0,
VDD± = ±2.5 V,
25°C 0.003 µV/mo
p
V
O
= 0,
R
S
= 50
25°C 0.5
p
IIOInput offset current
Full range 100
pA
p
25°C 1
p
IIBInput bias current
Full range 100
pA
0 –0.3
25°C
0to0.3
to
p
4 4.2
V
ICR
Common-mode input voltage range
R
S
= 50 Ω,
|V
IO
|
5 mV
0
V
Full range
0
to
g
3.5
IOH = –20 µA 25°C 4.98
p
25°C 4.9 4.94
VOHHigh-level output voltage
I
OH
= –75 µ
A
Full range 4.8
V
IOH = –150 µA 25°C 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01
25°C 0.09 0.15
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.15
V
OL
Low-level output voltage
25°C 0.2 0.3
V
V
IC
= 2.5 V,
I
OL
= 1
m
A
Full range 0.3
25°C 0.7 1
V
IC
=
2.5 V
,
I
OL
=
4 m
A
Full range 1.2
25°C 100 350
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
100 k
Full range 10
V/mV
VD
gg g
V
O
= 1 V to 4
V
RL = 1 M
25°C 1700
r
id
Differential input resistance 25°C
10
12
r
ic
Common-mode input resistance 25°C
10
12
c
ic
Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF
z
o
Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200
V
= 0 to 2.7 V, V
= 2.5 V,
25°C 70 83
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 4.4 V to 16 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
25°C 70 125
IDDSupply current
V
O
=
2.5 V
,
No load
Full range 150
µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
TLC2252C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 0.07 0.12
SR Slew rate at unity gain
V
O
= 1.5 V to 3.5 V,
R
L
=
100 k
,
=
p
Full
V/µs
C
L
=
100 F
range
0.05
p
f = 10 Hz 25°C 36
VnEquivalent input noise voltage
f = 1 kHz 25°C 19
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 0.7
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 1.1
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.2%
THD
+
N
Total harmonic distortion plus noise
f
= 10 kHz,
RL = 50 k
AV = 10
25°C
1%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 50 k‡,
25°C 0.2 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 50 k‡,
AV = 1, CL = 100 pF
25°C 30 kHz
φ
m
Phase margin at unity gain
p
25°C
63°
Gain margin
R
L
= 50
k
,
C
L
=
100 pF
25°C 15 dB
Full range is 0°C to 70°C.
Referenced to 2.5 V
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, V
DD±
= ±5 V (unless otherwise
specified)
TLC2252C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
p
25°C 200 1500
VIOInput offset voltage
Full range 1750
µ
V
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
0.5µV/°C
Input offset voltage long-term drift (see Note 4)
V
IC
= 0,
VO = 0,
25°C
0.003 µV/mo
p
R
S
= 50
25°C 0.5
p
IIOInput offset current
Full range 100
pA
p
25°C 1
p
IIBInput bias current
Full range 100
pA
–5 –5.3
25°C
5to5.3
to
p
4 4.2
V
ICR
Common-mode input voltage range
|V
IO
| ≤5 mV,
R
S
= 50
–5
V
Full range
5
to
g
3.5
IO = –20 µA 25°C 4.98
p
p
p
25°C 4.9 4.93
V
OM+
Maximum positive peak output voltage
I
O
= –
100 µA
Full range 4.7
V
IO = –200 µA 25°C 4.8 4.86 VIC = 0, IO = 50 µA 25°C –4.99
25°C –4.85 –4.91
V
IC
=
0
,
I
O
=
500 µA
Full range –4.85
V
OM–
Maximum negative peak output voltage
25°C –4.7 –4.8
V
V
IC
= 0,
I
O
= 1
m
A
Full range –4.7
25°C –4 –4.3
V
IC
= 0,
I
O
= 4
m
A
Full range –3.8
25°C 45 650
A
VD
Large-signal differential voltage amplification VO = ±4 V
R
L
=
100 k
Full range 10
V/mV
RL = 1 M 25°C 3000
r
id
Differential input resistance 25°C
10
12
r
ic
Common-mode input resistance 25°C
10
12
c
ic
Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF
z
o
Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190
VIC = –5 V to 2.7 V , 25°C 75 88
CMRR
Common-mode rejection ratio
VO = 0, RS = 50 Full range 75
dB
pp
V
DD±
= 2.2 V to ±8 V ,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (V
DD±
/VIO)
VIC = 0, No load
Full range 80
dB
pp
25°C 80 125
IDDSupply current
V
O
= 0,
No load
Full range 150
µ
A
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, V
DD±
= ±5 V
TLC2252C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 0.07 0.12
SR Slew rate at unity gain
V
O
= ±1.9 V,
CL = 100 pF
R
L
=
100 k
,
Full
range
0.05
V/µs
p
f = 10 Hz 25°C 38
VnEquivalent input noise voltage
f = 1 kHz 25°C 19
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 0.8
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 1.1
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = ±2.3 V ,
AV = 1
°
0.2%
THD
+
N
Total harmonic distortion pulse duration
f
= 10 kHz,
RL = 50 k
AV = 10
25°C
1%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 50 kΩ,
25°C 0.21 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 4.6 V,
RL = 50 kΩ,
AV = 1, CL = 100 pF
25°C 14 kHz
φ
m
Phase margin at unity gain
p
25°C
63°
Gain margin
R
L
= 50 k,
C
L
=
100 pF
25°C 15 dB
Full range is 0°C to 70°C.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLC2254C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
p
25°C 200 1500
VIOInput offset voltage
Full range 1750
µ
V
α
VIO
Temperature coefficient of input offset voltage
25°C
to 70°C
0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0,
V
DD±
= ±2.5 V ,
25°C 0.003 µV/mo
p
V
O
= 0,
R
S
= 50
25°C 0.5
p
IIOInput offset current
Full range 100
pA
p
25°C 1
p
IIBInput bias current
Full range 100
pA
p
25°C
0
to
4
–0.3
to
4.2
V
ICR
Common-mode input voltage range
R
S
=
50 Ω
,
|V
IO
| ≤ 5 mV
Full range
0
to
3.5
V
IOH = –20 µA 25°C 4.98
p
25°C 4.9 4.94
VOHHigh-level output voltage
I
OH
= –75 µ
A
Full range 4.8
V
IOH = –150 µA 25°C 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01
25°C 0.09 0.15
V
IC
=
2.5 V
,
I
OL
=
500 µA
Full range 0.15
V
OL
Low-level output voltage
25°C 0.2 0.3
V
V
IC
= 2.5 V,
I
OL
= 1
m
A
Full range 0.3
25°C 0.7 1
V
IC
= 2.5 V,
I
OL
= 4
m
A
Full range 1.2
25°C 100 350
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
100 k
Full range 10
V/mV
VD
gg g
V
O
= 1 V to 4
V
RL = 1 M
25°C 1700
r
i(d)
Differential input resistance 25°C
10
12
r
i(c)
Common-mode input resistance 25°C
10
12
c
i(c)
Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF
z
o
Closed-loop output impedance f = 25 kHz, AV = 10 25°C 200
V
= 0 to 2.7 V, V
= 2.5 V,
25°C 70 83
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 4.4 V to 16 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
p
25°C 140 250
IDDSupply current (four amplifiers)
V
O
= 2.5 V,
No load
Full range 300
µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
TLC2254C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
V
= 1.4 V to 2.6 V R
= 100 k‡,
25°C 0.07 0.12
SR
Slew rate at unity gain
O
CL = 100 pF
L
,
Full range 0.05
V/µs
p
f = 10 Hz 25°C 36
VnEquivalent input noise voltage
f = 1 kHz 25°C 19
n
V/H
z
Peak-to-peak equivalent input noise
f = 0.1 Hz to 1 Hz 25°C 0.7
V
N(PP)
q
voltage
f = 0.1 Hz to 10 Hz
25°C 1.1
µ
V
I
n
Equivalent input noise current 25°C 0.6
fA/Hz
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.2%
THD
+
N
Total harmonic distortion plus noise
f
= 10
kHz
,
RL = 50 k
AV = 10
25°C
1%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 50 k‡,
25°C 0.2 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 50 k‡,
AV = 1, CL = 100 pF
25°C 30 kHz
φ
m
Phase margin at unity gain
p
25°C 63°
Gain margin
R
L
= 50
k
,
C
L
=
100 pF
25°C 15 dB
Full range is 0°C to 70°C.
Referenced to 2.5 V
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, V
DD±
= ±5 V (unless otherwise
specified)
TLC2254C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
p
25°C 200 1500
VIOInput offset voltage
Full range 1750
µ
V
α
VIO
Temperature coefficient of input offset voltage
25°C
to 70°C
0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0,
VO = 0,
25°C
0.003 µV/mo
p
R
S
=
50 Ω
25°C 0.5
p
IIOInput offset current
Full range 100
pA
p
25°C 1
p
IIBInput bias current
Full range 100
pA
p
25°C
–5
to
4
–5.3
to
4.2
V
ICR
Common-mode input voltage range
|V
IO
| ≤5 mV,
R
S
= 50
Full range
–5
to
3.5
V
IO = –20 µA 25°C 4.98
p
p
p
25°C 4.9 4.93
V
OM+
Maximum positive peak output voltage
I
O
= –
100 µA
Full range 4.7
V
IO = –200 µA 25°C 4.8 4.86 VIC = 0, IO = 50 µA 25°C –4.99
25°C –4.85 –4.91
V
IC
= 0,
I
O
=
500 µA
Full range –4.85
V
OM–
Maximum negative peak output voltage
25°C –4.7 –4.8
V
V
IC
= 0,
I
O
= 1
m
A
Full range –4.7
25°C –4 –4.3
V
IC
= 0,
I
O
= 4
m
A
Full range –3.8
25°C 40 150
A
VD
Large-signal differential voltage amplification VO = ±4 V
R
L
=
100 k
Full range 10
V/mV
RL = 1 M 25°C 3000
r
i(d)
Differential input resistance 25°C
10
12
r
i(c)
Common-mode input resistance 25°C
10
12
c
i(c)
Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF
z
o
Closed-loop output impedance f = 25 kHz, AV = 10 25°C 190
V
= –5 V to 2.7 V ,
25°C 75 88
CMRR
Common-mode rejection ratio
IC
,
VO = 0, RS = 50
Full range 75
dB
pp
V
= ±2.2 V to ±8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (V
DD±
/VIO)
DD±
,
VIC = 0, No load
Full range 80
dB
pp
p
25°C 160 250
IDDSupply current (four amplifiers)
V
O
= 0,
No load
Full range 300
µ
A
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, V
DD±
= ±5 V
TLC2254C
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
V
= ±1.9 V , R
= 100 kΩ,
25°C 0.07 0.12
SR
Slew rate at unity gain
O
,
CL = 100 pF
L
,
Full range 0.05
V/µs
p
f = 10 Hz 25°C 38
VnEquivalent input noise voltage
f = 1 kHz 25°C 19
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 0.8
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 1.1
µ
V
I
n
Equivalent input noise current 25°C 0.6
fA/Hz
p
VO = ± 2.3 V ,
AV = 1
°
0.2%
THD
+
N
Total harmonic distortion plus noise
f
= 20 kHz,
RL = 50 k
AV = 10
25°C
1%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 50 kΩ,
25°C 0.21 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 4.6 V,
RL = 50 kΩ,
AV = 1, CL = 100 pF
25°C 14 kHz
φ
m
Phase margin at unity gain
p
25°C 63°
Gain margin
R
L
=
50 k
,
C
L
=
100 pF
25°C 15 dB
Full range is 0°C to 70°C.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLC2252I TLC2252AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
p
25°C 200 1500 200 850
VIOInput offset voltage
Full range 1750 1000
µ
V
α
VIO
T emperature coef ficient of input offset voltage
25°C
to 85°C
0.5 0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
V
DD±
= ±2.5 V,
V
O
= 0,
VIC = 0, RS = 50
25°C 0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOInput offset current
Full range 1000 1000
pA
p
25°C 1 1
p
IIBInput bias current
Full range 1000 1000
pA
Common-mode input
25°C
0
to
4
–0.3
to
4.2
0
to
4
–0.3
to
4.2
V
ICR
voltage range
R
S
= 50 Ω,
|V
IO
| ≤5
mV
Full range
0
to
3.5
0
to
3.5
V
IOH = –20 µA 25°C 4.98 4.98
High-level output
25°C 4.9 4.94 4.9 4.94
V
OH
g
voltage
I
OH
= –75 µ
A
Full range 4.8 4.8
V
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
25°C 0.09 0.15 0.09 0.15
V
OL
L
ow-level outpu
t
V
IC
=
2.5 V
,
I
OL
=
500 µA
Full range 0.15 0.15 V
voltage
25°C 0.8 1 0.7 1
V
IC
= 2.5 V,
I
OL
= 4
m
A
Full range 1.2 1.2
25°C 100 350 100 350
A
VD
L
arge-signal
diff
erentia
l
p
V
IC
= 2.5 V,
R
L
=
100 k
Full range 10 10
V/mV
VD
voltage am lification
V
O
= 1 V to 4
V
RL = 1 M
25°C 1700 1700
r
id
Differential input resistance
25°C 10
12
10
12
r
ic
Common-mode input resistance
25°C 10
12
10
12
c
ic
Common-mode input capacitance
f = 10 kHz, P package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 200 200
Common-mode
V
= 0 to 2.7 V, V
= 2.5 V,
25°C 70 83 70 83
CMRR
rejection ratio
IC
,
O
,
RS = 50
Full range 70 70
dB
Supply-voltage
VDD = 4.4 V to 16 V,
25°C 80 95 80 95
k
SVR
rejection ratio
(VDD/VIO)
DD
VIC = VDD/2, No load
Full range 80 80
dB
pp
25°C 70 125 70 125
IDDSu ly current
V
O
= 2.5 V,
No load
Full range 150 150
µA
Full range is – 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
TLC2252I TLC2252AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VO = 1.5 V to 3.5 V,
25°C 0.07 0.12 0.07 0.12
SR
Slew rate at unit
y
gain
R
L
=
100 k
,
CL = 100 pF
Full
range
0.05 0.05
V/µs
Equivalent input
f = 10 Hz 25°C 36 36
V
n
q
noise voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak
p
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
N(PP)
equivalent inpu
t
noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fAHz
Total harmonic
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.2% 0.2%
THD
+
N
distorti
on plus
noise
f
= 10 kHz,
RL = 50 k
AV = 10
25°C
1% 1%
Gain-bandwidth product
f = 50 kHz, CL = 100 pF
RL = 50 k‡,
25°C 0.2 0.2 MHz
B
OM
Maximum output­swing bandwidth
V
O(PP)
= 2 V,
RL = 50 k‡,
AV = 1, RL = 50 k‡,
25°C 30 30 kHz
φ
m
Phase margin at unity gain
R
= 50 k‡, C
= 100 pF
25°C 63° 63°
Gain margin
L,L
25°C 15 15 dB
Full range is – 40°C to 125°C.
Referenced to 2.5 V
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, V
DD±
= ±5 V (unless otherwise noted)
TLC2252I TLC2252AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
p
25°C 200 1500 200 850
VIOInput offset voltage
Full range 1750 1000
µ
V
α
VIO
T emperature coef ficient of input offset voltage
25°C
to 85°C
0.5 0.5 µV/°C
Input offset voltage long­term drift (see Note 4)
V
IC
= 0,
V
O
= 0,
RS = 50
25°C 0.003 0.003 µV/mo
p
S
25°C 0.5 0.5
p
IIOInput offset current
Full range 1000 1000
pA
p
25°C 1 1
p
IIBInput bias current
Full range 1000 1000
pA
Common-mode input
25°C
–5
to
4
–5.3
to
4.2
–5
to
4
–5.3
to
4.2
V
ICR
voltage range
R
S
=
50 Ω, |V
IO
| ≤5 mV
Full range
–5
to
3.5
–5
to
3.5
V
IO = –20 µA 25°C 4.98 4.98
Maximum positive peak
25°C 4.9 4.93 4.9 4.93
V
OM+
output voltage
I
O
= –
100 µA
Full range 4.7 4.7
V
IO = –200 µA 25°C 4.8 4.86 4.8 4.86 VIC = 0, IO = 50 µA 25°C –4.99 –4.99
25°C –4.85 –4.91 –4.85 –4.91
V
OM–
Maximum negative p
p
V
IC
=
0
,
I
O
=
500 µA
Full range –4.85 –4.85
V
eak out ut voltage
25°C –4 –4.3 –4 –4.3
V
IC
=
0
,
I
O
=
4 m
A
Full range –3.8 –3.8
25°C 40 150 40 150
A
VD
Large-signal differential
p
VO = ±4 V
R
L
= 50
k
Full range 10 10
V/mV
voltage am lification
RL = 1 M 25°C 3000 3000
r
id
Differential input resistance
25°C
10
12
10
12
r
ic
Common-mode input resistance
25°C
10
12
10
12
c
ic
Common-mode input capacitance
f = 10 kHz, P package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 190 190
Common-mode V
= –5 V to 2.7 V ,
25°C 75 88 75 88
CMRR
rejection ratio
IC
,
VO = 0, RS = 50
Full range 75 75
dB
Supply-voltage rejection V
= 4.4 V to 16 V,
25°C 80 95 80 95
k
SVR
ygj
ratio (∆V
DD±
/∆VIO)
DD
,
VIC = VDD/2,No load
Full range 80 80
dB
pp
25°C 80 125 80 125
IDDSupply current
V
O
= 2.5 V, No
load
Full range 150 150
µ
A
Full range is – 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, V
DD±
= ±5 V
TLC2252I TLC2252AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O
= ±1.9 V,
R
L
=
100 k
,
CL = 100 pF
Full
range
0.05 0.05
V/µs
Equivalent input noise
f = 10 Hz 25°C 38 38
V
n
q
voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak equivalent
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
V
N(PP)
q
input noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fAHz
Total harmonic distortion
VO = ±2.3 V ,
AV = 1
°
0.2% 0.2%
THD
+
N
plus noise
R
L
= 50 k,
f = 10 kHz
AV = 10
25°C
1% 1%
Gain-bandwidth product
f =10 kHz, RL = 50 kΩ, CL = 100 pF
25°C 0.21 0.21 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 4.6 V, AV = 1,
RL = 50 kΩ, CL = 100 pF
25°C 14 14 kHz
φ
m
Phase margin at unity gain
RL = 50 kΩ, CL = 100 pF
25°C 63° 63°
Gain margin
L L
25°C 15 15 dB
Full range is –40°C to 125°C.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLC2254I TLC2254AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
p
25°C 200 1500 200 850
VIOIn ut offset voltage
Full range 1750 1000
µV
α
VIO
Temperature coefficient of input offset voltage
=
25°C
to 125°C
0.5 0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
V
DD±
= ±2.5 V, VIC = 0, VO = 0, RS = 50
25°C 0.003 0.003 µV/mo
p
S
25°C 0.5 0.5
p
IIOIn ut offset current
Full range 1000 1000
A
p
25°C 1 1
p
IIBIn ut bias current
Full range 1000 1000
A
Common-mode input
25°C
0
to
4
–0.3
to
4.2
0
to
4
–0.3
to
4.2
V
ICR
voltage range
R
S
= 50 Ω,
|V
IO
| ≤5
mV
Full range
0
to
3.5
0
to
3.5
V
IOH = –20 µA 25°C 4.98 4.98
High-level output
25°C 4.9 4.94 4.9 4.94
V
OH
g
voltage
I
OH
= –75
µA
Full range 4.8 4.8
V
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
p
25°C 0.09 0.15 0.09 0.15
V
OL
Low-level output
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.15 0.15 V
voltage
25°C 0.8 1 0.7 1
V
IC
= 2.5 V,
I
OL
= 4
m
A
Full range 1.2 1.2
Large-signal
25°C 100 350 100 350
A
VD
Large signal
differential
V
IC
= 2.5 V,
R
L
=
100 k
Full range 10 10 V/mV
voltage amplification
V
O
= 1 V to 4
V
RL = 1 M
25°C 1700 1700
r
i(d)
Differential input resistance
25°C 10
12
10
12
r
i(c)
Common-mode input resistance
25°C 10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz, N package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 200 200
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V,
25°C 70 83 70 83
CMRR
rejection ratio
IC O
RS = 50
Full range 70 70
dB
Supply-voltage
VDD = 4.4 V to 16 V,
25°C 80 95 80 95
k
SVR
rejection ratio
(VDD/VIO)
DD
VIC = VDD/2, No load
Full range 80 80
dB
Supply current
25°C 140 250 140 250
I
DD
y
(four amplifiers)
V
O
= 2.5 V,
No load
Full range 300 300
µA
Full range is – 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
TLC2254I TLC2254AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
V
= 1.4 V to 2.6 V,
25°C
0.07 0.12 0.07 0.12
SR
Slew rate at unit
y
gain
O
,
RL = 100 k‡, CL = 100 pF
Full
range
0.05 0.05
V/µs
Equivalent input
f = 10 Hz 25°C 36 36
V
n
q
noise voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak
p
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
N(PP)
equivalent inpu
t
noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fA/Hz
Total harmonic
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.2% 0.2%
THD
+
N
distorti
on plus
noise
f
= 20 kHz,
RL = 50 k
AV = 10
25°C
1% 1%
Gain-bandwidth product
f = 50 kHz, CL = 100 pF
RL = 50 k‡,
25°C 0.2 0.2 MHz
B
OM
Maximum output­swing bandwidth
V
O(PP)
= 2 V,
RL = 50 k‡,
AV = 1, CL = 100 pF
25°C 30 30 kHz
φ
m
Phase margin at unity gain
RL = 50 k‡, CL = 100 pF
25°C 63° 63°
Gain margin
L,L
25°C 15 15 dB
Full range is – 40°C to 125°C.
Referenced to 2.5 V
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, V
DD±
= ±5 V (unless otherwise noted)
TLC2254I TLC2254AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
p
25°C 200 1500 200 850
VIOInput offset voltage
Full range 1750 1000
µ
V
α
VIO
T emperature coef ficient of input offset voltage
25°C
to 125°C
0.5 0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0, RS = 50
VO = 0,
25°C
0.003 0.003 µV/mo
p
S
25°C 0.5 0.5
p
IIOInput offset current
Full range 1000 1000
pA
p
25°C 1 1
p
IIBInput bias current
Full range 1000 1000
pA
Common-mode input
25°C
–5
to
4
–5.3
to
4.2
–5
to
4
–5.3
to
4.2
V
ICR
voltage range
R
S
=
50 Ω
,
|V
IO
| ≤5 mV
Full range
–5
to
3.5
–5
to
3.5
V
IO = –20 µA 25°C 4.98 4.98
Maximum positive peak
25°C 4.9 4.93 4.9 4.93
V
OM+
output voltage
I
O
= –
100 µA
Full range 4.7 4.7
V
IO = –200 µA 25°C 4.8 4.86 4.8 4.86 VIC = 0, IO = 50 µA 25°C –4.99 –4.99
25°C –4.85 –4.91 –4.85 –4.91
V
OM–
Maximum negative peak
p
V
IC
=
0
,
I
O
=
500 µA
Full range –4.85 –4.85
V
out ut voltage
25°C –4 –4.3 –4 –4.3
V
IC
=
0
,
I
O
=
4 m
A
Full range –3.8 –3.8
25°C 40 150 40 150
A
VD
Large-signal differential
p
VO = ±4 V
R
L
=
100 k
Full range 10 10
V/mV
voltage am lification
RL = 1 M 25°C 3000 3000
r
i(d)
Differential input resistance 25°C
10
12
10
12
r
i(c)
Common-mode input resistance
25°C
10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz, N package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 190 190
Common-mode rejection V
= –5 V to 2.7 V ,
25°C 75 88 75 88
CMRR
j
ratio
IC
,
VO = 0, RS = 50
Full range 75 75
dB
Supply-voltage rejection V
= ±2.2 V to ±8 V,
25°C 80 95 80 95
k
SVR
ygj
ratio (∆V
DD±
/VIO)
DD±
,
VIC = VDD/2, No load
Full range 80 80
dB
Supply current
25°C 160 250 160 250
I
DD
y
(four amplifiers)
V
O
=
0
,
No load
Full range 300 300
µ
A
Full range is – 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, V
DD±
= ±5 V
TLC2254I TLC2254AI
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O
= ±1.9 V,
CL = 100 pF
R
L
=
100 k
,
Full
range
0.05 0.05
V/µs
Equivalent input noise
f = 10 Hz 25°C 38 38
V
n
q
voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak
p
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
V
N(PP)
equivalent input noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fA/Hz
Total harmonic
VO = ±2.3 V ,
AV = 1
°
0.2% 0.2%
THD
+
N
distortion plus noise
R
L
=
50 k
,
f = 20 kHz
AV = 10
25°C
1% 1%
Gain-bandwidth product
f =10 kHz, CL = 100 pF
RL = 50 kΩ,
25°C 0.21 0.21 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 4.6 V,
RL = 50 kΩ,
AV = 1, CL = 100 pF
25°C 14 14 kHz
φ
m
Phase margin at unity gain
RL = 50 kΩ, CL = 100 pF
25°C 63° 63°
Gain margin
L
L
25°C 15 15 dB
Full range is –40°C to 125°C.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
A
TLC2252Q TLC2252M
TLC2252AQ TLC2252AM
UNIT
A
MIN TYP MAX MIN TYP MAX
p
25°C 200 1500 200 850
VIOInput offset voltage
Full range 1750 1000
µ
V
α
VIO
T emperature coef ficient of input offset voltage
25°C
to 125°C
0.5 0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
V
DD±
= ±2.5 V,
VO = 0,
V
IC
= 0,
RS = 50
25°C
0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOInput offset current
Full range 500 500
pA
p
25°C 1 1
p
IIBInput bias current
Full range 500 500
pA
Common-mode input
25°C
0
to
4
–0.3
to
4.2
0
to
4
–0.3
to
4.2
V
ICR
voltage range
R
S
= 50 Ω,
|V
IO
| ≤5
mV
Full range
0
to
3.5
0
to
3.5
V
IOH = –20 µA 25°C 4.98 4.98
High-level output
25°C 4.9 4.94 4.9 4.94
V
OH
g
voltage
I
OH
= –75 µ
A
Full range 4.8 4.8
V
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
25°C 0.09 0.15 0.09 0.15
V
OL
L
ow-level outpu
t
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.15 0.15 V
voltage
25°C 0.8 1 0.7 1
V
IC
= 2.5 V,
I
OL
= 4
m
A
Full range 1.2 1.2
25°C 100 350 100 350
A
VD
L
arge-signal
diff
erentia
l
p
V
IC
=
2.5 V
,
R
L
=
100 k
Full range 10 10
V/mV
VD
voltage am lification
V
O
= 1 V to 4
V
RL = 1 M
25°C 1700 1700
r
id
Differential input resistance
25°C 10
12
10
12
r
ic
Common-mode input resistance
25°C 10
12
10
12
c
ic
Common-mode input capacitance
f = 10 kHz, f = 10 kHz, 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 200 200
Common-mode
V
= 0 to 2.7 V, V
= 2.5 V,
25°C 70 83 70 83
CMRR
rejection ratio
IC
,
RS = 50
O
,
Full range 70 70
dB
Supply-voltage
VDD = 4.4 V to 16 V,
25°C 80 95 80 95
k
SVR
rejection ratio
(VDD/VIO)
DD
VIC = VDD/2, No load
Full range 80 80
dB
pp
25°C 70 125 70 125
IDDSu ly current
V
O
= 2.5 V,
No load
Full range 150 150
µA
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS
T
A
TLC2252Q TLC2252M
TLC2252AQ TLC2252AM
UNIT
A
MIN TYP MAX MIN TYP MAX
25°C
0.07 0.12 0.07 0.12
SR
Slew rate at unit
y
gain
V
O
=
0.5 V to 3.5 V
,
RL = 100 k‡,C
L
= 100 pF
Full
range
0.05 0.05
V/µs
Equivalent input
f = 10 Hz 25°C 36 36
V
n
q
noise voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak
p
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
N(PP)
equivalent inpu
t
noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fAHz
Total harmonic
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.2% 0.2%
THD
+
N
distorti
on plus
noise
f
= 10 kHz,
RL = 50 k
AV = 10
25°C
1% 1%
Gain-bandwidth product
f = 50 kHz, RL = 50 k‡, CL = 100 pF
25°C 0.2 0.2 MHz
B
OM
Maximum output­swing bandwidth
V
O(PP)
= 2 V, AV = 1,
RL = 50 k‡, CL = 100 pF
25°C 30 30 kHz
φ
m
Phase margin at unity gain
R
= 50 k‡,C
= 100 pF
25°C 63° 63°
Gain margin
L
,
L
25°C 15 15 dB
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
Referenced to 2.5 V
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, V
DD±
= ±5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
A
TLC2252Q TLC2252M
TLC2252AQ
TLC2252AM
UNIT
A
MIN TYP MAX MIN TYP MAX
p
25°C 200 1500 200 850
VIOInput offset voltage
Full range 1750 1000
µ
V
α
VIO
T emperature coef ficient of input offset voltage
25°C
to 125°C
0.5 0.5 µV/°C
Input offset voltage long­term drift (see Note 4)
V
IC
= 0,
V
O
= 0,
RS = 50
25°C 0.003 0.003 µV/mo
p
S
25°C 0.5 0.5
p
IIOInput offset current
Full range 500 500
pA
p
25°C 1 1
p
IIBInput bias current
Full range 500 500
pA
Common-mode input
25°C
–5
to
4
–5.3
to
4.2
–5
to
4
–5.3
to
4.2
V
ICR
voltage range
R
S
= 50 Ω,
|V
IO
| ≤5
mV
Full range
–5
to
3.5
–5
to
3.5
V
IO = –20 µA 25°C 4.98 4.98
Maximum positive peak
25°C 4.9 4.93 4.9 4.93
V
OM+
output voltage
I
O
= –
100 µA
Full range 4.7 4.7
V
IO = –200 µA 25°C 4.8 4.86 4.8 4.86 VIC = 0, IO = 50 µA 25°C –4.99 –4.99
25°C –4.85 –4.91 –4.85 –4.91
V
OM–
Maximum negative p
p
V
IC
= 0,
I
O
=
500 µA
Full range –4.85 –4.85
V
eak out ut voltage
25°C –4 –4.3 –4 –4.3
V
IC
=
0
,
I
O
=
4 m
A
Full range –3.8 –3.8
25°C 40 150 40 150
A
VD
Large-signal differential
p
VO = ±4 V
R
L
=
100 k
Full range 10 10
V/mV
voltage am lification
RL = 1 M 25°C 3000 3000
r
id
Differential input resistance
25°C
10
12
10
12
r
ic
Common-mode input resistance
25°C
10
12
10
12
c
ic
Common-mode input capacitance
f = 10 kHz, P package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 190 190
Common-mode V
= –5 V to 2.7 V ,
25°C 75 88 75 88
CMRR
rejection ratio
IC
,
VO = 0, RS = 50
Full range 75 75
dB
Supply-voltage rejection V
= ±2.2 V to ±8 V,
25°C 80 95 80 95
k
SVR
ygj
ratio (∆V
DD±
/∆VIO)
DD
,
VIC = 0, No load
Full range 80 80
dB
pp
25°C 80 125 80 125
IDDSupply current
V
O
= 2.5 V, No
load
Full range 150 150
µ
A
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, V
DD±
= ±5 V
PARAMETER TEST CONDITIONS
T
A
TLC2252Q TLC2252M
TLC2252AQ TLC2252AM
UNIT
A
MIN TYP MAX MIN TYP MAX
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O
=
±2 V
,
R
L
=
100 k
,
CL = 100 pF
Full
range
0.05 0.05
V/µs
Equivalent input noise
f = 10 Hz 25°C 38 38
V
n
q
voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak equivalent
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
V
N(PP)
q
input noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fAHz
Total harmonic distortion
VO = ±2.3 V ,
AV = 1
°
0.2% 0.2%
THD
+
N
plus noise
R
L
= 50 k,
f = 10 kHz
AV = 10
25°C
1% 1%
Gain-bandwidth product
f =10 kHz, RL = 50 kΩ, CL = 100 pF
25°C 0.21 0.21 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 4.6 V, AV = 1,
RL = 50 kΩ, CL = 100 pF
25°C 14 14 kHz
φ
m
Phase margin at unity gain
RL = 50 kΩ, CL = 100 pF
25°C 63° 63°
Gain margin
L L
25°C 15 15 dB
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
TLC2254Q TLC2254M
TLC2254AQ TLC2254AM
UNIT
A
MIN TYP MAX MIN TYP MAX
p
25°C 200 1500 200 850
VIOIn ut offset voltage
Full range 1750 1000
µV
α
VIO
Temperature coefficient of input offset voltage
25°C
to 125°C
0.5 0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
V
DD±
= ±2.5 V ,
VO = 0,
VIC = 0, RS = 50
25°C
0.003 0.003 µV/mo
p
25°C 0.5 0.5
p
IIOIn ut offset current
125°C 500 500
A
p
25°C 1 1
p
IIBIn ut bias current
125°C 500 500
A
Common-mode input
25°C
0
to
4
–0.3
to
4.2
0
to
4
–0.3
to
4.2
V
ICR
voltage range
R
S
= 50 Ω,
|V
IO
| ≤5
mV
Full range
0
to
3.5
0
to
3.5
V
IOH = –20 µA 25°C 4.98 4.98
High-level output
25°C 4.9 4.94 4.9 4.94
V
OH
g
voltage
I
OH
= –75
µA
Full range 4.8 4.8
V
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
p
25°C 0.09 0.15 0.09 0.15
V
OL
Low-level output
V
IC
= 2.5 V,
I
OL
=
500 µA
Full range 0.15 0.15 V
voltage
25°C 0.8 1 0.7 1
V
IC
= 2.5 V,
I
OL
= 4
m
A
Full range 1.2 1.2
Large-signal
25°C 100 350 100 350
A
VD
Large signal
differential
V
IC
= 2.5 V,
R
L
=
100 k
Full range 10 10 V/mV
voltage amplification
V
O
= 1 V to 4
V
RL = 1 M
25°C 1700 1700
r
i(d)
Differential input resistance
25°C 10
12
10
12
r
i(c)
Common-mode input resistance
25°C 10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz, N package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 200 200
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V,
25°C 70 83 70 83
CMRR
rejection ratio
IC O
RS = 50
Full range 70 70
dB
Supply-voltage
VDD = 4.4 V to 16 V,
25°C 80 95 80 95
k
SVR
rejection ratio
(VDD/VIO)
DD
VIC = VDD/2, No load
Full range 80 80
dB
Supply current
25°C 140 250 140 250
I
DD
y
(four amplifiers)
V
O
= 2.5 V,
No load
Full range 300 300
µA
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS
T
A
TLC2254Q TLC2254M
TLC2254AQ TLC2254AM
UNIT
A
MIN TYP MAX MIN TYP MAX
V
= 0.5 V to 3.5 V,
25°C
0.07 0.12 0.07 0.12
SR
Slew rate at unit
y
gain
O
,
RL = 100 k‡, CL = 100 pF
Full
range
0.05 0.05
V/µs
Equivalent input
f = 10 Hz 25°C 36 36
V
n
q
noise voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak
p
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
V
N(PP)
equivalent inpu
t
noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fA/Hz
Total harmonic
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.2% 0.2%
THD
+
N
distorti
on plus
noise
f
= 20 kHz,
RL = 50 k
AV = 10
25°C
1% 1%
Gain-bandwidth product
f = 50 kHz, CL = 100 pF
RL = 50 k‡,
25°C 0.2 0.2 MHz
B
OM
Maximum output­swing bandwidth
V
O(PP)
= 2 V,
RL = 50 k‡,
AV = 1, CL = 100 pF
25°C 30 30 kHz
φ
m
Phase margin at unity gain
R
= 50 k‡, C
= 100 pF
25°C 63° 63°
Gain margin
L,L
25°C 15 15 dB
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
Referenced to 2.5 V
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, V
DD±
= ±5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
A
TLC2254Q TLC2254M
TLC2254AQ
TLC2254AM
UNIT
A
MIN TYP MAX MIN TYP MAX
p
25°C 200 1500 200 850
VIOInput offset voltage
Full range 1750 1000
µ
V
α
VIO
T emperature coef ficient of input offset voltage
25°C
to 125°C
0.5 0.5 µV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0, RS = 50
VO = 0,
25°C
0.003 0.003 µV/mo
p
S
25°C 0.5 0.5
p
IIOInput offset current
125°C 500 500
pA
p
25°C 1 1
p
IIBInput bias current
125°C 500 500
pA
Common-mode input
25°C
–5
to
4
–5.3
to
4.2
–5
to
4
–5.3
to
4.2
V
ICR
voltage range
R
S
= 50 Ω,
|V
IO
| ≤5
mV
Full range
–5
to
3.5
–5
to
3.5
V
IO = –20 µA 25°C 4.98 4.98
Maximum positive peak
25°C 4.9 4.93 4.9 4.93
V
OM+
output voltage
I
O
= –
100 µA
Full range 4.7 4.7
V
IO = –200 µA 25°C 4.8 4.86 4.8 4.86 VIC = 0, IO = 50 µA 25°C –4.99 –4.99
25°C –4.85 –4.91 –4.85 –4.91
V
OM–
Maximum negative peak
p
V
IC
= 0,
I
O
=
500 µA
Full range –4.85 –4.85
V
out ut voltage
25°C –4 –4.3 –4 –4.3
V
IC
=
0
,
I
O
=
4 m
A
Full range –3.8 –3.8
25°C 40 150 40 150
A
VD
Large-signal differential
p
VO = ±4 V
R
L
=
100 k
Full range 10 10
V/mV
voltage am lification
RL = 1 M 25°C 3000 3000
r
i(d)
Differential input resistance 25°C
10
12
10
12
r
i(c)
Common-mode input resistance
25°C
10
12
10
12
c
i(c)
Common-mode input capacitance
f = 10 kHz, N package 25°C 8 8 pF
z
o
Closed-loop output impedance
f = 25 kHz, AV = 10 25°C 190 190
Common-mode rejection V
= –5 V to 2.7 V ,
25°C 75 88 75 88
CMRR
j
ratio
IC
,
VO = 0, RS = 50
Full range 75 75
dB
Supply-voltage rejection V
= ±2.2 V to ±8 V,
25°C 80 95 80 95
k
SVR
ygj
ratio (∆V
DD±
/VIO)
DD±
,
VIC = VDD/2, No load
Full range 80 80
dB
Supply current
25°C 160 250 160 250
I
DD
y
(four amplifiers)
V
O
= 0,
No load
Full range 300 300
µ
A
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, V
DD±
= ±5 V
PARAMETER TEST CONDITIONS
T
A
TLC2254Q TLC2254M
TLC2254AQ TLC2254AM
UNIT
A
MIN TYP MAX MIN TYP MAX
25°C 0.07 0.12 0.07 0.12
SR Slew rate at unity gain
V
O
=
±2 V
,
CL = 100 pF
R
L
=
100 k
,
Full
range
0.05 0.05
V/µs
Equivalent input noise
f = 10 Hz 25°C 38 38
V
n
q
voltage
f = 1 kHz
25°C 19 19
n
V/H
z
Peak-to-peak
p
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
V
N(PP)
equivalent input noise voltage
f = 0.1 Hz to 10 Hz
25°C 1.1 1.1
µ
V
I
n
Equivalent input noise current
25°C 0.6 0.6
fA/Hz
Total harmonic
VO = ±2.3 V ,
AV = 1
°
0.2% 0.2%
THD
+
N
distortion plus noise
R
L
= 50 k,
f = 20 kHz
AV = 10
25°C
1% 1%
Gain-bandwidth product
f =10 kHz, CL = 100 pF
RL = 50 kΩ,
25°C 0.21 0.21 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 4.6 V,
RL = 50 kΩ,
AV = 1, CL = 100 pF
25°C 14 14 kHz
φ
m
Phase margin at unity gain
RL = 50 kΩ, CL = 100 pF
25°C 63° 63°
Gain margin
L
L
25°C 15 15 dB
Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
p
Distribution 2 – 5
VIOInput offset voltage
vs Common-mode input voltage 6, 7
α
VIO
Input offset voltage temperature coefficient Distribution 8 – 11
IIB/I
IO
Input bias and input offset currents vs Free-air temperature 12
p
vs Supply voltage 13
VIInput voltage range
yg
vs Free-air temperature 14
V
OH
High-level output voltage vs High-level output current 15
V
OL
Low-level output voltage vs Low-level output current 16, 17
V
OM+
Maximum positive peak output voltage vs Output current 18
V
OM–
Maximum negative peak output voltage vs Output current 19
V
O(PP)
Maximum peak-to-peak output voltage vs Frequency 20
p
vs Supply voltage 21
IOSShort-circuit output current
yg
vs Free-air temperature 22
V
O
Output voltage vs Differential input voltage 23, 24 Differential gain vs Load resistance 25
p
vs Frequency 26, 27
AVDLarge-signal differential voltage amplification
qy
vs Free-air temperature
,
28, 29
z
o
Output impedance vs Frequency 30, 31
vs Frequency 32
CMRR
Common-mode rejection ratio
qy
vs Free-air temperature 33
pp
vs Frequency 34, 35
k
SVR
Suppl
y-v
oltage rejection ratio
qy
vs Free-air temperature
,
36
pp
vs Supply voltage 37
IDDSupply current
yg
vs Free-air temperature 38 vs Load capacitance 39
SR
Slew rate
vs Free-air temperature 40
V
O
Inverting large-signal pulse response vs Time 41, 42
V
O
Voltage-follower large-signal pulse response vs Time 43, 44
V
O
Inverting small-signal pulse response vs Time 45, 46
V
O
Voltage-follower small-signal pulse response vs Time 47, 48
V
n
Equivalent input noise voltage vs Frequency 49, 50 Noise voltage (referred to input) Over a 10-second period 51 Integrated noise voltage vs Frequency 52
THD + N Total harmonic distortion plus noise vs Frequency 53
p
vs Free-air temperature 54
Gain-bandwidth product
vs Supply voltage 55 vs Frequency 26, 27
φmPhase margin
qy
vs Load capacitance
,
56
A
m
Gain margin vs Load capacitance 57
B
1
Unity-gain bandwidth vs Load capacitance 58 Overestimation of phase margin vs Load capacitance 59
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
Percentage of Amplifiers – %
DISTRIBUTION OF TLC2252
INPUT OFFSET VOLTAGE
VIO – Input Offset Voltage – mV
10
5
30
0
20
15
25
35
–1.6 –0.8 0 0.8 1.6
682 Amplifiers From 1 Wafer Lots V
DD±
= ± 2.5 V
P Package TA = 25°C
Figure 3
Percentage of Amplifiers – %
DISTRIBUTION OF TLC2252
INPUT OFFSET VOLTAGE
VIO – Input Offset Voltage – mV
10
5
30
0
20
15
25
35
–1.6 –0.8 0 0.8 1.6
682 Amplifiers From 1 Wafer Lots V
DD±
= ± 5 V
P Package TA = 25°C
Figure 4
Percentage of Amplifiers – %
DISTRIBUTION OF TLC2254
INPUT OFFSET VOLTAGE
VIO – Input Offset Voltage – mV
15
10
5
0
20
–1.6 0 0.8 1.6
–0.8
1020 Amplifiers From 1 Wafer Lot VDD = ±2.5 V TA = 25°C
Figure 5
Percentage of Amplifiers – %
DISTRIBUTION OF TLC2254
INPUT OFFSET VOLTAGE
VIO – Input Offset Voltage – mV
15
10
5
0
20
25
–1.6 0 0.8 1.6
–0.8
1020 Amplifiers From 1 Wafer Lot V
DD±
= ±5 V
TA = 25°C
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
VIO – Input Offset Voltage – mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
V
IO
VIC – Common-Mode Input Voltage – V
1
0.8
0.6
0.4
0.2
0 –0.2 –0.4
–0.6
–0.8
–1
1012345
VDD = 5 V RS = 50 TA = 25°C
Figure 7
VIO – Input Offset Voltage – mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
V
IO
VIC – Common-Mode Input Voltage – V
V
DD±
= ±5 V
RS = 50 TA = 25°C
1
0.8
0.6
0.4
0.2 0
–0.2
–0.4 –0.6
–0.8
–1
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5
Figure 8
Precentage of Amplifiers – %
15
10
5
0
20
25
–1 0 1 2
P Package TA = 25°C to 125°C
DISTRIBUTION OF TLC2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient – µV/°C
62 Amplifiers From 1 Wafer Lot VDD = ±2.5 V
Figure 9
Percentage of Amplifiers – %
15
10
5
0
20
25
–1 0 1 2
62 Amplifiers From 1 Wafer Lot VDD = ±5 V P Package TA = 25°C to 125°C
DISTRIBUTION OF TLC2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient – µV/°C
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
Percentage of Amplifiers – %
DISTRIBUTION OF TLC2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient of
Input Offset Voltage – µV/°C
15
10
5
0
20
25
–2 –1 0 1 2
62 Amplifiers From 1 Wafer Lot V
DD±
= ± 2.5 V
P Package TA = 25°C to 125°C
Figure 11
Percentage of Amplifiers – %
DISTRIBUTION OF TLC2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient of
Input Offset Voltage – µV/°C
15
10
5
0
20
25
–2 –1 0 1 2
62 Amplifiers From 1 Wafer Lot V
DD±
= ± 5 V
P Package TA = 25°C to 125°C
Figure 12
10
5
30
0
25 45 65 85
IIB and IIO – Input Bias and Input Offset Currents – pA
20
15
25
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
105 125
I
IB
I
IO
V
DD±
= ±2.5 V
VIC = 0 VO = 0 RS = 50
TA – Free-Air Temperature – °C
I
IB
I
IO
Figure 13
0
2345
VI – Input Voltage Range – V
4
8
INPUT VOLTAGE RANGE
vs
SUPPLY VOLTAGE
10
678
6
2
–2 –4
–6
–8
–10
| VIO | ≤ 5 mV
RS = 50 TA = 25°C
V
I
| V
DD±
| – Supply Voltage – V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
5
2
1
0
VI – Input Voltage Range – V
3
4
INPUT VOLTAGE RANGE
vs
FREE-AIR TEMPERATURE
5
–1
–75 –55 –35 –15 25 45 65 85 105 125
VDD = 5 V
V
I
TA – Free-Air Temperature – °C
Figure 15
VOH – High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
†‡
vs
HIGH-LEVEL OUTPUT CURRENT
|IOH| – High-Level Output Current – µA
V
OH
3
2
1
0
0 200 400
4
5
600 800
VDD = 5 V
TA = –40°C
TA = 25°C
TA = 125°C
TA = –55°C
Figure 16
0.6
0.4
0.2
0
0123
VOL – Low-Level Output V oltage – V
0.8
1
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2
45
VIC = 0
VIC = 1.25 V
VIC = 2.5 V
VDD = 5 V TA = 25°C
V
OL
IOL – Low-Level Output Current – mA
Figure 17
0.8
0.4
0.2
0
0123
VOL – Low-Level Output V oltage – V
1
1.2
LOW-LEVEL OUTPUT VOLTAGE
†‡
vs
LOW-LEVEL OUTPUT CURRENT
1.4
456
0.6
IOL – Low-Level Output Current – mA
TA = 125°C
TA = 25°C
TA = –55°C
VDD = 5 V VIC = 2.5 V
V
OL
TA = –40°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 18
MAXIMUM POSITIVE PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
IO – Output Current – µA
3
2
1
0
0 200 400
4
5
600 800
TA = 125°C
TA = 25°C
VOM + – Maximum Positive Peak Output Voltage – V
V
OM +
TA = –40°C
VDD = ±5 V
TA = –55°C
Figure 19
01 2
VOM – – Maximum Negative Peak Output Voltage – V
MAXIMUM NEGATIVE PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
3456
–3.8
–4
–4.2
–4.4
–4.6
–4.8
–5
V
DD±
= ±5 V
VIC = 0
TA = 125°C
TA = 25°C
TA = –40°C
IO – Output Current – mA
V
OM –
TA = –55°C
Figure 20
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
f – Frequency – Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
V
O(PP)
6
5
3
1 0
10
4
8 7
9
2
10
2
10
3
10
4
10
5
VDD = 5 V
V
DD±
= ±5 V
RL = 50 k TA = 25°C
Figure 21
IOS – Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
I
OS
| V
DD±
| – Supply Voltage – V
5
3
1
2345
7
8
10
678
9
6
4
2
0
–1
VID = –100 mV
VID = 100 mV
VO = 0 TA = 25°C VIC = 0
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
36
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 22
IOS – Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
I
OS
11 10
9 8 7 6 5 4 3 2 1 0
–1
–75 –50 –25 0 25 50 75 100 125
VID = –100 mV
VID = 100 mV
VO = 0 VDD± = ±5 V
Figure 23
3
2
1
0
0 250
4
5
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
500 750 1000
VID – Differential Input Voltage – µV
– Output Voltage – V
V
O
–1000 –750 –250–500
VDD = 5 V RL = 50 k VIC = 2.5 V TA = 25°C
Figure 24
1
–1
–3
–5
0 250
3
5
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
500 750 1000
VID – Differential Input Voltage – µV
V
DD±
= ±5 V
VIC = 0 RL = 50 k TA = 25°C
– Output Voltage – V
V
O
–1000 –750 –250–500
Figure 25
Differential Gain – V/ mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
RL – Load Resistance – k
10
4
10
3
10
2
10
110110
2
10
3
VO
(PP)
= 2 V
TA = 25°C
VDD = ±5 V
VDD = 5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
om – Phase Margin
φ
m
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD – Large-Signal Differential
A
VD
Voltage Amplification – dB
20
80
60
40
0
–20
–40
10
3
10
4
10
5
10
6
10
7
180°
135°
90°
45°
0°
–45°
–90°
Gain
VDD = 5 V RL = 50 k CL= 100 pF TA = 25°C
Phase Margin
Figure 26
om – Phase Margin
φ
m
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD – Large-Signal Differential
A
VD
Voltage Amplification – dB
20
80
60
40
0
–20
–40
10
3
10
4
10
5
10
6
10
7
180°
135°
90°
45°
0°
–45°
–90°
Gain
VDD = ±10 V RL= 50 k CL= 100 pF TA = 25°C
Phase Margin
Figure 27
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
38
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 28
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
†‡
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
AVD – Large-Signal Differential
Á
A
VD
Voltage Amplification – V/mV
–50 –25 0 25 50 75 100 125
VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V
RL = 50 k
RL = 1 M
10
4
10
3
10
2
–75
10
1
Figure 29
TA – Free-Air Temperature – °C
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
AVD – Large-Signal Differential
A
VD
Voltage Amplification – V/mV
–50 –25 0 25 50 75 100 125
V
DD±
= ±5 V
VIC = 0 VO = ±4 V
RL = 50 k
10
4
10
3
10
2
RL = 1 M
–75
10
1
Figure 30
zo – Output Impedance – 0
OUTPUT IMPEDANCE
vs
FREQUENCY
f – Frequency – Hz
z
o
10
1
0.1
1000
100
10
2
10
3
10
4
10
5
10
6
VDD = 5 V TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 31
OUTPUT IMPEDANCE
vs
FREQUENCY
f – Frequency – Hz
zo – Output Impedance – 0
z
o
10
1
0.1
1000
100
10
2
10
3
10
4
10
5
10
6
V
DD±
= ±5 V
TA = 25°C
AV = 100
AV = 10
AV = 1
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 32
f – Frequency – Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR – Common-Mode Rejection Ratio – dB
80
40
20
0
100
60
10
1
10
2
10
3
10
4
10
5
16
6
VDD = 5 V
V
DD±
= ±5 V
Figure 33
COMMON-MODE REJECTION RATIO
†‡
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
CMRR – Common-Mode Rejection Ratio – dB
84
82
92
80
88
86
90
94
–50 –25 0 25 50 75 100 125
VDD = 5 V
V
DD±
= ±5 V
–75
Figure 34
f – Frequency – Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
KSVR – Supply-Voltage Rejection Ratio – dB
k
SVR
100
80
60
40
20
0
–20
10
1
10
2
10
3
10
4
10
5
10
6
k
SVR–
VDD = 5 V TA = 25°C
k
SVR+
Figure 35
KSVR – Supply-Voltage Rejection Ratio – dB
f – Frequency – Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
k
SVR
100
80
60
40
20
0
–20
10
1
10
2
10
3
10
4
10
5
10
6
k
SVR+
k
SVR–
V
DD±
= ±5 V
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
40
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 36
KSVR – Supply-Voltage Rejection Ratio – dB
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
k
SVR
TA – Free-Air Temperature – °C
100
95
90
105
110
–50 –25 0 25 50 75 100 125
V
DD±
= ±2.2 V to ±8 V
VO = 0
–75
Figure 37
IDD – Supply Current – uA
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
| V
DD±
| – Supply Voltage – V
I
DD
Aµ
120
80
40
0
012345
160
200
240
678
TA = 25°C
TA = 125°C
VO = 0 No Load
TA = –55°C
TA = –40°C
Figure 38
SUPPLY CURRENT
†‡
vs
FREE-AIR TEMPERATURE
IDD – Supply Current – uA
I
DD
Aµ
TA – Free-Air Temperature – °C
120
80
40
0
160
200
240
–50 –25 0 25 50 75 100 125
V
DD±
= ±5 V
VO = 0
VDD = 5 V VO = 2.5 V
–75
Figure 39
SR – Slew Rate – v/us
SLEW RATE
vs
LOAD CAPACITANCE
sµ
V/
CL – Load Capacitance – pF
0.16
0.08
0.04
0
0.2
0.12
10
1
10
2
10
3
10
4
VDD = 5 V AV = –1 TA = 25°C
SR–
0.18
0.14
0.1
0.06
0.02
SR+
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 40
SLEW RATE
†‡
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
SR – Slew Rate – v/ussµ
V/
0.12
0.08
0.04
0
0.16
0.2
–50 –25 0 25 50 75 100 125
SR+
SR–
VDD = 5 V RL = 50 k CL = 100 pF AV = 1
–75
Figure 41
VO – Output Voltage – V
INVERTING LARGE-SIGNAL PULSE
RESPONSE
V
O
t – Time – µs
2
1
0
0 102030405060
3
4
5
70 80 90 100
VDD = 5 V RL = 50 k CL = 100 pF AV = –1 TA = 25°C
Figure 42
t – Time – µs
VO – Output Voltage – V
V
O
INVERTING LARGE-SIGNAL PULSE
RESPONSE
0
4
0 102030405060
2
1
3
5
70 80 90 100
V
DD±
= ±5 V
RL = 50 k CL = 100 pF AV = –1 TA = 25°C
–1
–2
–3
–4 –5
Figure 43
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
t – Time – µs
VO – Output Voltage – V
V
O
2
1
0
0 102030405060
3
4
5
70 80 90 100
VDD = 5 V RL = 50 k CL = 100 pF AV = 1 TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
42
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 44
VO – Output Voltage – V
V
O
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
0
4
0 102030405060
2
1
3
5
70 80 90 100
V
DD±
= ±5 V
RL = 50 k CL = 100 pF AV = 1 TA = 25°C
–1
–2
–3
–4 –5
t – Time – µs
Figure 45
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VO – Output Voltage – V
V
O
t – Time – µs
2.5
2.45
2.4 0102030
2.55
2.6
2.65
40 50
VDD = 5 V RL = 50 k CL = 100 pF AV = –1 TA = 25°C
Figure 46
INVERTING SMALL-SIGNAL
PULSE RESPONSE
t – Time – µs
VO – Output Voltage – mV
V
O
0
0102030
0.1
40 50
0.05
–0.05
–0.1
V
DD±
= ±5 V
RL = 50 k CL = 100 pF AV = –1 TA = 25°C
Figure 47
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VO – Output Voltage – V
V
O
t – Time – µs
2.5
2.45
2.4 0102030
2.55
2.6
2.65
40 50
VDD = 5 V RL = 50 k CL = 100 pF AV = 1 TA = 25°C
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 48
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VO – Output Voltage – V
V
O
t – Time – µs
01020304050
V
DD±
= ±5 V
RL = 50 k CL = 100 pF AV = 1 TA = 25°C
–0.1
–0.05
0
0.05
0.1
Figure 49
VN – Equivalent Input Noise Voltage – nv//Hz
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
V
n
40
20
10
0
60
30
50
10
1
10
2
10
3
10
4
VDD = 5 V RS = 20 TA = 25°C
Figure 50
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
f – Frequency – Hz
VN – Equivalent Input Noise Voltage – nv//Hz
nV/ Hz
V
n
40
20
10
0
60
30
50
10
1
10
2
10
3
10
4
V
DD±
= ±5 V
RS = 20 TA = 25°C
Figure 51
Noise Voltage – nV
t – Time – s
EQUIVALENT INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
0246
0
750
1000
810
500
–250
–500
–750
–1000
250
VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
44
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 52
0.1
Integrated Noise Voltage –
f – Frequency – Hz
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
1
10
100
110110
2
10
3
10
4
10
5
Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C
Vµ
Figure 53
THD + N – Total Harmonic Distortion Plus Noise – %
f – Frequency – Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
1
0.001 10
1
10
2
10
3
10
4
10
5
AV = 10
AV = 1
VDD = 5 V RL = 50 k TA = 25°C
0.1
AV = 100
Figure 54
Gain-Bandwidth Product – kHz
GAIN-BANDWIDTH PRODUCT
†‡
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
200
120
80
240
280
–75 –25 0 25 50 75 100 125
VDD = 5 V f = 10 kHz RL = 50 k CL = 100 pF
–50
160
Figure 55
Gain-Bandwidth Product – kHz
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
| VDD ±| – Supply Voltage – V
210
190
170
150
0235
230
250
78
146
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 56
om – Phase Margin
PHASE MARGIN
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
m
φ
10
1
10
2
10
3
10
5
75°
60°
45°
30°
15°
0°
R
null
= 200
R
null
= 500
R
null
= 50
R
null
= 0
TA = 25°C
R
null
= 10
10
4
50 k
50 k
V
DD–
V
DD+
R
null
C
L
V
I
+
R
null
= 100
Figure 57
Gain Margin – dB
GAIN MARGIN
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
20
10
5
0
15
10
1
10
2
10
3
10
5
R
null
= 100
TA = 25°C
R
null
= 50
10
4
R
null
= 500
R
null
= 200
R
null
= 0
R
null
= 10
Figure 58
– Unity-Gain Bandwidth – kHz
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
B
1
150
25
100
0
200
125
175
50
75
10
1
10
2
10
3
10
4
10
5
TA = 25°C
Figure 59
Overestimation of Phase Margin
OVERESTIMATION OF PHASE MARGIN
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
15
10
5
0
20
25
10
1
10
2
10
3
10
4
10
5
TA = 25°C
R
null
= 100
R
null
= 50
R
null
= 10
R
null
= 500
R
null
= 200
See application information
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
46
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
driving large capacitive loads
The TLC225x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56 and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (R
null
= 0).
A smaller series resistor (R
null
) at the output of the device (see Figure 60) improves the gain and phase margins when driving large capacitive loads. Figure 56 and Figure 57 show the effects of adding series resistances of 10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used.
∆φm1+
tan
–1
ǒ
2 × π × UGBW × R
null
× C
L
Ǔ
where :
(1)
∆φm1+
improvement in phase margin
UGBW+unity-gain bandwidth frequency
R
null
+
output series resistance
CL+
load capacitance
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To use equation 1, UGBW must be approximated from Figure 58.
Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin.
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads.
50 k
50 k
V
DD–/GND
V
DD+
R
null
C
L
V
I
+
Figure 60. Series-Resistance Circuit
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim
Parts
, the model generation software used
with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using
the TLC225x typical electrical and operating characteristics at T
A
= 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”,
IEEE Journal
of Solid-State Circuits,
SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TLC225x 1 2 3 4 5
C1 11 12 6.369E–12 C2 6 7 25.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 43DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 57.62E6 –60E6 60E6 60E6 –60E6 GA 6 0 11 12 26.86E–6 GCM 0 6 10 99 2.686E–9 ISS 3 10 DC 3.1E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3
RD1 60 11 37.23E3 RD2 60 12 37.23E3 R01 8 5 84 R02 7 99 84 RP 3 4 71.43E3 RSS 10 99 64.52E6 VAD 60 4 –.5 VB 9 0 DC 0 VC 3 53 DC .605 VE 54 4 DC .605 VLIM 7 8 DC 0 VLP 91 0 DC –.235 VLN 0 92 DC 7.5 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=139E–6 + VTO=–.05) .ENDS
V
CC+
RP
IN –
2
IN+
1
V
CC–
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54
DE
DP
VC
DC
4
C1
53
R2
6
9
EGND
VB
FB
C2
GCM
GA
VLIM
8
5
RO1
RO2
HLIM
90
DLP
91
DLN
92
VLNVLP
99
7
Figure 61. Boyle Macromodel and Subcircuit
PSpice
and
Parts
are trademarks of MicroSim Corporation.
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
48
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/B 03/95
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Four center pins are connected to die mount pad. E. Falls within JEDEC MS-012
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
49
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/C 11/95
28 TERMINAL SHOWN
B
0.358 (9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858 (21,8)
1.063 (27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342 (8,69)
MIN
(11,23)
(16,26)
0.640
0.740
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
1314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ
22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a metal lid. D. The terminals are gold plated.
E. Falls within JEDEC MS-004
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
50
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE
4040083/B 04/95
14 PIN SHOWN
22
0.410
(10,41)
0.390
(28,00)
1.100
(9,91)
0.388 (9,65)
20181614
PINS **
0.310
(7,87)
0.290
0.755
(19,18)
(19,94)
0.785
(7,37)
0.310
(7,87)
(7,37)
0.290
(23,10)
0.910
0.300
(7,62)
(6,22)
0.245
A
0.300
(7,62)
(6,22)
0.245
0.290
(7,87)
0.310
0.785
(19,94)
(19,18)
0.755
(7,37)
A MIN
A MAX
B MAX
B MIN
0.245 (6,22)
(7,11)
0.280
C MIN
C MAX
DIM
0.245
(6,22)
(7,62)
0.300
0.975
(24,77)
(23,62)
0.930
0.290
(7,37)
(7,87)
0.310
Seating Plane
0.014 (0,36)
0.008 (0,20)
C
8
7
0.020 (0,51) MIN
B
0.070 (1,78)
0.100 (2,54)
0.065 (1,65)
0.045 (1,14)
14
1
0.015 (0,38)
0.023 (0,58)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
51
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
4040107/B 04/95
0.020 (0,51) MIN
0.200 (5,08) MAX
0.130 (3,30) MIN
14
58
0°–15°
0.008 (0,20)
0.310 (7,87)
0.290 (7,37)
0.245 (6,22)
0.280 (7,11)
Seating Plane
0.015 (0,38)
0.015 (0,38)
0.023 (0,58)
0.400 (10,20)
0.355 (9,00)
0.063 (1,60)
0.015 (0,38)
0.065 (1,65)
0.045 (1,14)
0.100 (2,54)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only
E. Falls within MIL-STD-1835 GDIP1-T8
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
52
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE
20
0.975
(24,77)
0.940
(23,88)
18
0.920
0.850
14
0.775
0.745
(19,69)
(18,92)
16
0.775
(19,69)
(18,92)
0.745
A MIN
DIM
A MAX
PINS **
0.310 (7,87)
0.290 (7,37)
(23.37)
(21.59)
Seating Plane
0.010 (0,25) NOM
14/18 PIN ONL Y
4040049/C 08/95
9
8
0.070 (1,78) MAX
A
0.035 (0,89) MAX
0.020 (0,51) MIN
16
1
0.015 (0,38)
0.021 (0,53)
0.200 (5,08) MAX
0.125 (3,18) MIN
0.240 (6,10)
0.260 (6,60)
M
0.010 (0,25)
0.100 (2,54)
0°–15°
16 PIN SHOWN
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
53
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE
4040082/B 03/95
0.310 (7,87)
0.290 (7,37)
0.010 (0,25) NOM
0.400 (10,60)
0.355 (9,02)
58
41
0.020 (0,51) MIN
0.070 (1,78) MAX
0.240 (6,10)
0.260 (6,60)
0.200 (5,08) MAX
0.125 (3,18) MIN
0.015 (0,38)
0.021 (0,53)
Seating Plane
M
0.010 (0,25)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
54
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/D 10/95
14 PIN SHOWN
Seating Plane
0,10 MIN
1,20 MAX
1
A
7
14
0,19
4,50 4,30
8
6,10
6,70
0,32
0,75 0,50
0,25
Gage Plane
0,15 NOM
0,65
M
0,13
0°–8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153
TLC225x, TLC225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
55
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
1
10
5
6
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
TLC225x, TLC225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS176A – FEBRUARY 1997 – REVISED JULY 1999
56
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL INFORMATION
W (R-GDFP-F16) CERAMIC DUAL FLATPACK
0.235 (5,97)
0.355 (9,02) 0.355 (9,02)
0.235 (5,97)
98
161
0.745 (18,92)
0.245 (6,22)
0.004 (0,10)
0.026 (0,66)
0.015 (0,38)
0.015 (0,38)
0.045 (1,14)
0.371 (9,42)
0.006 (0,15)
0.045 (1,14)
Base and Seating Plane
0.025 (0,64)
0.019 (0,48)
0.440 (11,18)
0.285 (7,24)
0.085 (2,16)
1.025 (26,04)
4040180-3/B 03/95
0.275 (6,99)
0.305 (7,75)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only. E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERSTOOD T O BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...