System Sensor PDRP-2001 User Manual

3825 Ohio Avenue St. Charles, IL 60174 1-800-SENSOR2 Fax: (630) 377-6495
PRE-ACTION/DELUGE CONTROL PANEL
Instruction Manual
Document 53043 2/28/2011 Rev:
P/N 53043:E1 ECN 11-162
E1
Fire Alarm System Limitations
While a fire alarm system may lower insurance rates, it is not a substitute for fire insurance!
An automatic fire alarm system—typically made up of smoke detectors, heat detectors, manual pull stations, audible warning devices, and a fire alarm control panel with remote notification capability—can provide early warning of a develop­ing fire. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire.
The Manufacturer recommends that smoke and/or heat detec­tors be located throughout a protected premise following the recommendations of the National Fire Protection Association Standard 72 (NFPA 72), manufacturer's recommendations, State and local codes, and the recommendations contained in the Guides for Proper Use of System Smoke Detectors, which are made available at no charge to all installing dealers. These documents can be found at http://www.systemsen­sor.com/html/applicat.html. A study by the Federal Emer­gency Management Agency (an agency of the United States government) indicated that smoke detectors may not go off in as many as 35% of all fires. While fire alarm systems are designed to provide early warning against fire, they do not guarantee warning or protection against fire. A fire alarm sys­tem may not provide timely or adequate warning, or simply may not function, for a variety of reasons:
Smoke detectors may not sense fire where smoke cannot reach the detectors such as in chimneys, in or behind walls, on roofs, or on the other side of closed doors. Smoke detectors also may not sense a fire on another level or floor of a building. A second-floor detector, for example, may not sense a first­floor or basement fire.
Particles of combustion or “smoke” from a developing fire may not reach the sensing chambers of smoke detectors because:
• Barriers such as closed or partially closed doors, walls, or chimneys may inhibit particle or smoke flow.
• Smoke particles may become “cold,” stratify, and not reach the ceiling or upper walls where detectors are located.
• Smoke particles may be blown away from detectors by air outlets.
• Smoke particles may be drawn into air returns before reaching the detector.
The amount of “smoke” present may be insufficient to alarm smoke detectors. Smoke detectors are designed to alarm at various levels of smoke density. If such density levels are not created by a developing fire at the location of detectors, the detectors will not go into alarm.
Smoke detectors, even when working properly, have sensing limitations. Detectors that have photoelectronic sensing chambers tend to detect smoldering fires better than flaming fires, which have little visible smoke. Detectors that have ion­izing-type sensing chambers tend to detect fast-flaming fires better than smoldering fires. Because fires develop in different ways and are often unpredictable in their growth, neither type of detector is necessarily best and a given type of detector may not provide adequate warning of a fire.
Smoke detectors cannot be expected to provide adequate warning of fires caused by arson, children playing with matches (especially in bedrooms), smoking in bed, and violent explosions (caused by escaping gas, improper storage of flammable materials, etc.).
Heat detectors do not sense particles of combustion and alarm only when heat on their sensors increases at a predeter­mined rate or reaches a predetermined level. Rate-of-rise heat detectors may be subject to reduced sensitivity over time. For this reason, the rate-of-rise feature of each detector should be tested at least once per year by a qualified fire pro­tection specialist. Heat detectors are designed to protect property, not life.
IMPORTANT! Smoke detectors must be installed in the same room as the control panel and in rooms used by the sys­tem for the connection of alarm transmission wiring, communi­cations, signaling, and/or power. If detectors are not so located, a developing fire may damage the alarm system, crip­pling its ability to report a fire.
Audible warning devices such as bells may not alert people if these devices are located on the other side of closed or partly open doors or are located on another floor of a building. Any warning device may fail to alert people with a disability or those who have recently consumed drugs, alcohol or medica­tion. Please note that:
• Strobes can, under certain circumstances, cause seizures in people with conditions such as epilepsy.
• Studies have shown that certain people, even when they hear a fire alarm signal, do not respond or comprehend the meaning of the signal. It is the property owner's responsi­bility to conduct fire drills and other training exercise to make people aware of fire alarm signals and instruct them on the proper reaction to alarm signals.
• In rare instances, the sounding of a warning device can cause temporary or permanent hearing loss.
A fire alarm system will not operate without any electrical power. If AC power fails, the system will operate from standby batteries only for a specified time and only if the batteries have been properly maintained and replaced regularly.
Equipment used in the system may not be technically com­patible with the control panel. It is essential to use only equip­ment listed for service with your control panel.
Telephone lines needed to transmit alarm signals from a premise to a central monitoring station may be out of service or temporarily disabled. For added protection against tele­phone line failure, backup radio transmission systems are rec­ommended.
The most common cause of fire alarm malfunction is inade­quate maintenance. To keep the entire fire alarm system in excellent working order, ongoing maintenance is required per the manufacturer's recommendations, and UL and NFPA stan­dards. At a minimum, the requirements of NFPA 72 shall be followed. Environments with large amounts of dust, dirt or high air velocity require more frequent maintenance. A main­tenance agreement should be arranged through the local man­ufacturer's representative. Maintenance should be scheduled monthly or as required by National and/or local fire codes and should be performed by authorized professional fire alarm installers only. Adequate written records of all inspections should be kept.
Limit-C1-2-2007
2 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Installation Precautions
Adherence to the following will aid in problem-free installation with long-term reliability:
WARNING - Several different sources of power can be connected to the fire alarm control panel. Disconnect all
sources of power before servicing. Control unit and associ­ated equipment may be damaged by removing and/or insert­ing cards, modules, or interconnecting cables while the unit is energized. Do not attempt to install, service, or operate this unit until manuals are read and understood.
CAUTION - System Re-acceptance Test after Software Changes: To ensure proper system operation, this product
must be tested in accordance with NFPA 72 after any pro­gramming operation or change in site-specific software. Re­acceptance testing is required after any change, addition or deletion of system components, or after any modification, repair or adjustment to system hardware or wiring. All compo­nents, circuits, system operations, or software functions known to be affected by a change must be 100% tested. In addition, to ensure that other operations are not inadvertently affected, at least 10% of initiating devices that are not directly affected by the change, up to a maximum of 50 devices, must also be tested and proper system operation verified.
This system meets NFPA requirements for operation at 0-49º C/32-120º F and at a relative humidity 93% ± 2% RH (non­condensing) at 32°C ± 2°C (90°F ± 3°F). However, the useful life of the system's standby batteries and the electronic com­ponents may be adversely affected by extreme temperature ranges and humidity. Therefore, it is recommended that this system and its peripherals be installed in an environment with a normal room temperature of 15-27º C/60-80º F.
Verify that wire sizes are adequate for all initiating and indi­cating device loops. Most devices cannot tolerate more than a 10% I.R. drop from the specified device voltage.
Like all solid state electronic devices, this system may operate erratically or can be damaged when subjected to light­ning induced transients. Although no system is completely immune from lightning transients and interference, proper grounding will reduce susceptibility. Overhead or outside aerial wiring is not recommended, due to an increased susceptibility to nearby lightning strikes. Consult with the Technical Ser­vices Department if any problems are anticipated or encoun­tered.
Disconnect AC power and batteries prior to removing or inserting circuit boards. Failure to do so can damage circuits.
Remove all electronic assemblies prior to any drilling, filing, reaming, or punching of the enclosure. When possible, make all cable entries from the sides or rear. Before making modifi­cations, verify that they will not interfere with battery, trans­former, or printed circuit board location.
Do not tighten screw terminals more than 9 in-lbs. Over­tightening may damage threads, resulting in reduced terminal contact pressure and difficulty with screw terminal removal.
This system contains static-sensitive components. Always ground yourself with a proper wrist strap before han­dling any circuits so that static charges are removed from the body. Use static suppressive packaging to protect electronic assemblies removed from the unit.
Follow the instructions in the installation, operating, and pro­gramming manuals. These instructions must be followed to avoid damage to the control panel and associated equipment. FACP operation and reliability depend upon proper installation.
Precau-D1-9-2005
FCC Warning
WARNING: This equipment generates, uses, and can
radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause interference to radio communications. It has been tested and found to comply with the limits for class A computing devices pursuant to Subpart B of Part 15 of FCC Rules, which is designed to provide reasonable protection against such interference when devices are operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interfer­ence, in which case the user will be required to correct the interference at his or her own expense.
Canadian Requirements
This digital apparatus does not exceed the Class A limits for radiation noise emissions from digital apparatus set out in the Radio Interference Regulations of the Cana­dian Department of Communications.
Le present appareil numerique n'emet pas de bruits radi­oelectriques depassant les limites applicables aux appa­reils numeriques de la classe A prescrites dans le Reglement sur le brouillage radioelectrique edicte par le ministere des Communications du Canada.
System Sensor® is a registered trademark of Honeywell International Inc. Microsoft® and Windows® are registered trademarks of the Microsoft Corporation.
©2011 by Honeywell International Inc. All rights reserved. Unauthorized use of this document is strictly prohibited.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 3
Software Downloads
In order to supply the latest features and functionality in fire alarm and life safety technology to our customers, we make frequent upgrades to the embedded software in our products. To ensure that you are installing and programming the latest features, we strongly recommend that you download the most current version of software for each product prior to commissioning any system. Contact Technical Support with any questions about software and the appropriate version for a specific application.
Documentation Feedback
Your feedback helps us keep our documentation up-to-date and accurate. If you have any comments or suggestions about our online Help or printed manuals, you can email us.
Please include the following information:
•Product name and version number (if applicable)
•Printed manual or online Help
•Topic Title (for online Help)
•Page number (for printed manual)
•Brief description of content you think should be improved or corrected
•Your suggestion for how to correct/improve documentation
Send email messages to:
FireSystems.TechPubs@honeywell.com
Please note this email address is for documentation feedback only. If you have any technical issues, please contact Technical Services.
4 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011

Table of Contents

Section 1: Product Description .............................................................................................12
1.1: Product Features ..........................................................................................................................................12
1.2: Specifications...............................................................................................................................................13
1.3: Controls and Indicators................................................................................................................................16
1.4: Components .................................................................................................................................................17
1.5: Optional Modules and Accessories .............................................................................................................17
Section 2: Installation.............................................................................................................19
2.1: Backbox Mounting ......................................................................................................................................19
2.2: Operating Power ..........................................................................................................................................22
2.3: Input Circuits ...............................................................................................................................................24
2.4: Output Circuits.............................................................................................................................................26
2.4.1: Outputs/Notification Appliance/Releasing Circuits ..........................................................................26
2.4.2: Special Application DC Power Output Connections.........................................................................27
2.4.3: Relays - Programmable .....................................................................................................................27
2.5: Power-limited Wiring Requirements...........................................................................................................28
2.6: Installation of Optional Modules .................................................................................................................29
2.6.1: CAC-5X Class A Converter Module.................................................................................................29
Installation ............................................................................................................................................29
Wiring NACs and IDCs for Class A ....................................................................................................30
2.6.2: 4XTMF Municipal Box Transmitter Option Module........................................................................31
4XTMF Transmitter Module Installation............................................................................................31
2.6.3: ANN-SEC Option Card.....................................................................................................................33
2.7: ANN-BUS Devices......................................................................................................................................33
Guidelines.............................................................................................................................................33
2.7.1: ANN-BUS Wiring .............................................................................................................................34
Calculating Wiring Distance for ANN-BUS Modules.........................................................................34
Wiring Configuration ...........................................................................................................................36
Powering ANN-BUS Devices from Auxiliary Power Supply .............................................................36
2.7.2: ANN-BUS Device Addressing..........................................................................................................37
2.7.3: ANN-80 Remote LCD Annunciator..................................................................................................37
Specifications .......................................................................................................................................37
Installation ............................................................................................................................................37
Wiring ANN-80 to FACP.....................................................................................................................38
2.7.4: ANN-S/PG Serial/Parallel Printer Interface Installation...................................................................39
Specifications .......................................................................................................................................40
PRN-6F Printer Installation..................................................................................................................40
2.7.5: ANN-I/O LED Driver Module ..........................................................................................................41
ANN-I/O Board Layout........................................................................................................................42
Specifications .......................................................................................................................................42
ANN-I/O Connection to FACP ............................................................................................................43
ANN-I/O Module LED Wiring ............................................................................................................43
2.7.6: ANN-LED Annunciator Module .......................................................................................................44
Specifications .......................................................................................................................................44
Mounting/Installation ...........................................................................................................................44
ANN-LED Board Layout and Connection to FACP............................................................................45
2.7.7: ANN-RLY Relay Module .................................................................................................................45
Specifications .................................................................................................................
Mounting/Installation
ANN-RLY Board Layout and Connection to FACP............................................................................46
...........................................................................................................................46
......................45
Section 3: Programming ........................................................................................................47
3.1: User Programming.......................................................................................................................................47
3.2: Initial Power-up ...........................................................................................................................................48
3.3: Programming Screens Description ..............................................................................................................48
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 5
Table of Contents
3.4: Programming and Passwords.......................................................................................................................49
3.5: Master Programming Level .........................................................................................................................50
3.5.1: FACP CONFIG (Application Templates) .........................................................................................51
3.5.2: Input Zones ........................................................................................................................................51
3.5.3: Output Circuits...................................................................................................................................57
Enabled .................................................................................................................................................58
Type ......................................................................................................................................................58
Silence...................................................................................................................................................60
Auto Silence..........................................................................................................................................61
Silence Inhibited ...................................................................................................................................61
Coding ..................................................................................................................................................62
3.5.4: Cross Input Zones ..............................................................................................................................64
3.5.5: On-Board Relays ...............................................................................................................................65
3.5.6: System Setup .....................................................................................................................................66
Timers...................................................................................................................................................67
Banner...................................................................................................................................................69
Time-Date.............................................................................................................................................70
Trouble Reminder.................................................................................................................................72
Charger Disable ....................................................................................................................................72
Canadian Option ...................................................................................................................................72
Secondary ANN-BUS Option...............................................................................................................73
3.5.7: ANN-BUS..........................................................................................................................................73
ANN-BUS Enabled ..............................................................................................................................73
ANN-BUS Modules..............................................................................................................................74
Auto-Configure.....................................................................................................................................75
ANN-S/PG Options ..............................................................................................................................75
ANN-I/O LED Zone Assignments .......................................................................................................76
ANN-80 Options...................................................................................................................................77
ANN-RLY Options...............................................................................................................................78
3.5.8: History ...............................................................................................................................................79
View Events..........................................................................................................................................79
Erase History ........................................................................................................................................79
3.5.9: Walktest .............................................................................................................................................80
3.5.10: Clear Program..................................................................................................................................81
3.5.11: Password Change.............................................................................................................................81
3.6: Maintenance Programming Level................................................................................................................82
3.6.1: Input Zones - Enable/Disable ............................................................................................................83
3.6.2: History ...............................................................................................................................................83
3.6.3: Walktest .............................................................................................................................................84
3.6.4: Time-Date ..........................................................................................................................................85
Section 4: Operating Instructions .........................................................................................86
4.1: Panel Control Buttons ..................................................................................................................................86
4.1.1: Acknowledge/Step.............................................................................................................................86
4.1.2: Alarm Silenced ..................................................................................................................................86
4.1.3: Drill/Hold 2 Sec.................................................................................................................................86
4.1.4: Reset ..................................................................................................................................................86
4.2: Indicators......................................................................................................................................................87
4.3: Normal Operation ........................................................................................................................................87
4.4: Trouble Operation........................................................................................................................................88
4.5: Alarm Operation ..........................................................................................................................................89
4.6: Supervisory Operation .................................................................................................................................90
4.7: Disable/Enable Operation ............................................................................................................................90
4.8: Waterflow Circuits Operation ......................................................................................................................91
4.9: 2nd-Shot Water Switch ................................................................................................................................91
4.10: Detector Functions .....................................................................................................................................91
4.11: Coded NAC Operation...............................................................................................................................91
6 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Table of Contents
4.12: Release Stages............................................................................................................................................92
4.13: Special System Timers...............................................................................................................................92
4.13.1: Silence Inhibit Timer.......................................................................................................................92
4.13.2: Autosilence Timer ...........................................................................................................................92
4.13.3: Trouble Reminder............................................................................................................................92
4.13.4: Soak Timers.....................................................................................................................................92
4.13.5: Waterflow Delay Timer...................................................................................................................92
4.14: Walktest .....................................................................................................................................................92
4.15: Read Status ................................................................................................................................................93
4.15.1: FACP Configuration........................................................................................................................94
4.15.2: Input Zones......................................................................................................................................94
4.15.3: Output Circuits ................................................................................................................................95
4.15.4: Cross Input Zones............................................................................................................................96
4.15.5: On-Board Relays .............................................................................................................................96
4.15.6: System Settings ...............................................................................................................................97
4.15.7: Timers..............................................................................................................................................97
4.15.8: Daylight Savings .............................................................................................................................98
4.15.9: History .............................................................................................................................................98
4.15.10: Print ...............................................................................................................................................98
4.15.11: ANN-BUS .....................................................................................................................................99
Section 5: Power Supply Calculations................................................................................100
5.1: Overview....................................................................................................................................................100
5.2: Calculating the AC Branch Circuit............................................................................................................100
5.3: Calculating the System Current Draw .......................................................................................................101
5.3.1: Overview .........................................................................................................................................101
5.3.2: How to Use Table 5.3 on page 102 to Calculate System Current Draw .........................................101
5.4: Calculating the Battery Size ......................................................................................................................103
5.4.1: NFPA Battery Requirements ...........................................................................................................103
5.4.2: Selecting and Locating Batteries .....................................................................................................103
Appendix A: Circuit Mapping and Cross-Zoning...............................................................104
A.1: Input-to-Output Circuit Mapping and Cross-Zone Operation..................................................................104
A.1.1: Mapping Input Zones to Output Circuits for Direct Activation .....................................................105
A.1.2: Mapping Input Zones to Release Circuits for Cross Zone Activation............................................106
A.1.3: Complex Examples of Cross Zoning and I/O Mapping for Release Circuits.................................108
Appendix B: FACP Configuration Templates.....................................................................109
B.1: Template 1: Single Hazard - 3 Zone .........................................................................................................110
B.2: Template 2: Single Hazard - Cross-Zone With Manual Release ..............................................................112
B.3: Template 3: Dual Hazard - Combined Release.........................................................................................114
B.4: Template 4: Dual Hazard - Split Release ..................................................................................................116
B.5: Template 5: Single Hazard - 3 Zones and Low Pressure ..........................................................................118
B.6: Template 6: Single Hazard - 2 Zones Cross-Zoned With All Active........................................................120
B.7: Template 7: Single Hazard - Dual Zone....................................................................................................122
Appendix C: NFPA Standard-Specific Requirements .......................................................124
C.1: NFPA 72 Auxiliary Fire Alarm System ....................................................................................................127
C.2: Central Station/Remote Station Transmitter: Connection to FACP Dry Contacts....................................130
Appendix D: FACP with Keltron ..........................................................................................131
Appendix E: Testing & Maintenance................................................................................... 132
E.1: Testing .......................................................................................................................................................132
E.1.1: Inspection ........................................................................................................................................132
E.1.2: Alarm Test.......................................................................................................................................132
E.1.3: Detector Testing..............................................................................................................................132
E.2: Maintenance ..............................................................................................................................................133
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 7
Table of Contents
Appendix F: Wire Requirements ......................................................................................... 134
F.1: NAC Wiring ...............................................................................................................................................135
Appendix G: Compatible Devices ....................................................................................... 136
G.1: Compatible Two-Wire Smoke Detectors (UL Listed)...............................................................................136
G.2: Maximum Number of Detectors per Zone ................................................................................................137
G.3: Four-Wire Smoke Detectors/Devices (UL Listed)....................................................................................138
G.4: Notification Appliances (UL Listed) .........................................................................................................139
G.4.1: System Sensor - 24VDC ................................................................................................................139
G.4.2: System Sensor SpectrAlert Advance ..............................................................................................140
G.5: Notification Appliances For Canadian Applications .................................................................................140
G.5.1: System Sensor ................................................................................................................................140
G.6: Releasing Applications ..............................................................................................................................140
G.7: Door Holders (UL Listed) ........................................................................................................................141
G.8: Relays (UL Listed) ....................................................................................................................................141
Index ......................................................................................................................................142
8 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
It is imperative that the installer understand the requirements of the Authority Having Jurisdiction (AHJ) and be familiar with the standards set forth by the following regulatory agencies:
Underwriters Laboratories Standards
NFPA 72 National Fire Alarm Code
CAN/ULC - S527-99 Standard for Control Units for Fire Alarm Systems
Before proceeding, the installer should be familiar with the following documents.
NFPA Standards This Fire Alarm Control Panel complies with the following NFPA Standards:
NFPA 13 Installation of Sprinkler Systems NFPA 15 Water Spray Fixed Systems NFPA 16 Deluge Foam-Water Sprinkler and Foam-Water Spray Systems NFPA 72 National Fire Alarm Code for Local Fire Alarm Systems and Remote Station Fire Alarm Systems (requires an optional Remote Station Output Module)
Underwriters Laboratories Documents for Reference:
UL 38 Manually Actuated Signaling Boxes UL 217 Smoke Detectors, Single and Multiple Station UL 228 Door Closers–Holders for Fire Protective Signaling Systems UL 268 Smoke Detectors for Fire Protective Signaling Systems UL 268A Smoke Detectors for Duct Applications UL 346 Waterflow Indicators for Fire Protective Signaling Systems UL 464 Audible Signaling Appliances UL 521 Heat Detectors for Fire Protective Signaling Systems UL 864 Standard for Control Units for Fire Protective Signaling Systems UL 1481 Power Supplies for Fire Protective Signaling Systems UL 1638 Visual Signaling Appliances UL 1971 Signaling Devices for Hearing Impaired
CAN/ULC - S524-01 Standard for Installation of Fire Alarm Systems
This Class (A) digital apparatus complies with Canadian ICES-003. Cet appareil numérique de la classe (A) est conforme à la norme NMB-003 du Canada.
Other:
Canadian Electrical Code, Part I NEC Article 250 Grounding NEC Article 300 Wiring Methods NEC Article 760 Fire Protective Signaling Systems Applicable Local and State Building Codes Requirements of the Local Authority Having Jurisdiction (LAHJ)
Documents
411UD Manual Document #50759 411UDAC Manual Document #51073 CHG-75 Battery Charger Manual Document #51315 CHG-120 Battery Charger Manual Document #50888 ANN-80 Product Installation Doc. Document #52749 ANN-(R)LED Product Installation Doc. Document #53032 ANN-I/O Product Installation Doc. Document #151416 ANN-RLY Product Installation Doc. Document #53033 ANN-S/PG Product Installation Doc. Document #151417
This product has been certified to comply with the requirements in the Standard for Control Units and Accessories for Fire Alarm Systems, UL 864, 9th Edition. Operation of this product with products not tested for UL 864, 9th Edition has not been evaluated. Such operation requires the approval of the local Authority Having Jurisdiction (AHJ).
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 9
Main Circuit Board
6
6
TB6
Z
O
N
E
6
S
W
1
T
B4/TB
6
1
/
6
2
3
5
4
A
A
A
A
Dummy load all unused circuits
with 4.7K, ½ watt End-of-Line
resistors
Style Z (Class A) NAC
Style D (Class A) IDC
CAC-5X
Class A Converter Module
3 Programmable Relays
Nonsupervised relay contacts
Contact Ratings
2.0 amps @ 30 VDC (resistive)
0.5 amp @ 30 VAC (resistive)
Contacts shown below in normal
condition (AC power with no alarm,
trouble, or supervisory activity)
A Fail Safe Trouble relay
switches to the NC position
during trouble conditions and
under loss of all power.
(*Factory default relay programming)
Alarm*
Trouble*
Supervisory*
Class A Converter Module
Remove jumper JP43 to
disable Ground Fault
Detection circuit (only with
approval of AHJ)
Cut this jumper to supervise
the 4XTM module when
installed (see J4 & J5)
Cut this jumper to
enable Supervisory
Relay when 4XTMF
module is installed
Auxiliary
Trouble Input
Kiss-off LED
ANN-SEC
option card connector
Battery
24 VDC, supervised,
nonpower-limited
26 Amp Hour maximum
Basic System Connections
Power Supply Connector
For more specific UL wiring
information, refer to page 35.
Important! Removing Ground Fault Disable
Jumper JP43 voids UL/NFPA Style/Class
indentifications for circuits. Remove jumper
JP43 only with the approval of the local AHJ
(Authority Having Jurisdiction).
Special Application
DC Power Outputs 24 VDC)
Nonsupervised, power-limited circuits
Supervise with a power supervision relay
EOLR-1
Resettable Power - 24 VDC filtered,
power-limited, Class 2 (0.5 amp
maximum) to smoke detectors (IDC).
Supervise with power supervision
relay EOLR-1.
Nonresettable or Resettable Power
Jumper selectable by JP31, 24 VDC
filtered, power-limited, Class 2 (0.5 amp
maximum). Supervise with power
supvervision relay EOLR-1. Nonresettable
Power suitable for powering smoke
detectors.
Configure TB9, Terminals 1 & 2 as
Resettable or Nonresettable Power.
• Resettable Power - jumper JP31 pins 2
& 3
• Nonresettable Power - jumper JP31 pins
1 & 2 (as shown)
4
3
2
1
{
{
Output Circuit #1
NAC
Output Circuit
#3 NAC
Push switch down to
upgrade software
IDCs 1 through 6, Style B (Class B) (Supervised,
Power-Limited, Class 2) (See Style D illustrated
near right edge of board.)
4.7Kohm, ½ watt End-of-Line Resistor PN 71252
Initiating Device Circuits
rp2001layout.wmf
Normally
Open
Waterflow
Devices or
Pressure
Switches
Input IDC
Waterflow
Circuit #6
Output Circuits - TB5 & TB7
Special Application Power
In this example NAC Output Circuits #1, #3, & #4, Style Y (Class B) (Supervised,
Power-Limited, Class 2) NAC Output Circuit #2 (Releasing) is Style Y (Class B)
(Supervised, Nonpower-Limited, Class 1) 3.0 amp max. per circuit. (See Style Z
illustrated near right edge of board.)
4.7Kohm, ½ watt End-of-Line Resistor PN 71252
Output
Circuit #2
Releasing
Input IDC
Circuit #1
polarized
bell
polarized
strobe
polarized
horn
smoke
detector
pull
station
heat
detector
manual
release
Normally
Open
Tamper
or
Pressure
Switches
Input IDC
Supervisory
Circuit #5
Output
Circuit
#4
10 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
-
+
-
+
JP1
JP3
SW1
JP4
TB3
TB4
TB2
ENABLE
AC DELAY
16 HR DELAY
TENS
ONES
CUT FOR 240VAC
GND FLT DISABLE
AM-1 ENABLE
ADDRESS
ON OFF
AM-1
JP5
JP2
F1
F2
J4
J1 J2
J3
F3
TB1
HOT
OUT
+
BAT
+
OUT
-
BAT
-
EARTH
NEUT
1 5
1 5
A- B- A+ B+
NC NO C
043
9261578121315141011
043926157812
13
15
141011
TB1
TBL
J1
J2
7 6 5 1
POWER LIMITED
Sw1
P1 P2
P3
P4
110
11
20
21 30
31 40
1
2
3
4
5
ALARM
TROUBLE
FIRE ALARM ANNUNCIATOR
A
C
K
S
T
E
P
TB1
J1
SW1
JP2
ANN-BUS
1 2 3 4 5 6 7 8
TB6
TB3
TB5
TB4
TB2
Alarm
Silenced
Earth Fault
ZONE 1
ALM
TBL
SUP
1
ZONE 6
ALM
TBL
SUP
6
NAC 1
Fault
Battery
Fault
ZONE 2
ALM
TBL
SUP
2
ZONE 7
ALM
TBL
SUP
7
NAC2
Fault
Charger
Fault
ZONE 3
ALM
TBL
SUP
3
ZONE 8
ALM
TBL
SUP
8
FIRE ALARM ANNUNCIATOR
NAC 4
Fault
ZONE 5
ALM
TBL
SUP
5
ALM
TBL
SUP
NAC 3
Fault
Disabled
ZONE 4
ALM
TBL
SUP
4
ZONE 9
ALM
TBL
SUP
9
CHG-120F Charger
Doc. #50888
ANN-BUS - TB3
Battery Connector - J12
rp-peri.wmf
ANN-80
LCD Text Annunciator
Doc. #52749
ANN-I/O
LED Driver
Doc. #151416
ANN-S/PG
Printer Driver
Doc. #151417
CHG-75 Charger
Doc. # 51315
ANN-(R)LED
LED Display Doc. #53032
ANN-RLY
10 Form-C Relay Card
Doc. #53033
4XTM
Reverse Polarity Module
J4 & J5
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 11

Section 1: Product Description

The PDRP-2001 is a six zone FACP for single and dual hazard deluge and preaction applications. The FACP provides reliable fire detection, signaling and protection for commercial, industrial and institutional buildings requiring water-based releasing. The FACP is compatible with System Sensor’s i trouble signal to the FACP indicating the need for cleaning and a supervisory ‘freeze’ signal when the ambient temperature falls below the detector rating of approximately 45 System Sensor for i compatible with conventional input devices such as two-wire smoke detectors, four-wire smoke detectors, pull stations, waterflow devices, tamper switches and other normally-open contact devices. Refer to Device Compatibility Appendix for a complete listing of compatible devices.
Four outputs are programmable as NACs (Notification Appliance Circuits) or releasing solenoids. Three programmable Form-C relays (factory programmed for Alarm, Trouble and Supervisory) and 24 VDC special application resettable and nonresettable power outputs are also included on the main circuit board. The FACP supervises all wiring, AC voltage, battery charger and battery level.
Activation of a compatible smoke detector or any normally-open fire alarm initiating device will activate audible and visual signaling devices, illuminate an indicator, display alarm information on the panel’s LCD, sound the piezo sounder at the FACP, activate the FACP alarm relay and operate an optional module used to notify a remote station or initiate an auxiliary control function.
The PDRP-2001C (Canada) is a ULC approved Canadian version of the FACP which offers the same features as the PDRP-2001 but is supplied standard with a dress panel and one built-in ANN-LED annunciator.
3
detectors which are conventional smoke detectors that can transmit a maintenance
o
3
Installation and Maintenance Instructions). In addition, the control panel is
F (7o C) (refer to
The PDRP-2001E offers the same features as the PDRP-2001 but allows connection to 220/240 VA C .
Unless otherwise specified, the information in this manual applies to all versions of the panel.

1.1 Product Features

Six programmable Style B (Class B) IDCs (Initiating Device Circuit)
Four programmable Style Y (Class B) output circuits - (special application power)
Three programmable Form-C relays
7.0 amps total 24 VDC output circuit current
Resettable and non-resettable output power
Built-in Programmer
ANN-BUS for connection to optional:
ANN-80 Remote LCD Annunciator
ANN-I/O LED Driver
ANN-S/PG Printer Module
ANN-RLY Relay Module
ANN-LED Annunciator Module
80-character LCD display (backlit)
Real-time clock/calendar with daylight savings time control
History log with 256 event storage
Control Buttons
ACK (Acknowledge)
Alarm Silenced
System Reset/Lamp Test
Drill
12 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Specifications Product Description
Indicators
Fire Alarm
Supervisory
Trouble
AC Power
Alarm Silenced
Discharge
Piezo sounder for alarm, trouble and supervisory
24 volt operation
Low AC voltage sense
Outputs Programmable for:
Releasing Solenoids
NACs programmable for:
– Silence Inhibit
– Auto-Silence
– Strobe Synchronization (System Sensor, Wheelock, Gentex, Faraday, Amseco)
– Selective Silence (horn-strobe mute)
– Temporal or Steady Signal
– Silenceable or Nonsilenceable
– Release Stage Sounder
Designed for sprinkler standards NFPA 13, 15 and 16
Disable/Enable control per input zone and output zone
Extensive transient protection
Dual hazard operation
Adjustable waterflow discharge timer and two soak timers
Cross-zone (double-interlock) capability
Pre-programmed and custom application templates
Automatic battery charger with charger supervision
Silent or audible walktest capabilities
Optional Dress Panel DP-51050 (red)
A modified Dress Panel is provided standard with Canadian models: includes an ANN-LED Annunciator module
Optional Trim Ring TR-CE (red) for semi-flush mounting the cabinet
Optional CAC-5X Class A Converter Module for Outputs and IDCs
Optional 4XTMF Municipal Box Transmitter Module
Optional Digital Alarm Communicators (411, 411UD, 411UDAC)
Optional ANN-SEC card for secondary ANN-BUS

1.2 Specifications

AC Power
PDRP-2001/C: 120 VAC, 60 Hz, 3.66 amps PDRP-2001E: 240 VAC, 50 Hz, 2.085 amps Wire size: minimum #14 AWG (2.0 mm Supervised, nonpower-limited
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 13
2
) with 600V insulation
Product Description Specifications
Battery (sealed lead acid only) - J12
Maximum Charging Circuit - Normal Flat Charge: 27.6 VDC @ 1.4 amp Supervised, nonpower-limited Maximum Charger Capacity: 26 Amp Hour battery (two 18 Amp Hour batteries can be housed in the FACP cabinet.Larger batteries require a separate battery box such as the BB-26 or BB-55F and the CHG-75 or CHG-120F Battery Charger.) Minimum Battery Size: 7 Amp Hour
Canadian Applications Minimum Battery Size: 12 Amp Hour Maximum Battery Size: 18 Amp Hour
Initiating Device Circuits - TB4 and TB6
Alarm Zones 1 - 5 on TB 4 Alarm Zone 6 on TB6 Supervised and power-limited circuitry Operation: All zones Style B (Class B) Normal Operating Voltage: Nominal 20 VDC Alarm Current: 15 mA minimum Short Circuit Current: 40 mA max. Maximum Loop Resistance: 100 ohms (700 ohms for linear heat detection - See Section 2.3, “Input Circuits” for more information.) End-of-Line Resistor: 4.7K, 1/2 watt (Part #71252) Standby Current: 2 mA Refer to the Device Compatibility Appendix for listed compatible devices
Notification Appliance and Releasing Circuit(s) - TB5 and TB7
Four Output Circuits Operation: Style Y (Class B) Special Application power Supervised and power-limited circuitry Normal Operating Voltage: Nominal 24 VDC Maximum Signaling Current: 7.0 amps (3.0 amps maximum per NAC) End-of-Line Resistor: 4.7K, 1/2 watt (Part #71252) Refer to “Wire Requirements” on page 134 for wire specifications Refer to the Device Compatibility Appendix for compatible listed devices
Form-C Relays - Programmable - TB8
Relay 1 (factory default programmed as Alarm Relay) Relay 2 (factory default programmed as fail-safe Trouble Relay) Relay 3 (factory default programmed as Supervisory Relay) Relay Contact Ratings: 2 amps @ 30 VDC (resistive) and 0.5 amps @ 30 VAC (resistive)
Auxiliary Trouble Input - J6
The Auxiliary Trouble Input is an open collector, unsupervised circuit which can be used to monitor external devices for trouble conditions. It can be connected to the trouble bus of a peripheral, such as a power supply, which is compatible with open collector circuits. All connections must be in conduit, less than 20 ft. (610 cm) in length in the same room.
Special Application Resettable Power - TB9
Operating Voltage: Nominal 24 VDC Maximum Available Current: 500 mA - appropriate for powering 4-wire smoke detectors Power-limited Circuitry Refer to the Device Compatibility Appendix for compatible listed devices
14 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Specifications Product Description
TB9
TB5
TB7
TB3
TB1
Figure 1.1 Current Availability
powerdistmrp.wmf
Refer to the battery calculations section for additional information.
Standby
1.0 amp max
per panel
Special Application Nonresettable or Resettable Power
Special Application Resettable Power
NAC #1
NAC #2
NAC #3
NAC #4
0.5 amp max
per circuit
0.5 amp max
per circuit
3.0 amps max
per circuit
3.0 amps max
per circuit
3.0 amps max
per circuit
3.0 amps max
per circuit
Alarm
7.0 amps max
per panel
Primary
ANN-BUS
Standby
1.0 amp max
per panel
0.5 amp max
per circuit
0.5 amp max
per circuit
ANN-SEC
Option Card
Special Application Resettable or Nonresettable Power - TB9
Operating Voltage: Nominal 24 VDC Maximum Available Current: 500 mA Power-limited Circuitry Jumper selectable by JP31 for resettable or nonresettable power:
Jumper pins 1 & 2 on JP31 for nonresettable power
Jumper pins 2 & 3 on JP31 for resettable power
Refer to the Device Compatibility Appendix for compatible listed devices
Special Application Primary ANN-BUS Power - TB3
Operating voltage: Nominal 24 VDC Maximum Available Current: 500 mA Power-limited circuit
Special Application Secondary ANN-BUS Power - ANN-SEC - TB1
Operating voltage: Nominal 24 VDC Maximum Available Current: 500 mA Power-limited circuit
The following figure illustrates the maximum current that is possible for each major panel output circuit and the total current available from the FACP with the FLPS-7 power supply.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 15
Product Description Controls and Indicators
Figure 1.2 Membrane/Display Panel
MRP2001kypd.cdr

1.3 Controls and Indicators

LCD Display
The FACP uses an 80-character (4 lines X 20 characters) high viewing angle LCD display. The display includes a long life LED backlight that remains illuminated. If AC power is lost and the system is not in alarm, the LED backlight will turn off to conserve batteries.
Key Panel
Mounted on the main circuit board, the key panel includes a window for the LCD display and indicators as listed above. The key panel, which is visible with the cabinet door closed, has 25 keys, including a 16 key alpha-numeric pad similar to a telephone keypad.
Function keys:
Acknowledge/Step
Alarm Silenced
Drill
System Reset (lamp test)
Service/program keys:
Keys labeled 1 to 9
* key
# key
0 (recall) key
1st Event key
Clear key
Escape key
Mode key
Four cursor keys (up, down, left and right)
Enter key
Local Piezo Sounder
A piezo sounder provides separate and distinct pulse rates for alarm, trouble and supervisory conditions.
Indicators
Indicators are provided to annunciate the following conditions:
Fire Alarm - red indicator
Supervisory - yellow indicator
AC Power - green indicator
System Trouble - yellow indicator
Alarm Silenced - yellow indicator
Discharge - red indicator
Local Piezo Sounder
A piezo sounder provides separate and distinct sounds for alarm, trouble, maintenance and supervisory conditions as follows:
Alarm - on steady
Trouble - pulse 1 second on and 1 second off
Maintenance - pulse ½ second on and ½ second off
Supervisory - pulse ½ second on and ½ second off
16 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Components Product Description

1.4 Components

Main Circuit Board
The main circuit board contains the system’s CPU and other primary components and wiring interface connectors. Optional modules plug in and are mounted to the main circuit board.
Power Supply
One FLPS-7 power supply is provided standard with each FACP, mounted to a chassis.
Cabinet
The backbox measures 16.65” (42.29 cm) x 19.0” (48.26 cm) x 5.207” (13.23 cm) and provides space for two batteries (up to 18 Amp Hours). Also available are the optional dress panel (DP-51050 [red] and trim-ring TR-CE [red]. The Canadian version is supplied standard with a modified dress panel and one ANN-LED annunciator module.
Batteries
The cabinet provides space for two 18 Amp Hour batteries (larger batteries require use of a UL listed battery box such as the BB-55F or BB-26). Batteries must be ordered separately.

1.5 Optional Modules and Accessories

CAC-5X Class A Converter Module
The CAC-5X Module can be used to convert the Style B (Class B) Initiating Device Circuits to Style D (Class A) and Style Y (Class B) Output Circuits to Style Z (Class A). The modules connect to J2 and J7 on the FACP main circuit board. Note that two Class A Converter modules are required to convert all six Initiating Device Circuits and four Output Circuits.
4XTMF Transmitter Module
The 4XTMF provides a supervised output for local energy municipal box transmitter and alarm and trouble reverse polarity. It includes a disable switch and disable trouble LED. A module jumper option allows the reverse polarity circuit to open with a system trouble condition if no alarm condition exists. The 4XTMF mounts to the main circuit board connectors J4 & J5.
ANN-SEC Secondary ANN-BUS Module
The ANN-SEC module provides another ANN-BUS port for more wiring flexibility and for Canadian applications requiring remote annunciation.
ANN-80 LCD Annunciator
The ANN-80 (red) and ANN-80-W (white) are remote LCD annunciators that mimic the information displayed on the FACP LCD display.
ANN-80C LCD Indicator (Canadian applications)
The ANN-80C is a remote LCD indicator which mimics the information displayed on the FACP LCD display but does not allow remote control of the FACP.
ANN-LED Annunciator Module
The ANN-LED Annunciator Module provides three LEDs for each zone: Alarm, Trouble and Supervisory.
ANN-RLY Relay Module
The ANN-RLY Module, which can be mounted inside the cabinet, provides 10 Form-C relays.
Dress Panel
A dress panel DP-51050 (red) is available as an option. The dress panel restricts access to the system wiring while allowing access to the membrane switch panel. The Canadian version is supplied standard with a modified dress panel.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 17
Product Description Optional Modules and Accessories
TR-CE Trim-ring
A trim-ring TR-CE (red) is available as an option. The trim-ring allows semi-flush mounting of the cabinet.
Battery Box
The BB-55F or BB-26 battery box may be used to house two batteries greater than 18 Amp Hour. The battery box mounts directly below the control panel cabinet, centered to the main circuit board.
Battery Chargers
CHG-75 Battery Charger
The CHG-75 is capable of charging up to 75 AH lead-acid batteries with the FACP. The FACP battery charger must be disabled, through software programming, when using the CHG-75. The charger and up to 26 AH batteries can be housed in the BB-26 battery box. Larger batteries and the charger can be housed in the BB-55F battery box which can be mounted up to 20 feet away from the control panel. Refer to the CHG-75 Manual for additional information.
CHG-120F Battery Charger
The CHG-120F is capable of charging up to 120 AH lead-acid batteries with the FACP. The FACP battery charger must be disabled, through software programming, when using the CHG-120F. The batteries and charger can be housed in the BB-55F battery box which can be mounted up to 20 feet away from the control panel. Note that when using the BB-55F for housing the charger and batteries greater than 26AH, multiple BB-55Fs are required. Refer to the CHG-120F Manual for additional information.
18 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011

Section 2: Installation

!
The cabinet can be surface mounted or semi-flush mounted. The door is removable during the installation period by opening and lifting it off the hinges. The cabinet mounts using two key slots at the top of the backbox and two additional securing holes located at the bottom.
Carefully unpack the system and check for shipping damage. Mount the cabinet in a clean, dry, vibration-free area where extreme temperatures or levels of humidity are not encountered. The area should be readily accessible with sufficient room to easily install and maintain the panel. Locate the top of the cabinet approximately 5 feet (1.5 m) above the floor with the hinge mounting on the left. Determine the number of conductors required for the devices to be installed. Sufficient knockouts are provided for wiring convenience. Select the appropriate knockout(s) and pull the conductors into the box. All wiring should be in accordance with the National and/or Local codes for fire alarm systems.

2.1 Backbox Mounting

CAUTION: STATIC SENSITIVE COMPONENTS
THE CIRCUIT BOARD CONTAINS STATIC-SENSITIVE COMPONENTS. ALWAYS GROUND YOURSELF WITH A PROPER WRIST STRAP BEFORE HANDLING ANY BOARDS SO THAT STATIC CHARGES ARE REMOVED FROM THE BODY. USE STATIC SUPPRESSIVE PACKAGING TO PROTECT ELECTRONIC ASSEMBLIES.
To prevent damage to the circuit board and to facilitate backbox mounting, the chassis with main circuit board and power supply can be easily removed. Loosen the two 3/8” nuts securing the top flanges of the chassis, then slide the chassis up to free it from the lower tabs. Place the chassis assembly in a protective antistatic bag in a safe location until it can be reinstalled in the backbox.
Mark and predrill hole in the wall for the center top keyhole mounting bolt using the
dimensions illustrated in Figure 2.2 on page 21
Install center top fastener in the wall with the screw head protruding
Place backbox over the top screw, level and secure
Mark and drill the left and right upper and lower mounting holes
Note: outer holes (closest to sidewall) are used for 16” on-center stud mounting
Install remaining fasteners and tighten
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 19
Installation Backbox Mounting
T
B 6
SW1
mounting studs
mounting slots
mounting tabs
mounting holes
grounding stud: attach solid earth ground wire (refer to Figure 2.4 on page 23)
Board on Chassis
Backbox
Figure 2.1 Chassis Mounting in Backbox
rp2001brdinbox.wmf
mounting slots
20 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Backbox Mounting Installation
9050UDencl.cdr
Figure 2.2 Cabinet Dimensions
Hinge Slot for optional Dress Panel
Semi-Flush mounting hole
Mounting slots for optional Trim Ring
Hinge Slot for optional Dress Panel
Semi-Flush Mounting
Do not recess box more than 3.875” into wall to avoid covering venting holes on top of box.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 21
Installation Operating Power
!
Figure 2.3 Backbox
9050udcab.cdr

2.2 Operating Power

CAUTION: DISCONNECT ALL POWER BEFORE SERVICING
SEVERAL DIFFERENT SOURCES OF POWER CAN BE CONNECTED TO THIS PANEL. DISCONNECT ALL SOURCES OF POWER BEFORE SERVICING. THE PANEL AND ASSOCIATED EQUIPMENT MAY BE DAMAGED BY REMOVING AND/OR INSERTING CARDS, MODULES OR INTERCONNECTING CABLES WHILE THIS UNIT IS ENERGIZED.
Primary Power Source (AC) and Earth Ground Connections
AC power connections are made inside the control panel cabinet. The primary power source for the panel is 120 VAC, 60 Hz, 3.66 amps for the PDRP-2001 or 240 VAC, 50 HZ, 2.085 amps for the PDRP-2001E. Run a pair of wires (with ground conductor) from the protected premises main breaker box to the AC terminal block TB1 on the main power supply. As per the National Electrical Code, use 14 AWG (2.00 mm insulation. No other equipment may be connected to this circuit. In addition, this circuit must be
22 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
2
, 1.6 mm O.D.) or heavier gauge wire with 600V
Operating Power Installation
!
T
B
6
S
W
1
Figure 2.4 Operating Power Connections
120 VAC Power
Hot (L1)
Ground
Neutral (L2)
Ground Stud
J12
Batteries
rp2001cpowr.wmf
+-
provided with overcurrent protection and may not contain any power disconnect devices. A separate Earth Ground connection must be made to ensure proper panel operation and lightning and
2
transient protection. Connect the Earth Ground wire [minimum 14 AWG (2.00 mm
)] to the
grounding stud in the backbox and then run the wire to TB1. Do not use conduit for the Earth
Ground connection since this does not provide reliable protection.
Secondary Power Source (Batteries)
Observe polarity when connecting the battery. Connect the battery cable to J12 on the main circuit board using the plug-in connector and cable provided. The battery charger is current-limited and capable of charging sealed lead acid batteries. The charger shuts off when the system is in alarm.
WARNING: BATTERY CONTAINS SULFURIC ACID
BATTERY CONTAINS SULFURIC ACID WHICH CAN CAUSE SEVERE BURNS TO THE SKIN AND EYES AND CAN DESTROY FABRICS. IF CONTACT IS MADE WITH SULFURIC ACID, IMMEDIATELY FLUSH THE SKIN OR EYES WITH WATER FOR 15 MINUTES AND SEEK IMMEDIATE MEDICAL ATTENTION.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 23
Installation Input Circuits
Figure 2.5 IDC Connections
Class B Initiating Device Circuits (supervised and power-limited) 4.7 K, ½ watt resistor P/N:71252
manual pull stations
heat detectors
Dummy load all unused
circuits - 4.7 K, ½ watt
resistor (P/N: 71245)
mrp-2001idc.cdr
UL listed Power Supervision Relay
(refer to Device Compatibility Appendix for list of compatible relays)
Resettable 24 VDC 4-wire smoke detector power (500 mA maximum)
UL listed compatible 4-wire smoke detector
manual release
Input IDC Waterflow Circuit Normally Open Waterflow Devices or Pressure Switches

2.3 Input Circuits

The PDRP-2001 has six programmable IDCs (Initiating Device Circuits). Each circuit is compatible with System Sensor’s i detector becomes dirty and a separate supervisory ‘freeze’ signal when ambient temperature falls below the detector rating of approximately 45 is 100 ohms (700 ohms for linear heat detection). Do not use 2-wire smoke detectors on input zones used for linear heat detection. The field wiring for each zone is supervised for opens, shorts and ground faults. All conditions are visually and audibly annunciated.
Each circuit is configured for Style B (Class B) operation and will accept i normally-open contact devices as well as conventional 2-wire or 4-wire, 24 VDC smoke detectors. Refer to the Device Compatibility Appendix for a list of compatible devices.
Initiating Device Circuits can be converted to Style D (Class A) by installing the optional Class A Converter module. Refer to “CAC-5X Class A Converter Module” on page 29.
3
smoke detectors which generate a maintenance signal when the
o
F. The maximum loop resistance limit for each IDC
3
smoke detectors, any
24 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Input Circuits Installation
Class B Initiating Device Circuits (supervised and power-limited)
4.7 K, ½ watt resistor P/N:71252
In-Line-Resistor
1.2 K, ½ watt resistor P/N: 75579
Alarm Switch (waterflow)
Dummy load all unused circuits - 4.7 K, ½ watt
resistor (P/N: 71245)
Figure 2.6 Style B Combination Circuit on Zone 2
Supervisory Switch (tamper)
ms10udcomboIDC.cdr
Combination Waterflow/Supervisory Zone
A combination Waterflow/Supervisory circuit allows an FACP to distinguish between an Alarm switch (waterflow device) and a Supervisory switch (tamper) installed on the same circuit. Any circuit can be programmed as a Combo Type zone. The following figure illustrates the wiring of Zone 2 as a Style B (Class B) Waterflow/Supervisory circuit.
Requirements for the Combination Waterflow/Supervisory circuit are as follows:
This circuit is only intended for one Waterflow and one Supervisory device.
The Waterflow Alarm Switch must connect to the FACP Initiating Device Circuit before the
In-Line Resistor as shown in Figure 2.6.
The Supervisory Switch must connect to the FACP Initiating Device Circuit after the In-
Line Resistor as shown in Figure 2.6.
Program the FACP Initiating Device Circuit as a Combination circuit as described in “Input
Zones” on page 51. Note that since a Waterflow Supervisory Switch is included in a Combination circuit, the waterflow delay must be taken into consideration. Refer to “Waterflow Delay” on page 68.
Waterflow Alarm Switch activation causes the panel to latch into alarm until the alarm
condition is cleared and the FACP is reset
Supervisory Switch activation causes the panel to latch the supervisory condition if the
Combo type code is selected or track (the panel will clear when the supervisory condition is cleared) if the Combo Autoresettable Supervisory type code is selected.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 25
Installation Output Circuits
Figure 2.7 NAC/Output Connections
Class B Notification Appliance Circuits (supervised and power-limited)
4.7 K, ½ watt resistor P/N:71252
Dummy load any unused circuits (P/N: 71245)
Polarized Bell
Polarized Strobe
Polarized Horn
Polarized Horn
Polarized Bell
Notification Appliance Circuits
polarity shown in alarm condition
rp2001nac.cdr
Releasing Solenoid
Polarized Strobe
+ - + -
+ - + -
Note: Short Circuit Supervision must be enabled when using the REL-4.7K for Canadian Applications. Refer to the section titled “Release Circuit 1 or Release Circuit 2” on page 59 for information on enabling short circuit supervision.
Releasing Circuit for
Canadian Applications
REL-4.7K
Unused Output
Circuit 4.7K
dummy load resistor
PN 71245

2.4 Output Circuits

2.4.1 Outputs/Notification Appliance/Releasing Circuits

Each of the four Style Y (Class B) Notification Appliance Circuits can output a maximum of 3.0 amps of current. Total current drawn from these as well as other DC power outputs cannot exceed
7.0 amps (refer to battery calculations section). Each circuit is supervised, power-limited and provides special application power. Refer to the Device Compatibility Appendix for a listing of compatible notification appliances.
The NACs can be converted to Style Z (Class A) by installing two optional Class A Converter module. Refer to “CAC-5X Class A Converter Module” on page 29.
26 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Output Circuits Installation
Figure 2.8 Special Application Auxiliary Power
Special Application
4-Wire Smoke Detector Power (500 mA)
24 VDC filtered, resettable power for 4-wire smoke detectors
can be obtained from these terminals (power-limited)
Special Application
Resettable or Nonresettable Power (500 mA)
24 VDC filtered, resettable or nonresettable power
can be obtained from these terminals (power-limited)
• Jumper JP31 pins 1 & 2 for nonresettable power (as illustrated in figure to right)
• Jumper JP31 pins 2 & 3 for resettable power
ms-10UDtb9.cdr
-
+
-
+
4
3
2
1
Figure 2.9 Relay Terminals
Note: Relay contacts are shown with
power applied to the panel and no active troubles, alarms or supervisories. The Trouble Relay is a fail-safe relay which will transfer on any trouble or total power failure.
ms10udrelay.cdr

2.4.2 Special Application DC Power Output Connections

Special Application Resettable and Nonresettable 24 VDC power is available on the PDRP-2001 control panel.

2.4.3 Relays - Programmable

The PDRP-2001 control panel provides a factory default programmed alarm relay, fail-safe trouble relay and supervisory relay. Each relay can be programmed to activate for other conditions (refer to “On-Board Relays” on page 65). Each Form-C relay is rated for 2 amps @ 30VDC (resistive) and 0.5 amps @ 30 VAC (resistive).
Note that relay connections must be power-limited.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 27
Installation Power-limited Wiring Requirements
Figure 2.10 Typical UL Power-limited Wiring Requirements
Power-limited Circuits
(Class 2)
Power-limited Circuits (Class 2)
Nonpower­limited Circuit
AC Power
120 VAC
Hot (L1)
Ground
Neutral (L2)
CAC-5X
RP2001cULwire.wmf
4XTMF
CAC-5X
ground
stud
Power-limited Circuits (Class 2)
Power-limited
Circuit
(Class 2)
Deluge - Preaction Control FACP
Nonpower-limited Circuits*
*Note: In certain applications, an NAC (power-limited circuit) could be adjacent to a releasing circuit (nonpower-limited without supervision kit REL-4.7K)

2.5 Power-limited Wiring Requirements

Power-limited and nonpower-limited circuit wiring must remain separated in the cabinet. All power-limited circuit wiring must remain at least 0.25” (6.35 mm) away from any nonpower­limited circuit wiring. Furthermore, all power-limited and nonpower-limited circuit wiring must enter and exit the cabinet through different knockouts and/or conduits. A typical wiring diagram is illustrated below.
28 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Installation of Optional Modules Installation
!
Figure 2.11 CAC-5X Module Installation
Main Circuit Board
Metal Standoff
Plastic Standoff
CAC-5X Module
rp2001cac5mnt.cdr
CAC-5X Module
Metal Standoff
Metal Standoff
Installation on J2 Connector
Installation on J7 Connector

2.6 Installation of Optional Modules

CAUTION: REMOVE ALL SOURCES OF POWER
REMOVE ALL POWER (AC AND DC) BEFORE INSTALLING OR REMOVING MODULES OR WIRING.

2.6.1 CAC-5X Class A Converter Module

Installation
The CAC-5X Module can be used to convert five Style B (Class B) Initiating Device Circuits to Style D (Class A) and the two Style Y (Class B) Notification Appliance Circuits to Style Z (Class A). Two CAC-5X Modules are required to convert all Output Circuits and/or Initiating Device Circuits to Class A. The modules plug into connector J2 which is located at the top left of the main circuit board and J7 which is located at the top center of the main circuit board.
To install the CAC-5X, remove the two main circuit board mounting screws referenced in the following illustration and replace with the two supplied male/female standoffs in the locations indicated in the following figure. Carefully align the connector on the CAC-5X with J2 on the FACP main circuit board and press the module securely into place. Make certain the pins are properly aligned to prevent bending or breaking of any connector pins. Secure the CAC-5X to the standoffs with the screws that were just removed.
To install the second CAC-5X on J7, remove the main circuit board mounting screw referenced in the following illustration and replace with the supplied male/female standoff. Insert the supplied plastic standoff in the location indicated in the following illustration. Carefully align the connector on the CAC-5X with J7 and press the module securely into place. Make certain the pins are properly aligned to prevent bending or breaking of any connector pins. Secure the CAC-5X to the metal standoff with the screw that was just removed.
PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011 29
Installation Installation of Optional Modules
Figure 2.12 Wiring NACs and IDCs for Class A Operation
CAC-5X Class A Converter Module
FACP Main
Circuit Board
Class B (Style B) IDC - 4.7 K
½ watt ELR resistor
P/N:71252 (supervised and power-limited)
Dummy load all unused circuits - 4.7 K ½ watt ELR resistor (P/N: 71245)
Polarized
Bell
Circuit polarities shown in alarm condition
Class A (Style Z) NAC
(supervised and power-limited)
Class A (Style D) IDC (supervised and power-limited)
Polarized
Strobe
Polarized
Horn
Smoke
Smoke
Pull Station
Pull Station
Heat
Heat
ms10udclassa.cdr
B+ B-
B+ B-
A+ A-
A+ A-
A+ A- A+ A- A+ A- A+ A- A+ A-
B+ B- B+ B- B+ B- B+ B- B+ B-
Wiring NACs and IDCs for Class A
Wire the Style Z (Class A) Notification Appliance Circuits using TB5 of the FACP main circuit board and TB2 of the CAC-5X module. Wire the Style D (Class A) Initiating Device Circuits using TB4 of the FACP main circuit board and TB1 of the CAC-5X. Note that the wiring will be identical when using TB7 NAC and TB6 IDC of the FACP. Make certain to observe polarity when connecting the devices to the circuits. The B+ and A+ terminals must comprise the feed and return for the positive side of a device and the B- and A- terminals must comprise the feed and return for the negative side of a device. To configure any of the zones for Class B when the CAC-5X is installed, simply wire to the B+ and B- input on the FACP terminal(s) and install the End-of-Line Resistor after the last device on the circuit. Do not wire to the corresponding A+ and A- terminals on the CAC-5X module.
30 PDRP-2001 Series Manual — P/N 53043:E1 2/28/2011
Loading...
+ 118 hidden pages