System Sensor PDRP-1002 User Manual

PDRP-1002
3825 Ohio Avenue St. Charles, IL 60174 1-800-SENSOR2 Fax: (630) 377-6495
Series
Agent Release Control
System
Instruction Manual
Document 51135
I56-1358-01
04/06/2001 Rev:
PN 51135:B0 ECN 00-543
B
Fire Alarm System Limitations
While a fire alarm system may lower insurance rates, it is not a substitute for fire insurance!
An automatic fire alarm system–typically made up of smoke detectors, heat detectors, manual pull stations, audible warn­ing devices, and a fire alarm control with remote notification capability–can provide early warning of a developing fire. Such a system, however, does not assure protection against property damage or loss of life resulting from a fire.
The Manufacturer recommends that smoke and/or heat detec­tors be located throughout a protected premise following the recommendations of the current edition of the National Fire Protection Association Standard 72 (NFPA 72), manufacturer's recommendations, State and local codes, and the recommendations contained in the Guide for Proper Use of System Smoke Detectors, which is made available at no charge to all installing dealers. A study by the Federal Emer­gency Management Agency (an agency of the United States government) indicated that smoke detectors may not go off in as many as 35% of all fires. While fire alarm systems are de­signed to provide early warning against fire, they do not guar­antee warning or protection against fire. A fire alarm system may not provide timely or adequate warning, or simply may not function, for a variety of reasons:
Smoke detectors may not sense fire where smoke cannot reach the detectors such as in chimneys, in or behind walls, on roofs, or on the other side of closed doors. Smoke detectors also may not sense a fire on another level or floor of a build­ing. A second-floor detector, for example, may not sense a first-floor or basement fire.
Particles of combustion or "smoke" from a developing fire may not reach the sensing chambers of smoke detectors be­cause:
• Barriers such as closed or partially closed doors, walls, or chimneys may inhibit particle or smoke flow.
• Smoke particles may become "cold," stratify, and not reach the ceiling or upper walls where detectors are located.
• Smoke particles may be blown away from detectors by air outlets.
• Smoke detectors may be drawn into air returns before reaching the detector.
The amount of "smoke" present may be insufficient to alarm smoke detectors. Smoke detectors are designed to alarm at various levels of smoke density. If such density levels are not created by a developing fire at the location of detectors, the detectors will not go into alarm.
Smoke detectors, even when working properly, have sensing limitations. Detectors that have photoelectronic sensing chambers tend to detect smoldering fires better than flaming fires, which have little visible smoke. Detectors that have ion­izing-type sensing chambers tend to detect fast-flaming fires better than smoldering fires. Because fires develop in differ­ent ways and are often unpredictable in their growth, neither type of detector is necessarily best and a given type of detec­tor may not provide adequate warning of a fire.
Smoke detectors cannot be expected to provide adequate warning of fires caused by arson, children playing with matches (especially in bedrooms), smoking in bed, and violent explosions (caused by escaping gas, improper storage of flammable materials, etc.).
Heat detectors do not sense particles of combustion and alarm only when heat on their sensors increases at a prede­termined rate or reaches a predetermined level. Rate-of-rise heat detectors may be subject to reduced sensitivity over time. For this reason, the rate-of-rise feature of each detector should be tested at least once per year by a qualified fire pro­tection specialist.
Heat detectors are designed to protect
property, not life.
IMPORTANT!
Smoke detectors must be installed in the
same room as the control panel and in rooms used by the sys­tem for the connection of alarm transmission wiring, communi­cations, signaling, and/or power.
cated, a developing fire may damage the alarm system, crip­pling its ability to report a fire.
Audible warning devices such as bells may not alert people if these devices are located on the other side of closed or partly open doors or are located on another floor of a building. Any warning device may fail to alert people with a disability or those who have recently consumed drugs, alcohol or medica­tion. Please note that:
Strobes can, under certain circumstances, cause seizures in people with conditions such as epilepsy.
Studies have shown that certain people, even when they hear a fire alarm signal, do not respond or comprehend the meaning of the signal. It is the property owner's responsibil­ity to conduct fire drills and other training exercise to make people aware of fire alarm signals and instruct them on the proper reaction to alarm signals.
In rare instances, the sounding of a warning device can cause temporary or permanent hearing loss.
A fire alarm system will not operate without any electrical power. If AC power fails, the system will operate from standby batteries only for a specified time and only if the batteries have been properly maintained and replaced regularly.
Equipment used in the system may not be technically com­patible with the control. It is essential to use only equipment listed for service with your control panel.
Telephone lines needed to transmit alarm signals from a premise to a central monitoring station may be out of service or temporarily disabled. For added protection against tele­phone line failure, backup radio transmission systems are rec­ommended.
The most common cause of fire alarm malfunction is inade­quate maintenance. To keep the entire fire alarm system in excellent working order, ongoing maintenance is required per the manufacturer's recommendations, and UL and NFPA stan­dards. At a minimum, the requirements of Chapter 7 of NFPA 72 shall be followed. Environments with large amounts of dust, dirt or high air velocity require more frequent mainte­nance. A maintenance agreement should be arranged through the local manufacturer's representative. Maintenance should be scheduled monthly or as required by National and/ or local fire codes and should be performed by authorized pro­fessional fire alarm installers only. Adequate written records of all inspections should be kept.
If detectors are not so lo-
LimWarLg.p65 01/10/2000
Installation Precautions
Adherence to the following will aid in problem-free installation with long-term reliability:
WARNING -
nected to the fire alarm control panel.
of power before servicing. Control unit and associated equip­ment may be damaged by removing and/or inserting cards, modules, or interconnecting cables while the unit is energized. Do not attempt to install, service, or operate this unit until this manual is read and understood.
CAUTION -
Changes.
must be tested in accordance with NFPA 72 Chapter 7 after any programming operation or change in site-specific soft­ware. Reacceptance testing is required after any change, ad­dition or deletion of system components, or after any modifica­tion, repair or adjustment to system hardware or wiring.
All components, circuits, system operations, or software func­tions known to be affected by a change must be 100% tested. In addition, to ensure that other operations are not inadvert­ently affected, at least 10% of initiating devices that are not directly affected by the change, up to a maximum of 50 de­vices, must also be tested and proper system operation veri­fied.
This system meets NFPA requirements for operation at 0-49° C/32-120° F condensing) at 30° C/86° F. However, the useful life of the system's standby batteries and the electronic components may be adversely affected by extreme temperature ranges and humidity. Therefore, it is recommended that this system and all peripherals be installed in an environment with a nomi­nal room temperature of 15-27° C/60-80° F.
Verify that wire sizes are adequate for all initiating and indicating device loops. Most devices cannot tolerate more than a 10% I.R. drop from the specified device voltage.
Several different sources of power can be con-
Disconnect all sources
System Reacceptance Test after Software
To ensure proper system operation, this product
and at a relative humidity of 85% RH (non-
Like all solid state electronic devices, this system may operate erratically or can be damaged when subjected to light­ning-induced transients. Although no system is completely immune from lightning transients and interferences, proper grounding will reduce susceptibility.
Overhead or outside aerial wiring is not recommended, due to an increased sus­ceptibility to nearby lightning strikes.
cal Services Department if any problems are anticipated or encountered.
Disconnect AC power and batteries prior to removing or in­serting circuit boards. Failure to do so can damage circuits.
Remove all electronic assemblies prior to any drilling, filing, reaming, or punching of the enclosure. When possible, make all cable entries from the sides or rear. Before making modifi­cations, verify that they will not interfere with battery, trans­former, and printed circuit board location.
Do not tighten screw terminals more than 9 in-lbs. Over-tightening may damage threads, resulting in reduced terminal contact pressure and difficulty with screw terminal removal.
Though designed to last many years, system components can fail at any time. This system contains static-sensitive components. Always ground yourself with a proper wrist strap before handling any circuits so that static charges are re­moved from the body. Use static-suppressive packaging to protect electronic assemblies removed from the unit.
Follow the instructions in the installation, operating, and programming manuals. These instructions must be followed to avoid damage to the control panel and associated equipment. FACP operation and reliability depend upon proper installation by authorized personnel.
Consult with the Techni-
FCC Warning
WARNING: This equipment generates, uses, and can
radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. It has been tested and found to comply with the limits for class A computing device pursuant to Subpart B of Part 15 of FCC Rules, which is designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference, in which case the user will be required to correct the interference at his own expense.
Canadian Requirements
This digital apparatus does not exceed the Class A limits for radiation noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.
Le present appareil numerique n'emet pas de bruits radioelectriques depassant les limites applicables aux appareils numeriques de la classe A prescrites dans le Reglement sur le brouillage radioelectrique edicte par le ministere des Communications du Canada.
LimWarLg.p65 01/10/2000

NFPA Standards

This control panel complies with the following NFPA standards:
NFPA 2001 - Clean Agent Fire Extinguishing Systems
NFPA 17 - Dry Chemical Extinguishing Systems
NFPA 17A - Wet Chemical Extinguishing Systems
•NFPA 12 - CO2 Extinguishing Systems (High Pressure Only)
• NFPA 12A - Halon 1301 Extinguishing Systems
•NFPA 12B - Halon 1211 Extinguishing Systems
NFPA 72 - Central Station Signaling Systems (Automatic, Manual, and Waterflow) - Protected
Premises Unit Requires NOTI-FIRE 911AC DACT or 411UDAC Universal Digital Alarm Communicator
NFPA 72 - Local Fire Alarm Systems (Automatic, Manual, Waterflow and Sprinkler Supervisory)
NFPA 72 - Auxiliary Fire Alarm Systems (Automatic, Manual, and Waterflow)
Requires 4XTMF
NFPA 72 - Remote Station Fire Alarm Systems (Automatic, Manual, and Waterflow)
Requires 4XTMF or NOTI•FIRE 911AC DACT or 411UDAC
Note: Applications which require the NOTI-FIRE 911AC are not FM approved.
Before proceeding, the installer should be familiar with the following documents.

NFPA Standards

NFPA Standards
• The above listed documentation
• NFPA 72 - Automatic Fire Detectors
• NFPA 72 - Installation, Maintenance, and Use of Notification Appliances for Fire Alarm Systems
• NFPA 72 - Testing Procedures for Signaling Systems

Underwriters Laboratories Documents

• UL 38 - Manually Actuated Signaling Boxes
• UL 217 - Smoke Detectors, Single and Multiple Station
• UL 228 - Door Closers - Holders for Fire Alarm Systems
• UL 268 - Smoke Detectors for Fire Alarm Systems
• UL 268A - Smoke Detectors for Duct Applications
• UL 346 - Waterflow Indicators for Fire Protective Signaling Systems
• UL 464 - Audible Signaling Appliances
• UL 521 - Heat Detectors for Fire Protective Signaling Systems
• UL 864 - Standard for Control Units for Fire Alarm Systems
• UL 1481 - Power Supplies for Fire Protective Signaling Systems
• UL 1638 - Visual Signaling Appliances
• UL 1971 - Signaling Devices for the Hearing Impaired
• CAN/ULC-S524-M91 Standard for Installation of Fire Alarm Systems
• CAN/ULC-S527-M87 Standard for Control Units for Fire Alarm System

Other

• NEC Article 300 - Wiring Methods
• NEC Article 760 - Fire Protective Signaling Systems
• Applicable Local and State Building Codes
• Requirements of the Local Authority Having Jurisdiction
• ADA - Americans with Disabilities Act
4
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
NFPA Standards.......................................................................................................... 4
NFPA Standards .................................................................................................... 4
Underwriters Laboratories Documents ................................................................. 4
Other....................................................................................................................... 4
1. Product Description
Overview ...................................................................................................................... 7
Features .......................................................................................................................7
Options ........................................................................................................................7
Circuits ......................................................................................................................... 8
Input Circuits.......................................................................................................... 8
Output circuits........................................................................................................ 8
Front Panel Control Switches ................................................................................ 8
Suplemental Documentation ...................................................................................... 8
Control Panel............................................................................................................... 9
DIP Switch Functions................................................................................................ 10
Options ....................................................................................................................... 10
Transmitter Module - 4XTM .............................................................................. 10
Zone Relay Module - 4XZM .............................................................................. 10
Remote Annunciator - RZA-4X .......................................................................... 11
LED Interface Module - 4XLM .......................................................................... 11
Specifications ............................................................................................................. 12
AC Power............................................................................................................. 12
Battery (lead acid only)........................................................................................ 12
Initiating Device Circuits..................................................................................... 12
Notification Appliance and Releasing Circuits.................................................... 12
Alarm and Trouble Relays ................................................................................... 12
Resettable Power.................................................................................................. 12
Nonresettable Power ............................................................................................ 12
RMS Regulated Power......................................................................................... 12
2. Installation
Cabinet Mounting ..................................................................................................... 13
Removal of Circuit Board.................................................................................... 13
Mounting of Cabinet............................................................................................ 13
Attaching Conduit................................................................................................ 13
Reinstallation of Circuit Board ............................................................................ 14
Installing Optional Voltmeter/Ammeter................................................................. 15
Power Connections.................................................................................................... 16
AC Connections ................................................................................................... 16
Battery (DC) Connections.................................................................................... 16
Power-limited Wiring Requirements ...................................................................... 17
Initiating Device Circuits.......................................................................................... 18
Four-Wire Smoke Detector Connections............................................................. 19
Output Circuits.......................................................................................................... 20
Notification Appliance Circuits ........................................................................... 20
Releasing Circuits ................................................................................................ 21
Alarm Relay Circuit ............................................................................................. 22
Trouble Relay Circuit........................................................................................... 22
Powering External Devices....................................................................................... 22
Optional Modules ...................................................................................................... 23
Overview.............................................................................................................. 23
Installation - Upper Position ................................................................................ 23
Installation - Lower Position................................................................................ 24
Setup and Configuration ...................................................................................... 25
Transmitter Module - 4XTM ........................................................................ 25
Table of Contents
Table of Contents
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
5
Table of Contents
Zone Relay Module - 4XZM ........................................................................ 26
LED Interface Module - 4XLM.................................................................... 27
Setting Mode of Operation ....................................................................................... 28
DIP Switch Functions........................................................................................... 28
Switch #1 - Cross Zone................................................................................. 28
Switch #2 - Supervisory/Releasing Service.................................................. 29
Switch #3 and #4 - Timer Delay................................................................... 29
Switch # 5 and #6 - Abort Function.............................................................. 29
Zone Relay Module Configuration ...................................................................... 30
Power-Up Procedure................................................................................................. 31
3. System Operation
System Status LEDs .................................................................................................. 33
Control Switches........................................................................................................ 34
Zone Status LEDs...................................................................................................... 34
Piezo............................................................................................................................ 35
Supervisory Service ................................................................................................... 35
Zone Disable............................................................................................................... 35
Last Event Recall....................................................................................................... 36
Non-Silenceable Service ............................................................................................ 36
Sprinkler Supervisory Tracking .............................................................................. 36
System Events ............................................................................................................ 36
Standby Condition................................................................................................ 36
System Trouble Condition ................................................................................... 36
Single Zone in Alarm (Cross Zone) Condition .................................................... 37
Both Zones in Alarm (Cross Zone) Condition..................................................... 37
Manual Discharge Station Alarm Condition........................................................ 37
Brownout Condition............................................................................................. 37
Appendix A: Secondary Power Calculations
Standby Battery Requirements................................................................................ 39
Calculating the Battery Capacity............................................................................. 40
Appendix B: Compatible Devices
Two-wire Smoke Detectors, UL Listed.................................................................... 41
Four-wire Smoke Detectors, UL Listed................................................................... 42
FM Approved Releasing Devices ............................................................................. 42
Notification Appliances, UL Listed.......................................................................... 43
Door Holders, UL Listed........................................................................................... 45
24 VDC Relays, UL Listed........................................................................................ 45
Appendix C: NFPA Standard-Specific Requirements
Minimum System Requirements.......................................................................... 47
Additional Requirements...................................................................................... 47
NFPA 72 - Signaling Systems for Central Station Service
(Protected Premises Unit)......................................................................... 47
NFPA 72 - Auxiliary Fire Alarm System ..................................................... 47
NFPA 72 - Remote Station Fire Alarm System............................................ 47
Digital Alarm Communicator/Transmitter - Noti-Fire 911AC............................. 48
Universal Digital Alarm Communicator - 411UDAC............................................ 49
Local Energy Municipal Box.................................................................................... 50
Remote Station Receiver - RS82-9 ........................................................................... 51
Appendix D: Testing & Maintenance
Testing ........................................................................................................................ 53
Inspection ............................................................................................................. 53
Alarm Test............................................................................................................ 53
Maintenance............................................................................................................... 53
Troubleshooting......................................................................................................... 53
6
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01

Overview

Features

1. Product Description

The PDRP-1002 Agent Release Control System has been designed as a control center for use in automatic fire supression systems. The panel is a feature-packed control unit suitable to perform detection and control functions associated with the release of gaseous agent/special hazard fire protection systems. The PDRP­1002 is designed for maximum reliability with 100% solid state circuitry and isolated relay contacts for outside interfacing and features programmable options to allow on-site customizatio n of the unit for various operating configurations.
An integral standby battery system, with charger, is provided. In case of commercial AC power interruption, automatic switchover to the battery system will provide power to the panel for a minimum of 24 hours.
The FACP is supplied complete with backbox, hinged door, control switches, and indicator LEDs.
The entire unit is housed in a standard sheet-metal enclosure with 1/2 in. (12.7 mm) and 3/4 in. (19.05 mm) conduit knockouts available.
The PDRP-1002 is a 110/120 VAC agent release control panel. The PDRP-1002E is a 220/240 VAC agent release control panel.
• Microprocessor-controlled
• Power-limited on all circuits except Municipal Box Output and Releasing Circuits
• Alarm and trouble resound
• Four Style B/D Initiating Device Circuits
• Two Style Y/Z Notification Appliance Circuits
• Two Style Y only Release Circuits
• General alarm and trouble relays
• Delay Timer (adjustable)
• Three abort function options
• Abort and manual release circuits
• Designed for supression standards
• Disable/enable controls per Initiating Device Circuit
• Last Event Recall
• Battery /Earth fault supervision
• Current protection on all notification circuits
• RMS regulated output power, 2.25 amps
• 7 amp-hour (AH) to 18 AH battery options, up to 90 hours standby
• Resettable and nonresettable regulated power outputs
• Extensive transient protection
• Watchdog timer to supervise microprocessor
• Output circuits protected against false activations
• Slide-in zone identification labels
• Steel cabinet 14.5” (36.83cm) wide by 16.00” (40.64cm) high by 4.75” (12.07cm) deep

Options

• 4XZM Module for 4 zone/function relays
• 4XTM Transmitter Module - Complies with NFPA 72 Auxiliary and Remote Station Protective Signaling systems
• 4XMM Volt/Amp Meter Module
• RZA-4X Supervised remote annunciator (requires 4XLM Interface Module)
• 411UDAC or NOTI•FIRE 911AC Digital Communicator - Complies with NFPA 72 Central Station and Remote Station Protective Signaling systems
Note: Applications which require the 411UDAC or the NOTI-FIRE 911AC are not FM approved.
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
• Cross-zone option
• Supervisory Input option
• Dead-front dress panel option (DP-4X) (Required for Canadian applications)
• Trim ring for flush mount between 16 in. (40.64 cm) center studs (TR-4XR)
7
1. Product Description Circuits

Circuits

Input Circuits

Detector Zone 1 (Style B/D)
Detector Zone 2 (Style B/D)
Abort (Style B/D)
Manual Release (Style B/D)
Note: Optional auxiliary relay module 4XZM tracks these four circuits.

Output circuits

Notification Appliance Circuit 1 (Style Y/Z)
Notification Appliance Circuit 2 (Style Y/Z)
Releasing Circuit 1 (Style Y)
Releasing Circuit 2 (Style Y) / Supervisory Input (StyleB)

Front Panel Control Switches

Switch 1 - Tone Silence
Switch 2 - Alarm Silence
Switch 3 - Alarm Activate
Switch 4 - System Reset

Suplemental Documentation

The table below lists document sources containing additional information regarding the MS-4424:
For information on... Refer to... Part Number
Digital Alarm Communicator/Transmitters
Remote Station Receiver Fire•Lite RS82-9 Instruction Manual 15400
Voltmeter/Ammeter 4X Series Power Meter PID 15396
NOTI-FIRE 911A & 911AC Instruction Manual
411UDAC Instruction Manual
74-06200-005
51073
8
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
Control Panel 1. Product Description

Control Panel

Notification Appliance Circuits
Style Z (Class A) / Style Y (Class B)
24VDC
Regulated Nonresettable
Regulated Resettable
RMS-Regulated
B+ A+ A– B–
TB1
J1
OUT#1
OUT#2
B+ A+ A– B–
AC POW ER
SYSTEM
RELEASE
Releasing Circuits
Style Y (Class B)
OUT#4
OUT#3
B+ B–
B+ B–
TB2
ALARM
TB3
GEN ALM1
GEN ALM2
Relays
Alarm Contacts Trouble Contacts
JP1
SUPV 1
SUPV 2
ZONE 1
#1 - Initiating Device Circuit #2 - Initiating Device Circuit #3 - Abort Switch #4 - Manual Release
Style D (Class A) / Style B (Class B)
IN # 1
B+ A+ A– B–
IN # 2
B+ A+ A– B–
IN # 3
B+ A+ A– B–
J4
J5
IN # 4
B+ A+ A– B–
TB4
TB5
J2
AMP
J9
J3
Battery Fail LED
Ground Fault LED
SUPERVISORY
SYSTEM
TROUBLE
CIRCUIT
TROUBLE
ALARM
SILENCED
POWER
TROUBLE
TONE
SILENCE
SW1 - DIP Switch
Micro Fail LED
ABORT
MANUAL
RELEASE
ALARM
SILENCE
ALARM
ACTIVATE
SYSTEM
RESET
Figure 1 Control Panel
SW1
OPT1
J10
OPT2
J7
J8
MRP4424-board.cdr
J4 - J5 - J7 - J8
Optional Module
Connectors
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
9
1. Product Description DIP Switch Functions

DIP Switch Functions

The table below describes the DIP switch functions. For a more detailed explaination see "Setting Mode of Operation" on page 28.
#1 Cross Zone Determines how NACs and Releasing Circuits respond to an alarm.
#2 Supervisory Selects Releasing Circuit #2 to function as a Supervisory Circuit.
#3 & #4 Timer Selects Timer Delay setting.
#5 & #6 Abort Selects a variety of abort functions.
Note: See “Setting Mode of Operation” on page 28 for a more detailed explanation of DIP switch functions.

Options

Three optional modules are available for use on the control panel. The control panel provides mounting slots for two of these optional module boards.

Transmitter Module - 4XTM

The Transmitter Module provides a supervised output for a Local Energy Municipal Box transmitter and alarm and trouble reverse polarity circuits for Remote Station Service. Also included is a DISABLE switch and disable trouble LED.
Note: As a jumper option, the alarm reverse polarity circuit will open on trouble if no alarm exists.
Specifications for Local Energy Municipal Box service (NFPA 72 Auxiliary Fire Alarm System)
Supervisory current: 5.0 mA. Trip current: 0.35 amps (subtracted from Notification Appliance power). Coil Voltage: 3.65 VDC. Coil resistance: 14.6 ohms. Maximum allowable wire resistance between panel and trip coil: 3 ohms. Municipal Box wiring can leave the building.
TBL
J1
J2
TB1
4XTMF.cdr
10
Specifications for Remote Station Service (NFPA 72 Remote Station Fire Alarm System)
Maximum load for each circuit: 10 mA. Reverse polarity output voltage: 24 VDC. Remote Alarm and Remote Trouble wiring can leave the building.

Zone Relay Module - 4XZM

The Zone Relay module provides Form-C contacts for the following:
• Relay #1 - Alarm Detected / First Alarm
• Relay #2 - Alarm Detected / Second Alarm
• Relay #3 - Release 1 / Release 1
• Relay #4 - Release 2 / Not Used
• Relay #5 - General Alarm
• Relay #6 - System Trouble
Note: As a jumper option, the first four relays can be made silenceable.
Specifications
Dry Form-C contacts rated: 2.0 amps @ 30 VDC (resistive), 0.5 amps @ 30 VAC (resistive).
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
J2
LATCH
TB1
DISABLE
4XZMF.cdr
Options 1. Product Description

Remote Annunciator - RZA-4X

The Remote Annunciator mounts on a standard single-gang box, and provides LED indication of the same functions as the zone relay module. For example, with DIP switch #1 ‘ON’ and DIP switch #2 ‘OFF’:
• One zone in alarm (red)
• Two zones in alarm (red)
• Releasing Circuit 1 (red)
• Releasing Circuit 2 (red)
• System Trouble (yellow)
A local trouble sounder and silence switch are also provided. All LED wiring is supervised for open conditions. Any open condition will cause the System Trouble LED to illuminate. Slide-in paper labels permit an easy change of zone information.
Note: The Remote Annunciator requires the use of an LED Interface Module as described below.
SYSTEM TROUBLE
RE-SOUND
TONE
SILENCE
FIRE ALARM ANNUNCIATOR
RXA-4XF.cdr

LED Interface Module - 4XLM

The LED Interface Module supports the RZA-4X Remote Annunciator Module. Annunciator wiring is supervised for open conditions by this module. The module mounts to the main board on the J8 option connector.
Specifications
Maximum voltage/current, each output: 27.6 V / 8 mA. Outputs are power-limited.
Meter Module (Volts-Amps) - 4XMM
The Meter Module provides a voltmeter to measure the voltage across the batteries and an ammeter to measure the charging current to the batteries. The meters are provided as an assembly that mounts to the lower left-hand corner of the cabinet.
J2
0
3
10 20
DC VOLTS
0
TB1
4XLMF.cdr
30
3
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
DC AMPERES
4XMMF.cdr
11
1. Product Description Specifications

Specifications

AC Power

PDRP-1002: 110/120 VAC, 50/60 Hz, 1.2 amps PDRP-1002E: 220/240 VAC, 50/60 Hz, 0.6 amps Wire size: minimum #14 AWG with 600V insulation

Battery (lead acid only)

Maximum Charging Circuit: 27.6V, 1.5 amps Maximum Battery Capacity: 18 AH.
Note: Batteries larger than 12 AH require Fire•Lite BB-17 or other UL-listed external battery cabinet.

Initiating Device Circuits

Power-limited circuitry
Operation: Style B (Class B) or Style D (Class A) Normal Operating Voltage: 24 VDC (ripple = 1.0V p-p) Alarm current: 15 mA minimum Short circuit current: 40 mA maximum Maximum detector current in standby: 2 mA (max) per zone Maximum loop resistance: 100 ohms End-of-Line Resistor: 4.7K, 1/2-Watt (part # 71252 UL listed)
Detector loop current is sufficient to ensure operation of one alarmed detector per zone.
Supervisory current: 5 mA (including End-of-Line Resistor)

Notification Appliance and Releasing Circuits

Power-limited circuitry
Maximum allowable voltage drop due to wiring: 2 VDC Normal Operating Voltage: 24 VDC Total current available to all external devices: 2.25 amps Maximum signaling current per circuit: 1.5 amps End-of-Line Resistor: 4.7K, 1/2-Watt (part # 71252 UL listed)

Alarm and Trouble Relays

Dry Form-C contacts rated: 2.0 amps @ 30 VDC (resistive), 0.5 amps @ 30 VAC (resistive).
Note: Any power connected to these relay contacts must come from a power-limited supply. Fail-safe operation ensures trouble relay functioning under loss of both primary power (AC) and secondary (battery power).

Resettable Power

Up to 200 mA is available for powering four-wire smoke detectors. Maximum ripple voltage: 1.0 V p-p.

Nonresettable Power

Total DC current available from this output is up to 200 mA (subtracted from four-wire smoke detector power). Maximum ripple voltage: 1.0 V p-p.

RMS Regulated Power

12
Total DC current available for powering external devices is 0.5 amp (subtracted from 2.25 amps available to Notification Appliance Circuits). Maximum ripple voltage: 100 mV p-p.
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01

Cabinet Mounting

Carefully unpack the system and check for shipping damage.
Select a suitable location in a clean, dry, vibration-free environment that is not subject to extreme temperatures. Locate the top of the cabinet approximately five feet above the floor with the hinge on the left. The panel must be easily accessible for maintenance; the hinged door requires a minimum clearance of 14 in. (35.56cm) to open.

Removal of Circuit Board

To prevent damage to the printed circuit board it should be removed prior to mounting of cabinet.
Step Action
1
Disconnect the transformer wires from the circuit board at the J1 connector.
2
Remove the four (4) phillips head screws securing circuit board to backbox rails.
3
Carefully set board aside in a secure place.

2. Installation

Mounting of Cabinet

Securely mount the cabinet using the mounting holes provided.
Step Action
1 Mark and predrill holes for the top two keyhole mounting screws using the
dimensions shown in Figure 2 on page 14.
2 Install two upper screws in the wall with the heads protruding.
3 Using the upper keyholes, mount the backbox over the two screws.
4 Mark and drill the lower two holes.
5 Secure backbox by installing the remaining fasteners and tightening all
screws.
6
If required, attach optional Trim Ring (TR-4XRF) using the provided instructions.

Attaching Conduit

Select and remove knockouts according to the number of conduits required.
Attach conduits to backbox as required.
Determine the number of conductors required for the devices to be employed. Pull required conductors into the box through the knockouts provided.
Note: All wiring should be in accordance with the National and/or Local codes for fire alarm systems, including "Power-limited Wiring Requirements" on page 17.
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
13
2. Installation Cabinet Mounting
(
)
(
)
(
)
The figure below shows the exterior dimensions and mounting hole locations for the cabinet backbox and dimensions of the optional trim ring:
16.125”
(40.96cm )
1.00” (2.54cm )
1.00” (2.54cm )
9.50”
(24.13cm )
14.50”
(36.83cm )
14.625”
(37.15cm )
12.50”
(31.75cm )
5.375”
(13.65cm )
4.75”
(12.07cm )
16.00” (40.64cm )
MS44-cabdim.cdr
Figure 2 Cabinet Mounting Dimensions

Reinstallation of Circuit Board

Reinstall the printed circuit board as follows:
Step Action
1 Position circuit board over stand-offs on backbox rail and secure with four
(4) phillips screws. Tighten securely.
14.625”
37.15cm
16.125”
40.96cm
1.5”
3.81cm
MS44-trimring.cdr
2 Connect transformer wires to J1 connector on circuit board.
14
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
Installing Optional Voltmeter/Ammeter 2. Installation

Installing Optional Voltmeter/Ammeter

To monitor battery voltage and battery charging current, a 4XMM Meter Module is required. To install the power meter module follow the steps below:
Step Action
1
Cut the jumper wire labeled “AMP”.
2 Secure the module to the backbox with the hardware provided. Refer to
Product Installation Drawing (PID) for detailed instructions.
3
Connect meter cable P2 to connector J2 on the main circuit board.
4
Connect meter cable P3 to connector J3 on the main circuit board.
The figure below shows the mounting location and connections for the Voltmeter/Ammeter.
TB5
‘AMP’ Jumper
J2
AMP
J9
J3
10 20
DC VOLTS
0
30
3
0
3
DC AMPERES
Figure 3 Mounting and Connecting the Meters
MS44-mminst.cdr
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
15
2. Installation Power Connections

Power Connections

WARNING: Do not apply any type power to this control panel until all connections have been
!
made and verified.

AC Connections

Disconnect (open) the circuit breaker in the AC main breaker panel and tag it “Out of Service”.
Note: Refer to "Power-Up Procedure" on page 31 before closing AC breaker.
Primary power required for the PDRP-1002 control panel is 110/120 VAC, 50/60 Hz, 1.2 amps and for the PDRP-1002E is 220/240 VAC, 50/60 Hz, 0.6 amps.
Overcurrent protection for this circuit must comply with Article 760 of the National Electrical Code (NEC) and/or local codes. Use #14 AWG (2.00 mm
2
) or larger wire with 600V insulation rating.
A separately fused and protected power connection to the panel should be supplied to prevent voltage fluctuation and interruption of power.
Ground
Neutral
Hot
TB5
J2
AMP
J9
J3
MS44-ACconn.cdr
16
Figure 4 AC Power Connections

Battery (DC) Connections

WARNING: Battery contains sulfuric acid which can cause severe burns to the skin and eyes and
!
can destroy fabrics. If contact is made with sulfuric acid, immediately flush the skin or eyes with water for 15 minutes and seek immediate medical attention.
CAUTION: Do NOT connect the battery interconnect wire at this time. Make this connection AFTER
!
initial system primary power connection.
Place batteries into bottom of cabinet as shown below. See "Appendix A: Secondary Power Calculations" on page 39 for calculation of correct battery rating.
Note: Batteries are shipped separately and should be mounted only after the cabinet has been installed, the conduit connected, and all wiring pulled, tested, and made ready to be terminated.
Continued on the next page...
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
Power-limited Wiring Requirements 2. Installation
Observe polarity when connecting the batteries. Connect the battery cable (p/n 75203 or 75202, depending on terminal size of battery) to terminal J9 on the main circuit board using the plug-in connector provided. Connect red wire to positive (+) terminal and black wire to negative (–) terminal on opposing batteries. Do NOT connect battery interconnect wire at this time.
TB5
J2
AMP
J9
J3
Figure 5 Battery Installation and Connection

Power-limited Wiring Requirements

Power-limited and nonpower-limited circuit wiring must remain separated in the cabinet. All power­limited circuit wiring must remain at least 0.25 in (6.35 mm) away from any nonpower-limited circuit wiring. Furthermore, all power-limited circuit wiring and nonpower-limited circuit wiring must pass through separate knockouts and/or conduits.
Power-limited
Circuits
Nonpower-limited Circuits
B+ A+ A– B–
TB1
J1
TB5
J2
AMP
J9
J3
MS44-BATconn.cdr
Power-limited Circuits
OUT#4
ALARM
IN # 1
IN # 2
IN # 3
OUT#1
OUT#3
OUT#2
B+ B–
B+ B–
AC POWER
SYSTEM ALARM
ALARM TEST
SUPERVISORY
SYSTEM
TROUBLE
CIRCUIT TROUBLE
ALARM
SILENCED
POWER
TROUBLE
TONE
SILENCE
ALARM
SILENCE
NO NC C
B+ A+ A– B–
TB3
TB2
JP1
GEN
SUPV 1
ALM1
SUPR 2 GEN ALM2
ZONE 1
ZONE 2
ZONE 3
ZONE 4
ALARM
SYSTEM
ACTIVATE
RESET
SW1
B+ A+ A– B–
B+ A+ A– B–
J4
TBL
J5
J7
J8
B+ A+ A– B–
J1
J2
J10
J2
IN # 4
B+ A+ A– B–
TB4
TB1
POWER LIMITED
7 6 5 1
OPT1
TB1
Power-limited Circuits
OPT2
Nonpower-limited Circuits
DISABLE
LATCH
AC Power
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
MRP44-plwiring.cdr
Figure 6 Power-limited Wiring Requirements
17
2. Installation Initiating Device Circuits

Initiating Device Circuits

The control panel provides two Initiating Device Circuits (#1 and #2) and they may be configured as either Style D (Class A) or Style B (Class B). Circuit #3 is designated as an Abort Switch Circuit and Circuit #4 is a Manual Release Circuit.
Initiating devices include: Heat, Photoelectric and Ionization type detectors, Manual Pull Stations and Waterflow alarm devices.
Note: Refer to "Appendix B: Compatible Devices" on page 41 for compatible devices.
• Wire all alarm initiating devices sequentially for proper supervision.
• Observe polarity when connecting polarized devices.
• All circuits are supervised and power-limited.
• Leave dummy load resistor (provided) on all unused circuits.
Style D (Class A)
Initiating Device
Circuit
Heat Detector
Two-wire Smoke Detector
Manual Pull Station
Style B (Class B)
Initiating Device
Circuit
Style B (Class B)
Note: Silk screen printing on circuit board moved to bottom for clarity
4.7K, 1/2-Watt resistor PN 71252 (UL listed)
Abort Switch
Circuit
Style B (Class B)
Manual Release
Circuit
MRP44-idc.cdr
18
Figure 7 Initiating Device Circuits
PDRP-1002 Instruction Manual PN 51135:B0 04/06/01
Loading...
+ 42 hidden pages