The TS187x (single, dual & quad) is an
operational amplifier family able to operate with
voltage as low as 1.8V and features both I/O railto-rail.
The common mode input voltage extends 200mV
at 25°C beyond the supply voltages while the
output voltage swing is within 100mV of each rail
with 600 Ohm load resistor. This device consumes
typically 400µA per channel while offering 1.6Mhz
of gain-bandwidth product. The amplifier provides
high output drive capability typically at 65mA-load.
These performances make the TS187X family
ideal for sensor interface, battery-supplied and
portable applications.
Table 1: Key parametes and their absolute maximum ratings
SymbolParameterValueUnit
V
T
R
Supply voltage
CC
V
Differential Input Voltage
id
V
Input Voltage
i
Storage Temperature
stg
T
Maximum Junction Temperature
j
Thermal Resistance Junction to Ambient
thja
SOT23-5
SO8
SO14
TSSOP8
TSSOP14
miniSO8
HBM: Human Body Model
ESD
MM: Machine Model
CDM: Charged Device Model1.5kV
Latch-up Immunity200mA
Lead Temperature (soldering, 10sec)250°C
Output Short Circuit Duration
1) All voltages values, except differential voltage are with respect to network terminal.
2) Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input serie resistor must be added to limit input current.
3) Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers
4) Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5) Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor
(internal resistor < 5
6) Short-circuits from the output to V
the magnitude of V
1
2
V
DD
3
4
5
Ω), into pin to pin of device.
can cause excessive heating. The maximum output current is approximately 80mA, independent of
. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
cc
cc
7V
±1V
-0.3 to VCC +0.3
V
-65 to +150°C
150°C
250
°C/W
125
103
120
100
190
2kV
200V
see note
6
Table 2: Operating conditions
SymbolParameterValueUnit
VCCSupply Voltage1.8 to 6V
Vicm
Vicm
T
1) At 25°C, for 1.8 ≤ VCC ≤ 6V, V
2) In full temperature range, both Rails can be reached when VCC does not exceed 5.5V.
Common Mode Input Voltage Range
Common Mode Input Voltage Range
Operating Free Air Temperature Range
oper
is extended to VDD - 0.2V, VCC + 0.2V.
icm
1
2
2/22
VDD - 0.2 to VCC + 0.2
VDD to V
CC
-40 to + 125°C
V
V
Electrical CharacteristicsTS1871-TS1872-TS1874
2 Electrical Characteristics
Tab le 3: VCC = +1.8V, VDD = 0V, RL, CL connected to VCC/2, T
SymbolParameterMin.Typ.Max.Unit
Input Offset Voltage
V
= V
= V
= V
= V
CC
CC
CC
/2
TS1871/2/4
TS1871A/2A/4A
1
/2
1)
/2
= V
CC
/2
= 0.5V to 1.3V
V
out
R
= 2kΩ
L
out
RL = 600Ω
icm
icm
icm
≤ V
= V
= V
icm
out
out
out
≤ VCC, V
V
io
∆V
I
io
I
ib
CMR
Input Offset Voltage Drift
io
Input Offset Current
V
Input Bias Current
V
Common Mode Rejection Ratio
0
SVRSupply Voltage Rejection Ratio7080dB
Large Signal Voltage Gain
A
vd
= 25°C (unless otherwise specified)
amb
0.13
1
2
330nA
40125nA
5577
77
70
92
85
mV
µV/°C
dB
dB
High Level Output Voltage
V
= 100mV
V
OH
id
R
= 2kΩ
L
RL = 600Ω
1.65
1.62
1.77
1.74
Low Level Output Voltage
= -100mV
V
V
OL
id
R
= 2kΩ
L
RL = 600Ω
88
115
100
150
mV
Output Source Current
V
I
o
I
CC
GBP
SR
φm
= 100mV, VO = V
ID
DD
Output Sink Current
V
= -100mV, VO = V
ID
CC
Supply Current (per amplifier), Vout = Vcc/2
A
= 1, no load
VCL
Gain Bandwidth Product
R
= 10kΩ, CL = 100pF, f = 100kHz
L
Slew Rate
R
= 10kΩ, CL = 100pF, AV = 1
L
Phase Margin
C
= 100pF
L
20
20
65
65
mA
400560
0.91.6MHz
0.380.54V/
53Degrees
enInput Voltage Noise27nV/
THDTotal Harmonic Distortion0.01%
V
µA
µs
√Hz
1) Maximum values including unavoidable inaccuracies of the industrial test.
3/22
TS1871-TS1872-TS1874Electrical Characteristics
Table 4: VCC = +3V, VDD = 0V, RL, CL connected to VCC/2, T
= 25°C (unless otherwise specified)
amb
SymbolParameterMin.Typ.Max.Unit
Input Offset Voltage
V
= V
= V
= V
= V
CC
CC
CC
/2
TS1871/2/4
TS1871A/2A/4A
1
/2
1)
/2
= V
CC
/2
out
6080
0.13
1
2
µV/°C
330nA
4125nA
V
io
∆V
I
io
I
ib
CMR
icm
out
Input Offset Voltage Drift
io
Input Offset Current
V
= V
icm
out
Input Bias Current
V
= V
icm
out
Common Mode Rejection Ratio
0
≤ V
≤ VCC, V
icm
SVRSupply Voltage Rejection Ratio7085dB
Large Signal Voltage Gain
V
= 0.5V to 2.5V
A
out
vd
R
= 2kΩ
L
RL = 600Ω
80
74
92
95
High Level Output Voltage
V
= 100mV
V
OH
id
R
= 2kΩ
L
RL = 600Ω
2.82
2.80
2.95
2.95
mV
dB
dB
V
Low Level Output Voltage
V
= -100mV
V
OL
id
R
= 2kΩ
L
RL = 600Ω
88
115
L120
160
Output Source Current
V
I
o
I
CC
GBP
SR
φm
= 100mV, VO = V
ID
DD
Output Sink Current
V
= -100mV, VO = V
ID
CC
Supply Current (per amplifier), Vout = Vcc/2
= 1, no load
A
VCL
Gain Bandwidth Product
R
= 10kΩ, CL = 100pF, f = 100kHz
L
Slew Rate
R
= 10kΩ, CL = 100pF, AV = 1
L
Phase Margin
C
= 100pF
L
20
20
80
80
450650
11.7MHz
0.420.6V/
53Degrees
enInput Voltage Noise27nV/
THDTotal Harmonic Distortion0.01%
1) Maximum values including unavoidable inaccuracies of the industrial test.
mV
mA
µA
µs
√Hz
4/22
Electrical CharacteristicsTS1871-TS1872-TS1874
Table 5: V
= +5V, VDD = 0V, CL & RL connected to VCC/2, T
CC
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
Input Offset Voltage
V
= V
= V
= V
= V
/2
CC
1
/2
CC
1)
/2
CC
different of V
out
CC
TS1871/2/4
TS1871A/2A/4A
/2
R
RL = 600Ω
R
RL = 600Ω
= 2kΩ
L
= 2kΩ
L
0.13
1
2
µV/°C
330nA
70130nA
6585dB
83
77
4.80
4.75
92
85
4.95
4.90
icm
icm
icm
≤ V
= V
= V
icm
out
out
out
≤ VCC, V
V
io
∆V
I
io
I
ib
CMR
Input Offset Voltage Drift
io
Input Offset Current
V
Input Bias Current
V
Common Mode Rejection Ratio
0
SVRSupply Voltage Rejection Ratio7090dB
Large Signal Voltage Gain
V
= 1V to 4V
A
out
vd
High Level Output Voltage
V
= 100mV
V
OH
id
mV
dB
V
Low Level Output Voltage
V
= -100mV
V
OL
id
R
= 2kΩ
L
RL = 600Ω
88
115
130
188
Output Source Current
I
o
I
CC
GBP
SR
φm
V
ID
DD
Output Sink Current
V
= -100mV, VO = V
ID
CC
Supply Current (per amplifier), Vout = Vcc/2
A
= 1, no load
VCL
Gain Bandwidth Product
R
= 10kΩ, CL = 100pF, f = 100kHz
L
Slew Rate
R
= 10kΩ, CL = 100pF, AV = 1
L
Phase Margin
C
= 100pF
L
20
20
80
80
500835
11.8MHz
0.420.6V/
55Degrees
= 100mV, VO = V
enInput Voltage Noise27nV/
THDTotal Harmonic Distortion0.01%
1) Maximum values including unavoidable inaccuracies of the industrial test.
mV
mA
µA
µs
√Hz
5/22
TS1871-TS1872-TS1874Electrical Characteristics
Figure 1 :
160
160
140
140
120
120
100
100
80
80
60
60
Quantity of pieces
Quantity of pieces
40
40
20
20
0
0
Figure 2 :
10.0
10.0
0.0
0.0
Input Offset Voltage Distribution
Input Offset Voltage Distribution
492 piecestested
492 piecestested
492 pieces tested
Vcc= 5V
Vcc= 5V
Vcc = 5V
Temp = +25°C
Temp = +25°C
Temp = +25°C
-2. -1.6 -1.2 -.8 -.40.4.8 1.2 1.6 2
-2. -1.6 -1.2 -.8 -.4 0.4.8 1.2 1.6 2
Input Offset Voltage (mV)
Input Offset Voltage (mV)
Input Bias Current vs. Temperature
Input Bias Current vs. Temperature
Vcc= 1.8V
Vcc = 1.8V
Vicm= 0.9V
Vicm = 0.9V
Figure 4 :
200
200
150
150
100
100
50
50
0
0
-50
-50
Input Voltage Drift (µV)
Input Voltage Drift (µV)
-100
-100
-150
-150
-40 -200204 06080 100 120 140
-40 -200204 06080 100 120 140
Figure 5 :
10.0
10.0
0.0
0.0
Input Offset Voltage Drift vs. Temperature
Input Offset Voltage Drift vs. Temperature
Vcc= 1.8V
Vcc = 1.8V
Vcc= 3V
Vcc = 3V
Vcc= 5V
Vcc = 5V
Tempe rature ( °C)
Tempe rature ( °C)
Input Bias Current vs. Temperature
Input Bias Current vs. Temperature
Vcc= 3V
Vcc = 3V
Vicm= 1.5V
Vicm = 1.5V
-10.0
-10.0
-20.0
-20.0
Input bias current (nA)
Input bias current (nA)
-30.0
-30.0
-40.0
-40.0
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Figure 3 :
600
600
500
500
400
400
300
300
200
200
Supply Current (µA)
Supply Current (µA)
100
100
0
0
02468
02468
Temperature (°C)
Temperature (°C)
Supply Current / Amplifier vs. Supply Voltage
Supply Current / Amplifier vs. Supply Voltage
Tamb= 25°C
Tamb = 25°C
Supply Voltage (V)
Supply Voltage (V)
-10.0
-10.0
-20.0
-20.0
Input bias current (nA)
Input bias current (nA)
-30.0
-30.0
-40.0
-40.0
Figure 6 :
550
550
500
500
450
450
400
400
350
350
Supply Current (µA)
Supply Current (µA)
300
300
250
250
-40 -20020406080 100 12 0 140
-40 -20020406080 100 12 0 140
-40 -200 2040 6080 100120 140
-40 -200 2040 6080 100120 140
Supply Current / Amplifier vs. Temperature
Supply Current / Amplifier vs. Temperature
Temperature (°C)
Temperature (°C)
Temperature (°C)
Temperature (°C)
Vcc= 5V
Vcc = 5V
Vcc= 3V
Vcc = 3V
Vcc= 1.8V
Vcc = 1.8V
6/22
Electrical CharacteristicsTS1871-TS1872-TS1874
Figure 7 :
120
120
115
115
110
110
105
105
100
100
95
95
Common Mode Rejection (dB)
Common Mode Rejection (dB)
90
90
85
85
-40 -2002040608 0 100 120 140
-40 -2002040608 0 100 120 140
Figure 8 :
110
110
100
100
Common Mode Rejection vs. Temperature
Common Mode Rejection vs. Temperature
Vcc= 1.8V
Vcc = 1.8V
Vicm= 0V
Vicm = 0V
Vcc= 3V
Vcc = 3V
Vicm= 0V
Vicm = 0V
Vcc= 5V
Vcc = 5V
Vicm= 0V
Vicm = 0V
Temperature (°C)
Temperature (°C)
Supply Voltage Rejection vs. Temperature
Supply Voltage Rejection vs. Temperature
Vcc= 3V
Vcc = 3V
Vicm= 0V
Vicm = 0V
Figure 10 :
Supply Voltage Rejection vs. Temperature
Supply Voltage Rejection vs. Temperature
110
110
Vcc= 1.8V
Vcc = 1.8V
Vicm= 0V
Vicm = 0V
100
100
90
90
80
80
70
70
Supply Voltage Rejection (dB)
Supply Voltage Rejection (dB)
60
60
-40-200 2040 6080100120140
-40-200 2040 6080100120140
Figure 11 :
110
110
Vcc= 5V
Vcc = 5V
Vicm= 0V
Vicm = 0V
100
100
Temperature (°C)
Temperature (°C)
Supply Voltage Rejection vs. Temperature
Supply Voltage Rejection vs. Temperature
90
90
80
80
70
70
Supply Voltage Rejection (dB)
Supply Voltage Rejection (dB)
60
60
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Temperature (°C)
Temperature (°C)
Figure 9 :
Power Supply Voltage Rejection vs. Frequency
Power Supply Voltage Rejection vs. Frequency
-20
-20
Vcc= 1.8V
Vcc = 1.8V
-30
-30
Vicm= 0.7V
Vicm = 0.7V
Gain = 10
Gain = 10
-40
-40
-50
-50
-60
-60
-70
-70
Supply Voltage Rejection (dB)
Supply Voltage Rejection (dB)
-80
-80
100100010000100000
100100010000100000
Frequency (H z)
Frequency (H z)
90
90
80
80
70
70
Supply V oltage Rejection (dB)
Supply V oltage Rejection (dB)
60
60
-40 -2002 04 06080 100 120 140
-40 -2002 04 06080 100 120 140
Figure 12 :
110
110
100
100
90
90
Open Loop Gain (dB)
Open Loop Gain (dB)
80
80
70
70
-40-200 20406080100120140
-40-200 20406080100120140
Temperatu re (°C)
Temperatu re (°C)
Open Loop Gain vs. Temperature
Open Loop Gain vs. Temperature
Vcc= 1.8V
Vcc = 1.8V
Vicm= 0.9V
Vicm = 0.9V
Temperature (°C)
Temperature (°C)
RL = 2 kOhms
RL = 2 kOhms
RL = 600 Ohms
RL = 600 Ohm s
7/22
TS1871-TS1872-TS1874Electrical Characteristics
Figure 13 :
110
110
Vcc= 3V
Vcc = 3V
Vicm= 1.5V
Vicm = 1.5V
100
100
90
90
80
80
Open Loop Gain (dB)
Open Loop Gain (dB)
70
70
-40-200 20406080100120140
-40-200 20406080100120140
Figure 14 :
High Level Output Voltage vs. Temperature
High Level Output Voltage vs. Temperature
110
110
100
100
90
90
80
80
70
70
60
60
50
50
Voltage Reference d to VCC (mV)
Voltage Reference d to VCC (mV)
40
40
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Open Loop Gain vs. Temperature
Open Loop Gain vs. Temperature
Tempe rature ( °C)
Tempe rature ( °C)
RL = 600 ohms
RL = 600 ohms
Vcc= 5V
Vcc = 5V
Vcc= 3V
Vcc = 3V
Vcc= 1.8V
Vcc = 1.8V
Temperature (°C)
Temperature (°C)
RL = 2 kOhms
RL = 2 kOhms
RL = 600 Ohms
RL = 600 Oh ms
Figure 16 :
110
110
Vcc= 5V
Vcc = 5V
Vicm= 2.5V
Vicm = 2.5V
100
100
90
90
80
80
Open Loop Gain (dB)
Open Loop Gain (dB)
70
70
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Figure 17 :
Low Level Output Voltage vs. Temperature
Low Level Output Voltage vs. Temperature
110
110
100
100
90
90
80
80
70
70
60
60
50
50
Voltage Ref erenced to Gnd (mV)
Voltage Ref erenced to Gnd (mV)
40
40
-40 -2002040608 0 100 120 140
-40 -2002040608 0 100 120 140
Open Loop Gain vs. Temperature
Open Loop Gain vs. Temperature
Temperature (°C)
Temperature (°C)
RL = 600 ohms
RL = 600 ohms
Temperature (°C)
Temperature (°C)
RL= 2 kOhms
RL = 2 kOhms
RL= 600 ohms
RL = 600 ohm s
Vcc= 5V
Vcc = 5V
Vcc= 3V
Vcc = 3V
Vcc= 1.8V
Vcc = 1.8V
Figure 15 :
High Level Output Voltage vs. Temperature
High Level Output Voltage vs. Temperature
80
80
70
70
60
60
50
50
40
40
30
30
Voltage Referenced to VCC (mV)
Voltage Referenced to VCC (mV)
20
20
-40 -200204 06080 100 120 140
-40 -200204 06080 100 120 140
8/22
RL = 2kohms
RL = 2 kohms
Temperature (°C)
Temperature (°C)
Vcc= 5V
Vcc = 5V
Vcc= 3V
Vcc = 3V
Vcc= 1.8V
Vcc = 1.8V
Figure 18 :
80
80
70
70
60
60
50
50
40
40
30
30
Voltage Referenced to Gnd (mV)
Voltage Referenced to Gnd (mV)
20
20
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Low Level Output Voltage vs. Temperature
Low Level Output Voltage vs. Temperature
RL = 2kohms
RL = 2 kohms
Vcc= 5V
Vcc = 5V
Vcc= 3V
Vcc = 3V
Vcc= 1.8V
Vcc = 1.8V
Temperature (°C)
Temperature (°C)
Electrical CharacteristicsTS1871-TS1872-TS1874
Figure 19 :
100
100
50
50
0
0
Output Current (mA)
Output Current (mA)
-50
-50
-100
-100
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Figure 20 :
100
100
50
50
0
0
Output Current (mA)
Output Current (mA)
-50
-50
-100
-100
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Output Current vs. Temperature
Output Current vs. Temperature
Isink
Isink
Vcc= 1.8V
Vcc = 1.8V
Vid= 1V
Vid = 1V
Isource
Isource
Temperature (°C)
Temperature (°C)
Output Current vs. Temperature
Output Current vs. Temperature
Isink
Isink
Vcc= 5V
Vcc = 5V
Vid= 1V
Vid = 1V
Isource
Isource
Temperature (°C)
Temperature (°C)
Figure 22 :
100
100
50
50
0
0
Output Current (mA)
Output Current (mA)
-50
-50
-100
-100
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Figure 23 :
100
100
50
50
0
0
Output Current (mA)
Output Current (mA)
-50
-50
-100
-100
0.00.51.01.52.0
0.00.51.01.52.0
Output Current vs. Temperature
Output Current vs. Temperature
Isink
Isink
Vcc= 3V
Vcc = 3V
Vid= 1V
Vid = 1V
Isource
Isource
Temperature (°C)
Temperature (°C)
Output Current vs. Temperature
Output Current vs. Temperature
T = 25 °C
T = -40 °C
T = -4 0 °C
T =-40 °C
T = -40 °C
T = 125 °C
T = 125 °C
T =25 °C
T = 25 °C
T = 125 °C
T = 125 °C
Output Voltage (V)
Output Voltage (V)
T = 25 °C
Vcc= 1.8V
Vcc = 1.8V
Vid = 0.1V
Vid = 0.1V
Vicm= 0.9V
Vicm = 0.9V
sink
sink
source
source
Figure 21 :
100
100
50
50
0
0
Output Current (mA)
Output Current (mA)
-50
-50
-100
-100
0.00.51.01.52.02.53.03.5
0.00.51.01.52.02.53.03.5
Output Current vs. Temperature
Output Current vs. Temperature
T = -40 °C
T = -4 0 °C
T =125 °C
T = 125 °C
Vcc= 3V
Vcc = 3V
Vid = 0.1V
Vid = 0.1V
Vicm= 1.5V
T= 125 °C
T = 125 °C
T = 25 °C
T = 25 ° C
T = -40 °C
T = -40 °C
Vicm = 1.5V
Output Vol tage (V)
Output Vol tage (V)
sink
sink
T = 25 °C
T = 25 °C
source
source
Figure 24 :
100
100
50
50
0
0
Output Current (mA)
Output Current (mA)
-50
-50
-100
-100
0.01.02.03.04.05.0
0.01.02.03.04.05.0
Output Current vs. Temperature
Output Current vs. Temperature
T =-40 °C
T = -40 °C
sink
sink
T =125 °C
T = 125 °C
Vcc= 5V
Vcc = 5V
Vid= 0.1V
Vid = 0.1V
Vicm= 2.5V
T =125 °C
T = 125 °C
T =25 °C
T = 25 °C
T =-40 °C
T = -40 °C
Vicm = 2 .5V
Output Voltage (V)
Output Voltage (V)
T = 25°C
T = 25 °C
source
source
9/22
TS1871-TS1872-TS1874Electrical Characteristics
Figure 25 :
70
70
60
60
50
50
40
40
gain
gain
Gain (dB)
Gain (dB)
30
30
20
20
10
10
0
0
1E+31E+41E+51E+6
1E+31E+41E+51E+6
Figure 26 :
70
70
60
60
50
50
40
40
gain
gain
Gain (dB)
Gain (dB)
30
30
20
20
10
10
0
0
1E+31E+41E+51E+6
1E+31E+41E+51E+6
Gain and Phase vs. Frequency
Gain and Phase vs. Frequency
RL = 10K
RL = 10K
CL = 100pF
CL = 100 pF
Vcc= 1.8V
Vcc = 1.8V
phase
phase
Frequency (Hz)
Frequency (Hz)
Gain and Phase vs. Frequency
Gain and Phase vs. Frequency
RL = 10K
RL = 10K
CL = 100pF
CL = 100 pF
Vcc= 5V
Vcc = 5V
phase
phase
Frequency (Hz)
Frequency (Hz)
180
180
160
160
140
140
120
120
100
100
80
80
60
60
40
40
180
180
160
160
140
140
120
120
100
100
80
80
60
60
40
40
Figure 28 :
Gain and Phase vs. Frequency
Gain and Phase vs. Frequency
70
70
RL = 10K
60
60
50
50
Phase (°)
Phase (°)
40
40
gain
gain
30
30
Gain (dB)
Gain (dB)
20
20
10
10
0
0
1E+31E+41E+51E+6
1E+31E+41E+51E+6
Frequency (Hz)
Frequency (Hz)
RL = 10K
CL = 100pF
CL = 100 pF
Vcc= 3V
Vcc = 3V
phase
phase
180
180
160
160
140
140
120
120
100
100
80
80
60
60
40
40
Phase (°)
Phase (°)
Figure 29 :
Gain-Bandwidth Product vs. Temperature
Gain-Bandwidth Product vs. Temperature
1.70
1.70
1.60
1.60
Phase (°)
Phase (°)
1.50
1.50
1.40
1.40
1.30
1.30
Gain-Ba ndwidth Product (MHz )
Gain-Ba ndwidth Product (MHz )
1.20
1.20
Vcc= 5VVicm=Vcc/2
Vcc = 5VVicm = Vcc/2
Vcc= 3V
Vcc = 3V
Vcc= 1.8V
Vcc = 1.8V
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Temperature (°C)
Temperature (°C)
RL =10kohms
RL = 10kohms
CL =100pF
CL = 100 pF
Figure 27 :
Gain-Bandwidth Product vs. Supply Voltage
Gain-Bandwidth Product vs. Supply Voltage
2.0
2.0
1.5
1.5
1.0
1.0
Gain -Ban dwidt h Product (MH z)
Gain -Ban dwidt h Product (MH z)
0.5
0.5
12345
12345
10/22
RL = 2kohms
RL = 2 kohms
CL = 220pF
CL = 220 pF
Vicm=Vcc/2
Vicm = Vcc/2
T = 25°C
T = 25°C
Supply Voltage (V)
Supply Voltage (V)
Figure 30 :
0.55
0.55
0.50
0.50
0.45
0.45
0.40
0.40
Slew Rate (V/µs)
Slew Rate (V/µs)
0.35
0.35
0.30
0.30
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Slew Rate vs. Temperature
Slew Rate vs. Temperature
Vcc= 1.8V
Vcc = 1.8V
gain = +1
gain = +1
Vin= 0.4 to 1.4V
Vin = 0. 4 to 1.4V
RL = 10kohms
RL = 10kohms
CL = 100pF
CL = 100 pF
negative Slew Rate
negative Slew Rate
Temperature (°C)
Temperature (°C)
positive SlewRate
positive Slew Rate
Electrical CharacteristicsTS1871-TS1872-TS1874
Figure 31 :
0.70
0.70
0.65
0.65
0.60
0.60
0.55
0.55
0.50
0.50
Slew Ra te (V/µs )
Slew Ra te (V/µs )
0.45
0.45
0.40
0.40
0.35
0.35
-40 -20020406080 100 1 20 140
-40 -20020406080 100 1 20 140
Figure 32 :
60
60
50
50
40
40
30
30
20
20
Phase Margin (°)
Phase Margin (°)
10
10
0
0
-10
-10
101001000
101001000
Slew Rate vs. Temperature
Slew Rate vs. Temperature
positive Slew Rate
Vcc= 3V
Vcc = 3V
gain = +1
gain = +1
Vin= 1 to 2V
Vin = 1 to 2V
RL = 10kohms
RL = 10kohms
CL = 100pF
CL = 100 pF
Temperature (°C)
Temperature (°C)
Phase Margin vs. Load Capacitor
Phase Margin vs. Load Capacitor
Load Capaci tor (pF)
Load Capaci tor (pF)
positive Slew Rate
negative SlewRate
negative Slew Rate
Vcc= 1.8V
Vcc = 1.8V
gain = 40dB
gain = 40dB
RL = 1Kohms
RL = 1Kohms
Figure 34 :
0.75
0.75
0.70
0.70
0.65
0.65
0.60
0.60
0.55
0.55
0.50
0.50
Slew Rate (V/µs)
Slew Rate (V/µs)
0.45
0.45
0.40
0.40
0.35
0.35
-40 -20020406080 100 120 140
-40 -20020406080 100 120 140
Figure 35 :
80
80
75
75
70
70
65
65
60
60
55
55
Phase Margin (°)
Phase Margin (°)
50
50
45
45
40
40
-10-50510
-10-50510
Slew Rate vs. Temperature
Slew Rate vs. Temperature
Vcc= 5V
Vcc = 5V
gain = +1
gain = +1
Vin= 2 to3V
Vin = 2 to 3V
RL = 10kohms
RL = 10kohms
CL = 100pF
CL = 100 pF
Phase Margin vs. Output Current
Phase Margin vs. Output Current
DC Output Current (mA)
DC Output Current (mA)
positive Slew Rate
positive S lew Rate
negative Slew Rate
negative S lew R ate
Temperature (°C)
Temperature (°C)
Vcc= 1.8V
Vcc = 1. 8V
RL = 1 kOhms
RL = 1 kOhms
CL = 220pF
CL = 220 pF
Figure 33 :
0
0
-5
-5
-10
-10
-15
-15
Gain Margin (dB)
Gain Margin (dB)
-20
-20
-25
-25
-10-50510
-10-50510
Gain Margin vs. Output Current
Gain Margin vs. Output Current
Vcc= 1.8V
Vcc = 1. 8V
RL = 1 kOhms
RL = 1 kOhms
CL = 220pF
CL = 220 pF
DC Outp ut Current (mA)
DC Outp ut Current (mA)
Figure 36 :
35
35
30
30
25
25
20
20
15
15
10
10
Equival ent Input Noise (nV/sqr(Hz))
Equival ent Input Noise (nV/sqr(Hz))
5
5
1E+11E+21E+31E+41E+5
1E+11E+21E+31E+41E+5
Equivalent Input Noise vs. Frequency
Equivalent Input Noise vs. Frequency
Vcc= 1.8V
Vcc = 1.8V
gain =100
gain = 100
Rs= 100 ohms
Rs = 100 ohms
Frequency (Hz)
Frequency (Hz)
11/22
TS1871-TS1872-TS1874Electrical Characteristics
Figure 37 :
100.000
100.000
10.000
10.000
1.000
1.000
0.100
0.100
Distortion (%)
Distortion (%)
0.010
0.010
0.001
0.001
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0080
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0080
Figure 38 :
100.000
100.000
10.000
10.000
1.000
1.000
Distortion vs. Output Voltage
Distortion vs. Output Voltage
RL= 1Kohms
RL= 1Kohms
Gain = -1
Gain = -1
F = 1000Hz
F = 1000 Hz
Vcc= 1.8V
Vcc = 1.8V
Output Voltage (VRMS)
Output Voltage (VRMS)
Distortion vs. Output Voltage
Distortion vs. Output Voltage
RL= 1Kohms
RL= 1Kohms
Gain = -1
Gain = -1
F =1000 Hz
F = 1000 Hz
Vcc= 5V
Vcc = 5V
Figure 40 :
100.000
100.000
10.000
10.000
1.000
1.000
0.100
0.100
Distortion (% )
Distortion (% )
0.010
0.010
0.001
0.001
0.000.200.400.600.801.001.20
0.000.200.400.600.801.001.20
Figure 41 :
100.000
100.000
10.000
10.000
1.000
1.000
Distortion vs. Output Voltage
Distortion vs. Output Voltage
RL= 1Kohms
RL= 1Kohms
Gain =-1
Gain = -1
F= 1000 Hz
F = 1000 Hz
Vcc= 3V
Vcc = 3V
Output Voltage (VRMS)
Output Voltage (VRMS)
Distortion vs. Output Voltage
Distortion vs. Output Voltage
RL= 150 ohms
RL= 150 ohms
Gain =-1
Gain = -1
F = 1000 Hz
F = 1000 Hz
Vcc= 2.7V
Vcc = 2.7V
0.100
0.100
Distortion (% )
Distortion (% )
0.010
0.010
0.001
0.001
0.000.501.001.502.00
0.000.501.001.502.00
Figure 39 :
100.000
100.000
10.000
10.000
1.000
1.000
0.100
0.100
Distortion (%)
Distortion (%)
0.010
0.010
0.001
0.001
0.000.200.400. 600.801.001.20
0.000.200.400. 600.801.001.20
Output Voltage (VRMS)
Output Voltage (VRMS)
Distortion vs. Output Voltage
Distortion vs. Output Voltage
RL= 1500 ohms
RL= 1500 o hms
Gain = -1
Gain = -1
F = 1000 Hz
F = 1000 Hz
Vcc= 2.7V
Vcc = 2.7V
Output Voltage (VRMS)
Output Voltage (VRMS)
0.100
0.100
Distortion (% )
Distortion (% )
0.010
0.010
0.001
0.001
0.000.200.400.600.801.001.20
0.000.200.400.600.801.001.20
Figure 42 :
100.000
100.000
10.000
10.000
1.000
1.000
0.100
0.100
Distortio n (%)
Distortio n (%)
0.010
0.010
0.001
0.001
0.000.200.,400.600.801.001.20
0.000.200.,400.600.801.001.20
Output Voltage (VRMS)
Output Voltage (VRMS)
Distortion vs. Output Voltage
Distortion vs. Output Voltage
RL= 4700ohms
RL= 4700 ohms
Gain = -1
Gain = -1
F =1000 Hz
F = 1000 Hz
Vcc= 2.7V
Vcc = 2.7V
Output Voltage (VRMS)
Output Voltage (VRMS)
12/22
Electrical CharacteristicsTS1871-TS1872-TS1874
Figure 43 :
0.014
0.014
0.012
0.012
0.010
0.010
0.008
0.008
Distortion (%)
Distortion (%)
0.006
0.006
0,004.
0,004.
1E+11E+21E+31E+41E+5
1E+11E+21E+31E+41E+5
Figure 44 :
0.150
0.150
0.125
0.125
0.100
0.100
Distortion vs. Frequency
Distortion vs. Frequency
Vcc= 1.8V
Vcc = 1.8V
Vout= 1Vpp
Vout = 1Vpp
RL =1Kohms
RL = 1Kohms
gain =-1
gain = -1
Frequency (Hz)
Frequency (Hz)
Distortion vs. Frequency
Distortion vs. Frequency
Vcc= 1.8V
Vcc = 1.8V
Vout= 1Vpp
Vout = 1V pp
RL =32 ohms
RL = 32 ohms
gain =-1
gain = -1
Figure 46 :
0.015
0.015
0.013
0.013
0.010
0.010
0.007
0.007
Distortion (%)
Distortion (%)
0.005
0.005
0.003
0.003
0.000
0.000
1E+11E+21E+31E+41E+5
1E+11E+21E+31E+41E+5
Figure 47 :
0.150
0.150
0.125
0.125
0.100
0.100
Distortion vs. Frequency
Distortion vs. Frequency
Vcc= 3V
Vcc = 3V
Vout= 1Vpp
Vout = 1Vpp
RL = 1Kohms
RL = 1Kohms
gain =-1
gain = -1
Freque ncy (Hz )
Freque ncy (Hz )
Distortion vs. Frequency
Distortion vs. Frequency
Vcc= 3V
Vcc = 3V
Vout= 1Vpp
Vout = 1Vpp
RL = 32 ohms
RL = 32 ohms
gain =-1
gain = -1
0.075
0.075
0.050
0.050
Distortion (%)
Distortion (%)
0.025
0.025
0.000
0.000
1E+11E+21E+31E+41E+5
1E+11E+21E+31E+41E+5
Figure 45 :
60
60
RL =32 ohms
RL = 32 ohms
50
50
40
40
30
30
20
20
Output Power (mW)
Output Power (mW)
10
10
0
0
123456
123456
Freque ncy (H z)
Freque ncy (H z)
Output Power vs. Supply Voltage
Output Power vs. Supply Voltage
10% distortion
10% distor tion
1% distortion
1% distortion
0.1% distortion
0.1% distortion
Supply Voltage (V)
Supply Voltage (V)
0.075
0.075
Distortion (%)
Distortion (%)
0.050
0.050
0.025
0.025
0.000
0.000
1E+11E+21E +31E+41E+5
1E+11E+21E +31E+41E+5
Frequency (Hz)
Frequency (Hz)
13/22
TS1871-TS1872-TS1874Package Mechanical Data
3 Package Mechanical Data
3.1 DIP8 package
Plastic DIP-8 MECHANICAL DATA
DIM.
A3.30.130
a10.70.028
B1.391.650.0550.065
B10.911.040.0360.041
b0.50.020
b10.380.50.0150.020
D9.80.386
E8.80.346
e2.540.100
e37.620.300
e47.620.300
F7.10.280
I4.80.189
L3.30.130
Z0.441.60.0170.063
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
14/22
P001F
Package Mechanical DataTS1871-TS1872-TS1874
3.2 SO8 package
SO-8 MECHANICAL DATA
DIM.
A1.351.750.0530.069
A10. 100.250. 040.010
A21. 101.650. 0430.065
B0.330.510.0130.020
C0.190.250. 0070.010
D4.805.000. 1890.197
E3.804.000.1500.157
e1.270.050
H5.806.200. 2280.244
h0.250.500.0100.020
L0.401.270.0160.050
k˚ (max.)
ddd0.10.04
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
8
0016023/C
15/22
TS1871-TS1872-TS1874Package Mechanical Data
3.3 TSSOP8 package
TSSOP8 MECHANICAL DATA
DIM.
MIN.TYPMAX.MIN.TYP.MAX.
A1.20.047
A10.050.150.0020.006
A20.801.001.050.0310.0390.041
b0.190.300.0070.012
c0.090.200.0040.008
D2.903.003.100.1140.1180.122
E6.206.406.600.2440.2520.260
E14.304.404.500.1690.1730.177
e0.650.0256
K0˚8˚0˚8˚
L0.450.600.750.0180.0240.03 0
L110.039
mm.inch
16/22
0079397/D
Package Mechanical DataTS1871-TS1872-TS1874
3.4 Mini SO8 package
17/22
TS1871-TS1872-TS1874Package Mechanical Data
3.5 DIP14 package
Plastic DIP-14 MECHANICAL DATA
DIM.
a10.510.020
B1.391.650.0550.065
b0.50.020
b10.250.010
D200.787
E8.50.335
e2.540.100
e315.240.600
F7.10.280
I5.10.201
L3.30.130
Z1.272.540.0500.100
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
18/22
P001A
Package Mechanical DataTS1871-TS1872-TS1874
3.6 SO14 package
SO-14 MECHANICAL DATA
DIM.
A1.750.068
a10.10.20.0030.007
a21.650.064
b0.350.460.0130.018
b10.190.250.0070.010
C0.50.019
c145˚ (typ.)
D8.558.750. 3360.344
E5.86. 20.2280. 244
e1.270.050
e37.620.300
F3.84.00.1490.157
G4.65.30.1810. 208
L0.51.270.0190.050
M0.680.026
S˚ (max.)
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
8
PO13G
19/22
TS1871-TS1872-TS1874Package Mechanical Data
3.7 TSSOP14 package
TSSOP14 MECHANICAL DATA
DIM.
A1.20.047
A10.050.150.0020.0040.006
A20.811.050.0310.0390.041
b0.190.300. 0070.012
c0.090.200.0040.0089
D4.955.10.1930.1970.201
E6.26.46.60.2440.2520.260
E14.34.44.480.1690.1730.176
e0.65 BSC0.0256 BSC
K0˚8˚0˚8˚
L0.450.600.750.0180.0240.030
A
MIN.TYPMAX.MIN.TYP.MAX.
A2
b
A1
mm.inch
e
D
c
K
L
E
20/22
PIN 1 IDENTIFICATION
E1
1
0080337D
Package Mechanical DataTS1871-TS1872-TS1874
3.8 SOT23-5 package
SOT23-5L MECHANICAL DATA
DIM.
A0.901.4535.457.1
A10.000.150.05.9
A20.901.3035.451.2
b0.350.5013.719.7
C0.090.203.57.8
D2.803.00110.2118.1
E2.603.00102.3118.1
E11.501.7559.068.8
e.9537.4
e11.974.8
L0.350.5513.721.6
MIN.TYPMAX.MIN.TYP.MAX.
mm.mils
0
21/22
TS1871-TS1872-TS1874Revision History
4 Revision History
DateRevisionDescription of Changes
01 April 20021First Release
01 Jan. 20052Modifications on AMR Table 1 on page 2 (explanation of Vid and Vi limits)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners