ST MICROELECTRONICS MASTERGAN5 Datasheet

MASTERGAN5
Datasheet
High power density 600 V half-bridge driver with two enhancement mode
GaNHEMT

Features

600 V system-in-package integrating half-bridge gate driver and high-voltage GaN power transistors:
QFN 9 x 9 x 1 mm package
R
I
Reverse current capability
Zero reverse recovery loss
UVLO protection on low-side and high-side
Internal bootstrap diode
Interlocking function
Dedicated pin for shut down functionality
Accurate internal timing match
3.3 V to 15 V compatible inputs with hysteresis and pull-down
Over temperature protection
Bill of material reduction
Very compact and simplified layout
Flexible, easy and fast design.
DS(ON)
DS(MAX)
= 450 mΩ
Product status link
MASTERGAN5
Product label

Applications

Switch-mode power supplies
Chargers and adapters
High-voltage PFC, DC-DC and DC-AC Converters

Description

The MASTERGAN5 is an advanced power system-in-package integrating a gate driver and two enhancement mode GaN power transistors in half bridge configuration. The integrated power GaNs have 650 V drain-source blocking voltage and R
easily supplied by the integrated bootstrap diode.
The MASTERGAN5 features UVLO protection on both the lower and upper driving sections, preventing the power switches from operating in low efficiency or dangerous conditions, and the interlocking function avoids cross-conduction conditions.
The extended range of the input pins allows easy interfacing with microcontrollers, DSP units or Hall effect sensors.
The MASTERGAN5 operates in the industrial temperature range, -40°C to 125°C.
The device is available in a compact 9x9 mm QFN package.
of 450 mΩ, while the high side of the embedded gate driver can be
DS(ON)
DS13775 - Rev 1 - July 2021 For further information contact your local STMicroelectronics sales office.
www.st.com

1 Block diagram

Driver
Driver
Logic,
interlocking,
overtemp
Level Shifter
Level Shifter
VCC UVLO
UVLO
Vbo
PGNDPVCC
OUTbBOOT
GL
GH
VCC
HIN
LIN
SD/OD
GND
OUT
VS
SENSE
HON
HOFF
LON
LOFF
R
BLEED
RGOFF
H
RGON
H
RGON
L
RGOFF
L
MASTERGAN5
Block diagram
Figure 1. Block diagram
DS13775 - Rev 1
page 2/26

2 Pin descriptions and connection diagram

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
24
23
22
21
20
19
18
17
16
31
30
29
28
27
26
25
GND
SENSE
OUT
EP1
EP2
EP3
SENSE
SENSE
SENSE
OUT
OUT
OUT
SENSE
SENSE
SENSE
SENSE
SENSE
VS
VS
VS
VS
VS
GH
OUTb
BOOT
PGND
GL
PVCC
N.C.
VCC
GND
LIN
HIN
SD/OD
N.C.
N.C.
N.C.
Figure 2. Pin connections (top view)
MASTERGAN5
Pin descriptions and connection diagram

2.1 Pin list

Table 1. Pin descriptions
Pin Number Pin Name Type Function
15, 16, 17, 18, 19 VS Power Supply High voltage supply (high-side GaN Drain)
12, 13, 14, EP3 OUT Power Output Half-bridge output
4, 5, 6, 7, 8, 9, 10, 11, EP2 SENSE Power Supply Half-bridge sense (low-side GaN Source)
22 BOOT Power Supply Gate driver high-side supply voltage
21 OUTb Power Supply
27 VCC Power Supply Logic supply voltage
1 PVCC Power Supply Gate driver low-side supply voltage
28, EP1 GND Power Supply Gate driver ground
3 PGND Power Supply
26 HIN Logic Input High-Side driver logic input
24 LIN Logic Input Low-Side driver logic input
25 SD/OD Logic Input-output Driver Shut-Down input and Fault Open-Drain
2 GL Output Low-Side GaN gate.
20 GH Output High-Side GaN gate.
23, 29, 30, 31 N.C. Not Connected Leave floating
Gate driver high-side supply voltage, used only for Bootstrap
capacitor connection. Internally connected to OUT.
Gate driver low-side buffer ground. Internally connected to
SENSE.
DS13775 - Rev 1
page 3/26

3 Electrical Data

3.1 Absolute maximum ratings

Each voltage referred to GND unless otherwise specified
Symbol Parameter Test Condition Value Unit
V
DS
VCC Logic supply voltage - -0.3 to 11 V
PVCC-PGND
VCC-PGND Logic supply vs Low-side driver ground - -0.3 to 18.3 V
PVCC Low-side driver supply vs logic ground - -0.3 to 18.3 V
PGND Low-side driver ground vs logic ground - -7.3 to 11.3 V
V
BO
BOOT Bootstrap voltage - -0.3 to 620 V
CGL, CGH
RGL, RGH
SR
T
T
I
D
out
V
i
J
s
Maximum external capacitance between GL and PGND and
Minimum external pull down resistance between GL and
1. PGND internally connected to SENSE.
2. OUTb internally connected to OUT
3. CGx < 0.08/(Pvcc^2*Fsw)-(330*10-12)
4. TCB is temperature of case exposed pad
5. Range estimated by characterization, not tested in production
6. Value specified by design factor, pulse duration limited to 50 µs and junction temperature
GaN Drain-to-Source Voltage
Low-side driver supply voltage
BOOT to OUTb voltage
between GH and OUTb
PGND and GH and OUTb
Drain current
Half-bridge outputs slew rate (10% - 90%) - 100 V/ns
Logic inputs voltage range - -0.3 to 21 V
Junction temperature - -40 to 150 °C
Storage temperature - -40 to 150 °C
Table 2. Absolute maximum ratings
(1)
(2)
DC @ TCB = 25 °C
DC @ TCB = 100 °C
Peak @ TCB = 25 °C
MASTERGAN5
TJ = 25 °C
- -0.3 to 7 V
- -0.3 to 7 V
FSW = 500 kHz
(3)
- 6.8 kΩ
(4) (5)
(4) (5)
(4) (5) (6)
Electrical Data
620 V
3.9 nF
4 A
2.6 A
7 A
3.2
DS13775 - Rev 1

Recommended operating conditions

Table 3. Recommended operating conditions
Each voltage referred to GND unless otherwise specified
Symbol Parameter Note Min Max Unit
VS High voltage bus - 0 520 V
VCC Supply voltage - 4.75 9.5 V
PVCC-PGND
PVCC to PGND Low side supply
(1)
- 4.75 6.5 V
page 4/26
MASTERGAN5
Thermal data
Symbol Parameter Note Min Max Unit
PVCC-PGND
PVCC to PGND Low side supply
PVCC Low-side driver supply - 3 8.5 V
VCC-PVCC VCC to PVCC pin voltage - -3 3 V
PGND
Low-side driver ground
DT Suggested minimum dead time - 5 - ns
T
IN_MIN
V
BO
Minimum duration of input pulse to obtain undistorted output pulse
BOOT to OUTb pin voltage
BOOT BOOT to GND voltage -
V
i
T
J
Logic inputs voltage range - 0 20 V
Junction temperature - -40 125 °C
1. PGND internally connected to SENSE
2. See Logic inputs for more detail
3. OUTb internally connected to OUT
4. 5 V is recommended during High Side turn-on
(1)
(1)
(3)
Best performance 5 6.5 V
- -2 2 V
(2)
- 120 - ns
- 4.4 6.5 V
Best performance 5 6.5 V
(4)
530 V
0

3.3 Thermal data

Symbol Parameter Value Unit
R
th(J-CB)_HS
R
th(J-A)
The junction to ambient thermal resistance is obtained simulating the device mounted on a 2s2p (4 layer) FR4 board as per JESD51-5,7 with 6 thermal vias for each exposed pad. Power dissipation is uniformly distributed over the two GaN transistors.
Thermal resistance of each transistor’s junction to relevant exposed pad, typical 4.7 °C/W
Thermal resistance junction-to-ambient(1) 18.8 °C/W
Table 4. Thermal data
DS13775 - Rev 1
page 5/26

4 Electrical characteristics

4.1 Driver

Table 5. Driver electrical characteristics
VCC = PVCC = 6 V, SENSE = GND, TJ = 25 °C, unless otherwise specified Each voltage referred to GND unless otherwise specified
Symbol - Parameter Test condition Min Typ Max Unit
VCC
VCC
VCC
I
QVCCU
I
I
thON
thOFF
hys
VCC vs.
GND
QVCC
SVCC
VCC UV turn ON
threshold
(1)
VCC UV turn
OFF threshold
VCC UV
hysteresis
(1)
VCC
undervoltage
quiescent supply
current
VCC quiescent
supply current
VCC switching
supply current
Logic section supply
(1)
VCC = PVCC = 3.
8 V
SD/OD = LIN = 5
HIN = 0 V;
BOOT = 7 V
SD/OD = 5 V;
VBO = 6.5 V;
VS = 0 V;
FSW = 500 kHz
MASTERGAN5
Electrical characteristics
- 4.2 4.5 4.75 V
- 3.9 4.2 4.5 V
- 0.2 0.3 0.45 V
- 320 410 μA
V;
- 680 900 μA
- 0.8 - mA
I
QPVCC
I
SPVCC
R
BLEED
RON
ROFF
V
BOthON
V
BOthOFF
V
BOhys
I
QBOU
L
L
PVCC vs.
PGND
GL vs. PGND
-
-
BOOT vs.
OUTb
PVCC quiescent
supply current
PVCC switching
supply current
Low side gate
bleeder
Low side turn on
resistance
Low side turn off
resistance
(2)
(2)
VBO UV turn ON
threshold
(3)
VBO UV turn OFF
threshold
(3)
VBO UV
hysteresis
(3)
VBO undervoltage
quiescent supply
current
(3)
Low-side driver section supply
SD/OD = LIN = 5 V - 150 - μA
VS = 0 V
FSW = 500 kHz
- 1.0 - mA
PVCC = PGND 75 100 125 kΩ
I(GL) = 1 mA
(source)
- 77 -
I(GL) = 1 mA (sink) - 2 -
High-side floating section supply
- 3.6 4.0 4.4 V
- 3.4 3.7 4.0 V
- 0.1 0.3 0.5 V
VBO = 3.4 V
- 140 200 μA
DS13775 - Rev 1
page 6/26
MASTERGAN5
Symbol - Parameter Test condition Min Typ Max Unit
VBO = 6 V;
LIN = GND;
SD/OD = HIN = 5
V;
VBO =6 V;
SD/OD = 5 V;
VS = 0 V;
FSW = 500 kHz
- 180 - μA
- 1.1 - mA
I
QBO
I
SBO
BOOT vs.
OUTb
BOOT
VBO quiescent
supply current
BOOT switching
supply current
(3)
Driver
I
LK
R
DBoot
RON
ROFF
V
V
V
ihys
I
INh
I
INl
R
PD_IN
I
SDh
I
SDl
R
PD_SD
V
TSD
R
ON_OD
BOOT vs.
SGND
High voltage
leakage current
BOOT = OUT = 60
0 V
- - 11 μA
SD/OD = LIN = 5
V;
VCC vs.
BOOT
Bootstrap diode
on-resistance
HIN = GND = PGN
(4)
D
- 140 175 Ω
VCC –
BOOT = 0.5 V
H
H
-
-
High side turn on
resistance
High side turn off
resistance
(2)
(2)
I(GH) = 1 mA
(source)
I(GH) = 1 mA
(sink)
- 77 -
- 2 -
Logic inputs
il
LIN, HIN,
ih
SD/OD
Low level logic
threshold voltage
High level logic
threshold voltage
Full Temperature
range
(5)
TJ = 25 °C
Full Temperature
range
(5)
TJ = 25 °C
1.1 1.31 1.45
V
0.8 - -
2 2.17 2.5
V
- - 2.7
Logic input
threshold
0.7 0.96 1.2 V
hysteresis
LIN, HIN
SD/OD
SD/OD
SD/OD
SD/OD
Logic ‘1’ input
bias current
Logic ‘0’ input
bias current
Input pull-down
resistor
Logic “1” input
bias current
Logic “0” input
bias current
Pull-down
resistor
Thermal
shutdown unlatch
LIN, HIN = 5 V 23 33 55 μA
LIN, HIN = GND - - 1 μA
LIN, HIN = 5 V 90 150 220
SD/OD = 5 V 11 15 20 μA
SD/OD = 0 V - - 1 μA
SD/OD = 5 V
OpenDrain OFF
TJ = 25 °C
(6)
250 330 450
0.5 0.75 1 V
threshold
SD/OD
Open drain ON
resistance
TJ = 25 °C;
IOD = 400 mV
(6)
8 10 18 Ω
DS13775 - Rev 1
I
OL_OD
T
d_GL
SD/OD
LIN, GL
Open Drain low
level sink current
Prop. delay from
LIN to GL
TJ = 25 °C;
VOD = 400 mV
(6)
(6)
22 40 50 mA
- 46 - ns
page 7/26
Symbol - Parameter Test condition Min Typ Max Unit
T
d_GH
T
TSD
T
HYS
HIN, GH
-
-
Prop. delay from
1. VCC UVLO is referred to VCC - GND
2. Turn on and turn off total resistances include the values of the gate resistors and the driver Rdson
3. VBO = V
4. R
BD(on)
R
BD(on)
- V
BOOT
OUT
is tested in the following way
= [(VCC - V
BOOTa
) - (VCC - V
Where: Ia is BOOT pin current when V
5. Range estimated by characterization, not tested in production
6. Tested at wafer level

4.2 GaN power transistor

HIN to GH
Shut down
temperature
Temperature
hysteresis
BOOTb
BOOT
(6)
Over temperature protection
(5)
(5)
)] / [Ia - Ib]
= V
; Ib is BOOT pin current when V
BOOTa
MASTERGAN5
GaN power transistor
- 46 - ns
- 175 - °C
- 20 - °C
= V
BOOT
BOOTb
Table 6. GaN power transistor electrical characteristics
VGS = 6 V; TJ = 25 °C, unless otherwise specified.
Symbol Parameter Test condition Min Typ Max Unit
GaN on/off states
GS
(1)
650 - - V
- 0.3 - µA
(1)
(2)
T
25°C
J =
125°C
(2)
T
J =
- 1.7 - V
- 20 - µA
- 450 600
- 1012 -
I
DSS
VGS = 0 V
VDS = 600 V
VGS = 0 V
VDS = V
ID = 1.7 mA
VDS = 0 V
I
D =
V
(BR)DS
I
DSS
V
GS( th )
I
R
DS( on)
GS
Drain-source blocking voltage
Zero gate voltage drain current
Gate threshold voltage
Gate to source current
Static drain-source on-resistance
1. Tested at wafer level
2. Range estimated by characterization, not tested in production
< 6.6 µA
1.2 A
mΩ
DS13775 - Rev 1
page 8/26

5 Device characterization values

The information in Table 7 and Table 8 represent typical values based on characterization and simulation results and are not tested in production.
Table 7. GaN power transistor characterization values (each transistor)
Symbol Parameter Test condition Min Typ Max Unit
Q
Total gate charge
G
Q
E
C
C
C
I
1. C
2. C
Q
Output charge
OSS
Output Capacitance stored energy - 0.9 - µJ
OSS
Output capacitance - 7 - pF
OSS
Effective output capacitance energy related
O(ER)
Effective output capacitance time related
O(TR)
Reverse recovery charge - - 0 - nC
RR
Reverse recovery current - - 0 - A
RRM
is the fixed capacitance that would give the same stored energy as C
O(ER)
V
DS
is the fixed capacitance that would give the same charging time as C
O(TR)
V
DS
(2)
V
6 V, TJ = 25 °C
GS =
V
0 to 400 V
DS =
VGS = 0 V, VDS = 400 V
(1)
VGS = 0 V, VDS = 0 to 400 V
MASTERGAN5
Device characterization values
- 0.8 - nC
- 7 - nC
- 11 - pF
- 17 - pF
while VDS is rising from 0 V to the stated
OSS
while VDS is rising from 0 V to the stated
OSS
1. t
2. tC
Symbol
t
(on)
t
C(on)
t
(off)
t
C(off)
t
E
E
and t
(on)
(on)
Table 8. Inductive load switching characteristics
Parameter Test condition Min Typ Max Unit
(1)
(2)
(2)
(1)
SD
on
off
and tC
Turn-on time
Crossover time (on) - 25 - ns
Turn-off time - 70 - ns
VS = 400 V,
VGS = 6 V,
Crossover time (off) - 10 - ns
Shutdown to high/low-side propagation delay - 70 - ns
See Figure 3
Turn-on switching losses - 4.5 - µJ
Turn-off switching losses - 2.5 - µJ
include the propagation delay time of the internal driver and GaN Turn on time
(off)
are the switching times of GaN transistor itself under the internally given gate driving conditions
(off)
- 70 - ns
ID = 1.2 A
DS13775 - Rev 1
page 9/26
Figure 3. Switching time definition
I
D
I
D
V
DS
V
DS
V
IN
V
IN
t
(ON)
t
(OFF)
t
C(ON)
t
C(OFF)
10%I
D
10%V
DS
10%I
D
10%V
DS
(a) turn-on
(b) turn-off
VDS (V)
I
D
(A)
VGS=6V
TJ=25°C
VGS=5V
0
1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10
VGS=4V
VDS (V)
I
D
(A)
VGS=6V
TJ=125°C
VGS=5V
0
1 2 3 4 5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS=4V
MASTERGAN5
Device characterization values
Figure 4. Typ ID vs VDS at TJ=25°C
DS13775 - Rev 1
Figure 5. Typ ID vs VDS at TJ=125°C
page 10/26
0
1
5 9 10
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8 TJ=25°C
ID (A)
R
DS(on)
(Ω)
4V
5V
6V
8
762
43
0
0.5
2.5 4.5 5
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
TJ=125°C
ID (A)
R
DS(on)
(Ω)
4V
5V
6V
4
3.531
21.5
VDS (V)
I
D
(A)
VGS=6V
TJ=25°C
0
1 2 3 4 5
0
1
2
3
4
5
6
7
8
9
10
TJ=50°C
TJ=75°C
TJ=100°C
TJ=125°C
Normalized R
DS(on)
(1 at 25°C)
0
1.0
0.5
1.5
2.0
2.5
3.0
Temperature (°C)
-50
-10
30
70
110
150
MASTERGAN5
Device characterization values
Figure 6. Typ R
Figure 8. Typ I
vs ID at TJ=25°C
DS(ON)
D(ON)
vs V
DS
Figure 7. Typ R
Figure 9. Typ R
vs ID at TJ=125°C
DS(ON)
_x vs TJ, normalized at 25°C
DS(ON)
DS13775 - Rev 1
page 11/26
VSD (V)
I
S
(A)
VGS=6V
TJ=25°C
VGS=0V
0
1 2 3 4 5 6 7 8 9 10
0
2
4
6
8
10
12
14
16
18
20
VSD (V)
I
S
(A)
VGS=6V
TJ=125°C
VGS=0V
0
1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
1
10
100
1000
0.01
0.1
1
10
DC
50 μs
0.2 μs
Id (A)
Vds (V)
0 0.2
0.4
0.6
0.8
1
QG (nC)
V
GS
(V)
0
2
1
3
4
5
6
400 V
100 V
7
MASTERGAN5
Device characterization values
Figure 10. Typ ISD vs VSD, at TJ=25°C
Figure 12. Safe Operating Area at TJ=25°C
Figure 11. Typ ISD vs VSD, at TJ=125°C
Figure 13. Typ Gate Charge at TJ=25°C
DS13775 - Rev 1
page 12/26
0
25
50
75
100
125
TCB (°C)
0
150
5
10
15
20
25
30
35
P
DISS
(W)
R
DBoot
(ohm)
0
100
50
150
200
250
300
Temperature (°C)
-50
-10
30
70
110
150
MASTERGAN5
Logic inputs
Figure 14. Derating Curve

5.1 Logic inputs

The MASTERGAN5 features a half-bridge gate driver with three logic inputs to control the internal high-side and low-side GaN transistors.
The devices are controlled through following logic inputs:
SD/OD: Shut-down input, active low;
LIN: low-side driver inputs, active high;
HIN: high-side driver inputs, active high.
Figure 15. Typ R
Dboot
vs T
J
Table 9. Inputs truth table (applicable when device is not in UVLO)
Input pins GaN transistors status
SD/OD LIN HIN LS HS
L
(1)
X
(1)
X
OFF OFF
H L L OFF OFF
H L H OFF ON
H H L ON OFF
H
(2)
H
(2)
H
OFF OFF
1. X: Don’t care
2. Interlocking
The logic inputs have internal pull-down resistors. The purpose of these resistors is to set a proper logic level in case, for example, there is an interruption in the logic lines or the controller outputs are in tri-state conditions.
If logic inputs are left floating, the gate driver outputs are set to low level and the corresponding GaN transistors are turned off.
The minimum duration of the on time of the pulses applied to LIN is T either extended to T
or blanked, if shorter than 30ns (typ). Minimum duration of the off time of the pulses
IN_MIN
= 120ns; shorter pulses could be
IN_MIN
applied to LIN is 60ns or could be blanked if they are shorter.
DS13775 - Rev 1
page 13/26
VCC = PVCC
VCC
thON
VCC
thOFF
UVLO VCC
0V
0V
VCC rise
LIN
GL-PGND
0V
PVCC
MASTERGAN5
Bootstrap structure
The minimum duration of the off time of the pulses applied to HIN is T either extended to T
or blanked, if shorter than 30ns (typ). Minimum duration of the on time of the pulses
IN_MIN
applied to HIN is 60ns or could be blanked if they are shorter.
Interlocking feature interrupts running T
to avoid unexpected cross-conduction.
IN_MIN
Matched, short propagation delay between low side and high side are there.

5.2 Bootstrap structure

Bootstrap circuitry is typically used to supply the high-voltage section. MASTERGAN5 integrates this structure by means of a patented integrated high-voltage DMOS to reduce the external components.
The Boostrap integrated circuit is connected to VCC pin and is driven synchronously with the low-side driver.
The use of an external bootstrap diode in parallel to the integrated structure is possible, especially when the operating frequency is generally higher than 500 kHz.

5.3 VCC supply pins and UVLO function

The VCC pin supplies current to the logic circuit, level-shifters in the low-side section and the integrated bootstrap diode.
The PVCC pin supplies low-side output buffer. During outputs commutations the average current used to provide gate charge to the high-side and low-side GaN transistors flow through this pin.
The PVCC pin can be connected either to the same supply voltage of the VCC pin or to a separated voltage source. In case the same voltage source is used, it is suggested to connect VCC and PVCC pins by means of a small decoupling resistance. The use of dedicated bypass ceramic capacitors located as close as possible to each supply pin is highly recommended.
The MASTERGAN5 VCC supply voltage is continuously monitored by under-voltage lockout (UVLO) circuitry that turns the high-side and low-side GaN transistors off when the supply voltage goes below the V
The UVLO circuitry turns on the GaN, accordingly to LIN and HIN status, approximately 20µs (typ) after the supply voltage goes above the V
CCthON
voltage. A V
= 120ns; shorter pulses shall be
IN_MIN
CC_thOFF
hysteresis is provided for noise rejection purposes.
CChys
threshold.

5.4 VBO UVLO protection

Dedicated under-voltage protection is available on the bootstrap section between BOOT and OUTb supply pins. In order to avoid intermittent operation, a hysteresis set the turn-off threshold with respect to the turn-on threshold.
When the VBO voltage falls below the V Approximately 5µs (typ) after the VBO voltage reaches the V operation and the output remains off until the next input pin transition that requests the high-side to turn on.
Figure 16. VCC UVLO and Low Side
BOthOFF
threshold, the high-side GaN transistor is switched off.
threshold, the device returns to normal
BOthON
DS13775 - Rev 1
page 14/26
Figure 17. VBO UVLO and High Side
VCC
VCCthON VCCthOFF
HIN
UVLO VBO
0V
0V
VBOrise
(GH-OUTB)
VBO
0V
V
BOthON
VBOthOFF
0V
VBO
MASTERGAN5
Thermal shutdown

5.5 Thermal shutdown

The integrated gate driver has a thermal shutdown protection.
When junction temperature reaches the T leaving the half-bridge in 3-state and signaling the state forcing
junction temperature is below T
GaN are driven again according to inputs when
The thermal smart shutdown system gives the possibility to increase the time constant of the external RC network (that determines the disable time after the overtemperature event) up to very large values without delaying the protection.
TSD-THYS
temperature threshold, the device turns off both GaN transistors
TSD
SD/OD pin low. SD/OD pin is released when
and SD/OD is below V
TSD
.
SD/OD rise above Vih.
DS13775 - Rev 1
page 15/26
Figure 18. Thermal Shutdown timing waveform
THERMAL SHUTDOWN CIRCUIT
GH/GL
OD gate
(internal)
Fast shut down
the driver outputs are switched off
disable time
SD/OD
T
TSDTHYSTTSD -
VihV
0 V
TSDVOD
TJ
t1t
2
VPU
SD/OD
FROM / TO
CONTROLLER
C
OD
THERMAL
SHUTDOWN
LOGIC
R
ON_ODRPD_SD
R
OD_ext
2
1
immediately after overtemperature
MASTERGAN5
Thermal shutdown
DS13775 - Rev 1
page 16/26

6 Typical application diagrams

+
C
PVCC
FROM/TO CONTROLLER
H.V.
C
R
CBOOT
CVCC
C
R
COD
R
VCC
VCC
VPU
CbuS
FROM/TO CONTROLLER
FROM/TO CONTROLLER
VOUT
Driver
Driver
Logic,
interlocking,
overtemp
Level Shifter
Level Shifter
VCC UVLO
UVLO
Vbo
PGNDPVCC
OUTbBOOT
GL
GH
VCC
HIN
LIN
SD/OD
GND
OUT
VS
SENSE
HON
HOFF
LON
LOFF
R
BLEED
RGON
L
RGOFF
L
RGOFF
H
RGON
H
+
C
PVCC
FROM/TO CONTROLLER
H.V.
C
R
CBOOT
CVCC
C
R
COD
R
VOUT
VCC
VCC
VPU
CC
CbuS
FROM/TO CONTROLLER
FROM/TO CONTROLLER
TO CONTROLLER
Driver
Driver
Logic,
interlocking,
overtemp
Level Shifter
Level Shifter
VCC UVLO
UVLO
Vbo
PGNDPVCC
OUTbBOOT
GL
GH
VCC
HIN
LIN
SD/OD
GND
OUT
VS
SENSE
HON
HOFF
LON
LOFF
R
BLEED
RGON
L
RGOFF
L
RGOFF
H
RGON
H
Figure 19. Typical application diagram – Resonant LLC converter
MASTERGAN5
Typical application diagrams
Figure 20.
Typical application diagram – Active clamp flyback
DS13775 - Rev 1
page 17/26

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 QFN 9 x 9 x 1 mm, 31 leads, pitch 0.6 mm package information

Table 10. QFN 9 x 9 x 1 mm package dimensions
MASTERGAN5
Package information
Symbol
A
A3 - 0.10 -
b 0.25 0.30 0.35
D 8.96 9.00 9.04
E 8.96 9.00 9.04
D1 3.30 3.40 3.50
E1 2.06 2.16 2.26
D2 1.76 1.86 1.96
E2 3.10 3.20 3.30
D3 1.70 1.80 1.90
E3 3.10 3.20 3.30
e - 0.60 -
K - 0.24 -
L 0.35 0.45 0.55
N 31
aaa 0.10
bbb 0.10
ccc 0.10
ddd 0.05
eee 0.08
Min. Typ. Max.
0.90 0.95 1.00
Dimensions (mm)
Note: Dimensioning and tolerances conform to ASME Y14.5-2009
All dimensions are in millimeters
N total number of terminals
Dimensions do not include mold protrusion, not to exceed 0.15 mm
Package outline exclusive of metal burr dimensions
DS13775 - Rev 1
page 18/26
Figure 21. QFN 9 x 9 x 1 mm package dimensions
TOP VIEW
SIDE
VIEW
BOTTOM VIEW
MASTERGAN5
QFN 9 x 9 x 1 mm, 31 leads, pitch 0.6 mm package information
DS13775 - Rev 1
page 19/26

8 Suggested footprint

TOP VIEW
Dimensions in mm
The MASTERGAN5 footprint for the PCB layout is usually defined based on several design factors as assembly plant technology capabilities and board component density. For easy device usage and evaluation, ST provides the following footprint design, which is suitable for the largest variety of PCBs.
The following footprint indicates the copper area which should be free from the solder mask,
while the copper area shall extend beyond the indicated areas especially for EP2 and EP3. To aid thermal dissipation, it is recommended to add thermal vias under these EPADs to transfer and dissipate device heat to the other PCB copper layers. A PCB layout example is available with the MASTERGAN5 evaluation board.
Figure 22. Suggested footprint (top view drawing)
MASTERGAN5
Suggested footprint
DS13775 - Rev 1
page 20/26

9 Ordering information

Order code Package Package Marking Packaging
MASTERGAN5 QFN 9 x 9 x 1 mm MASTERGAN5 Tray
MASTERGAN5TR QFN 9 x 9 x 1 mm MASTERGAN5 Tape and Reel
MASTERGAN5
Ordering information
Table 11. Order codes
DS13775 - Rev 1
page 21/26

Revision history

MASTERGAN5
Table 12. Document revision history
Date Version Changes
26-Jul-2021 1 Initial release.
DS13775 - Rev 1
page 22/26
MASTERGAN5

Contents

Contents
1 Block diagram .....................................................................2
2 Pin descriptions and connection diagram ..........................................3
2.1 Pin list ........................................................................3
3 Electrical Data .....................................................................4
3.1 Absolute maximum ratings.......................................................4
3.2 Recommended operating conditions ..............................................4
3.3 Thermal data ..................................................................5
4 Electrical characteristics...........................................................6
4.1 Driver ........................................................................6
4.2 GaN power transistor ...........................................................8
5 Device characterization values.....................................................9
5.1 Logic inputs ..................................................................13
5.2 Bootstrap structure ............................................................14
5.3 VCC supply pins and UVLO function .............................................14
5.4 VBO UVLO protection ..........................................................14
5.5 Thermal shutdown.............................................................15
6 Typical application diagrams......................................................17
7 Package information ..............................................................18
7.1 [Package name] package information ............................................18
8 Suggested footprint ..............................................................20
9 Ordering information .............................................................21
Revision history .......................................................................22
Contents ..............................................................................23
List of tables ..........................................................................24
List of figures..........................................................................25
DS13775 - Rev 1
page 23/26
MASTERGAN5

List of tables

List of tables
Table 1. Pin descriptions .....................................................................3
Table 2. Absolute maximum ratings .............................................................4
Table 3. Recommended operating conditions.......................................................4
Table 4. Thermal data .......................................................................5
Table 5. Driver electrical characteristics .......................................................... 6
Table 6. GaN power transistor electrical characteristics ................................................8
Table 7. GaN power transistor characterization values (each transistor) ....................................9
Table 8. Inductive load switching characteristics .....................................................9
Table 9. Inputs truth table (applicable when device is not in UVLO)....................................... 13
Table 10. QFN 9 x 9 x 1 mm package dimensions ................................................... 18
Table 11. Order codes ...................................................................... 21
Table 12. Document revision history............................................................. 22
DS13775 - Rev 1
page 24/26
MASTERGAN5

List of figures

List of figures
Figure 1. Block diagram ....................................................................2
Figure 2. Pin connections (top view) ............................................................3
Figure 3. Switching time definition ............................................................ 10
Figure 4. Typ ID vs VDS at TJ=25°C............................................................ 10
Figure 5. Typ ID vs VDS at TJ=125°C........................................................... 10
Figure 6. Typ R
Figure 7. Typ R
Figure 8. Typ I
D(ON)
Figure 9. Typ R
Figure 10. Typ ISD vs VSD, at TJ=25°C .......................................................... 12
Figure 11. Typ ISD vs VSD, at TJ=125°C ......................................................... 12
Figure 12. Safe Operating Area at TJ=25°C ....................................................... 12
Figure 13. Typ Gate Charge at TJ=25°C .........................................................12
Figure 14. Derating Curve ................................................................... 13
Figure 15. Typ R
Figure 16. VCC UVLO and Low Side ........................................................... 14
Figure 17. VBO UVLO and High Side ........................................................... 15
Figure 18. Thermal Shutdown timing waveform .................................................... 16
Figure 19. Typical application diagram – Resonant LLC converter ....................................... 17
Figure 20. Typical application diagram – Active clamp flyback .......................................... 17
Figure 21. QFN 9 x 9 x 1 mm package dimensions .................................................19
Figure 22. Suggested footprint (top view drawing) .................................................. 20
vs ID at TJ=25°C ......................................................... 11
DS(ON)
vs ID at TJ=125°C ........................................................ 11
DS(ON)
vs VDS................................................................. 11
_x vs TJ, normalized at 25°C ................................................. 11
DS(ON)
vs TJ.................................................................. 13
Dboot
DS13775 - Rev 1
page 25/26
MASTERGAN5
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2021 STMicroelectronics – All rights reserved
DS13775 - Rev 1
page 26/26
Loading...