ST MICROELECTRONICS MASTERGAN1 Datasheet

MASTERGAN1
Datasheet
High power density 600V Half bridge driver with two enhancement mode GaN
HEMT

Features

600 V system-in-package integrating half-bridge gate driver and high-voltage power GaN transistors:
QFN 9 x 9 x 1 mm package
R
I
Reverse current capability
Zero reverse recovery loss
UVLO protection on low-side and high-side
Internal bootstrap diode
Interlocking function
Dedicated pin for shutdown functionality
Accurate internal timing match
3.3 V to 15 V compatible inputs with hysteresis and pull-down
Overtemperature protection
Bill of material reduction
Very compact and simplified layout
Flexible, easy and fast design.
DS(ON)
= 150 mΩ
= 10 A
Product status link
MASTERGAN1
Product label

Application

Switch-mode power supplies
Chargers and adapters
High-voltage PFC, DC-DC and DC-AC Converters
UPS Systems
Solar Power

Description

The MASTERGAN1 is an advanced power system-in-package integrating a gate driver and two enhancement mode GaN transistors in halfbridge configuration.
The integrated power GaNs have R breakdown voltage, while the high side of the embedded gate driver can be easily
supplied by the integrated bootstrap diode.
The MASTERGAN1 features UVLO protection on both the lower and upper driving sections, preventing the power switches from operating in low efficiency or dangerous conditions, and the interlocking function avoids cross-conduction conditions.
The input pins extended range allows easy interfacing with microcontrollers, DSP units or Hall effect sensors.
The MASTERGAN1 operates in the industrial temperature range, -40°C to 125°C.
The device is available in a compact 9x9 mm QFN package.
of 150 mΩ and 650 V drainsource
DS(ON)
DS13417 - Rev 3 - October 2020 For further information contact your local STMicroelectronics sales office.
www.st.com

1 Block diagram

Driver
Driver
Logic,
interlocking,
overtemp
Level Shifter
Level Shifter
VCC UVLO
UVLO
Vbo
PGNDPVCC
OUTbBOOT
GL
GH
VCC
HIN
LIN
SD/OD
GND
OUT
VS
SENSE
HON
HOFF
LON
LOFF
R
BLEED
RGOFF
H
RGON
H
RGON
L
RGOFF
L
MASTERGAN1
Block diagram
Figure 1. Block diagram
DS13417 - Rev 3
page 2/27

2 Pin description and connection diagram

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
24
23
22
21
20
19
18
17
16
31
30
29
28
27
26
25
GND
SENSE
OUT
EP1
EP2
EP3
SENSE
SENSE
SENSE
OUT
OUT
OUT
SENSE
SENSE
SENSE
SENSE
SENSE
VS
VS
VS
VS
VS
GH
OUTb
BOOT
PGND
GL
PVCC
N.C.
VCC
GND
LIN
HIN
SD/OD
N.C.
N.C.
N.C.
Figure 2. Pin connection (top view)
MASTERGAN1
Pin description and connection diagram

2.1 Pin list

Table 1. Pin description
Pin Number Pin Name Type Function
15, 16, 17, 18, 19 VS Power Supply High voltage supply (high-side GaN Drain)
12, 13, 14, EP3 OUT Power Output Half-bridge output
4, 5, 6, 7, 8, 9, 10,
11, EP2
22 BOOT Power Supply Gate driver high-side supply voltage
21 OUTb Power Supply
27 VCC Power Supply Logic supply voltage
SENSE Power Supply Half-bridge sense (low-side GaN Source)
Gate driver high-side reference voltage, used only for Bootstrap capacitor connection. Internally connected to OUT.
DS13417 - Rev 3
page 3/27
Pin Number Pin Name Type Function
1 PVCC Power Supply Gate driver low-side supply voltage
28, EP1 GND Power Supply Logic ground
3 PGND Power Supply
26 HIN Logic Input High-Side driver logic input
24 LIN Logic Input Low-Side driver logic input
25 SD/OD Logic Input-Output Driver Shutdown input and Over-Temperature
2 GL Output Low-Side GaN gate.
20 GH Output High-Side GaN gate.
23, 29, 30, 31 N.C. Not Connected Leave floating
Gate driver low-side driver reference. Internally connected to SENSE.
MASTERGAN1
Pin list
DS13417 - Rev 3
page 4/27

3 Electrical Data

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings (each voltage referred to GND unless otherwise specified)
Symbol Parameter Test Condition Value Unit
V
DS
VCC Logic supply voltage -0.3 to 11 V
PVCC-PGND
VCC-PGND Logic supply vs. Low-side driver ground -0.3 to 18.3 V
PVCC Low-side driver supply vs. logic ground -0.3 to 18.3 V
PGND Low-side driver ground vs. logic ground -7.3 to 11.3 V
V
BO
BOOT Bootstrap voltage -0.3 to 620 V
CGL, CGH
RGL, RGH
I
D
S
Rout
V
i
T
J
T
s
1. PGND internally connected to SENSE.
2. OUTb internally connected to OUT.
3.
CGx < 0.08/(Pvcc^2*Fsw)-(330*10
4. TCB is temperature of case exposed pad.
5. Range estimated by characterization, not tested in production.
6. Value specified by design factor, pulse duration limited to 50 µs and junction temperature.
GaN Drain-to-Source Voltage
Low-side driver supply voltage
BOOT to OUTb voltage
Maximum external capacitance between GL and PGND and between GH and OUTb
Minimum external pull-down resistance between GL and PGND and GH and OUTb
Drain current (per GaN transistor)
Half-bridge outputs slew rate (10% - 90%) 100 V/ns
Logic inputs voltage range -0.3 to 21 V
Junction temperature -40 to 150 °C
Storage temperature -40 to 150 °C
-12
).
MASTERGAN1
Electrical Data
TJ = 25 °C
(1)
(2)
Fsw = 2 MHz
DC @ TCB = 25°C
DC @ TCB = 100°C
Peak @ TCB = 25°C
(3)
(4), (5)
(4)
(5)
),
(4), (5), (6)
620 V
-0.3 to 7 V
-0.3 to 7 V
680 pF
6.8 kΩ
9.7 A
6.4 A
17 A
DS13417 - Rev 3
page 5/27

3.2 Recommended operating conditions

Table 3. Recommended operating conditions (Each voltage referred to GND unless otherwise specified)
Symbol Parameter Note Min Max Unit
VS High voltage bus 0 520 V
VCC Supply voltage 4.75 9.5 V
PVCC-PGND
PVCC to PGND low side supply
PVCC Low-side driver supply 3 8.5 V
VCC-PVCC VCC to PVCC pin voltage -3 3 V
PGND
Low-side driver ground
(1)
DT Suggested minimum deadtime 5 ns
T
IN_MIN
V
BO
Minimum duration of input pulse to obtain undistorted output pulse
BOOT to OUTb pin voltage
BOOT BOOT to GND voltage
V
i
T
J
Logic inputs voltage range 0 20 V
Junction temperature -40 125 °C
1. PGND internally connected to SENSE.
2. OUTb internally connected to OUT.
3. 5 V is recommended during high-hide turn-on.
(1)
(2)
MASTERGAN1
Recommended operating conditions
4.75 6.5 V
Best performance 5 6.5 V
-2 2 V
120 ns
4.4 6.5 V
Best performance 5 6.5 V
(3)
0
530 V
3.3

Thermal data

Table 4. Thermal data
Symbol Parameter Value Unit
R
th(J-CB)
R
th(J-A)
1. The junction to ambient thermal resistance is obtained simulating the device mounted on a 2s2p (4 layer) FR4 board as JESD51-5,7 with 6 thermal vias for each exposed pad. Power dissipation uniformly distributed over the two GaN transistors.
Thermal resistance junction to each GaN transistor exposed pad, typical 1.9 °C/W
Thermal resistance junction-to-ambient
(1)
17.5 °C/W
DS13417 - Rev 3
page 6/27

4 Electrical characteristics

4.1 Driver

Table 5. Driver electrical characteristics : VCC = PVCC = 6 V; SENSE = GND; TJ = 25°C, unless otherwise
specified (Each voltage referred to GND unless otherwise specified.)
Symbol Parameter Test condition Min Typ Max Unit
Logic section supply
VCC
VCC
VCC
I
QVCCU
I
QVCC
I
SVCC
thON
thOFF
hys
VCC vs. GND
VCC UV turn ON threshold
VCC UV turn OFF threshold
VCC UV hysteresis
VCC undervoltage quiescent supply current
VCC quiescent supply current
VCC switching supply current
MASTERGAN1
Electrical characteristics
(1)
(1)
(1)
VCC = PVCC = 3.8 V 320 410 μA
SD/OD = LIN = 5 V;
HIN = 0 V;
BOOT = 7 V
SD/OD = 5 V;
VBO = 6.5 V;
VS = 0 V; FSW = 500 kHz
4.2 4.5 4.75 V
3.9 4.2 4.5 V
0.2 0.3 0.45 V
680 900 μA
0.8 mA
Low-side driver section supply
I
QPVCC
I
SPVCC
R
BLEED
RON
ROFF
PVCC vs. PGND
GL vs. PGND Low side gate bleeder PVCC = PGND 75 100 125 kΩ
L
L
High-side floating section supply
V
BOthON
V
BOthOFF
V
BOhys
BOOT vs. OUTb
I
QBOU
I
QBO
I
SBO
BOOT BOOT switching supply current
PVCC quiescent supply current SD/OD = LIN = 5 V 150 μA
PVCC switching supply current
VS = 0 V
FSW = 500 kHz
1.4 mA
Low side turn on resistor I(GL) = 1 mA (source) 50
Low side turn off resistor I(GL) = 1 mA (sink) 2
V
UV turn ON threshold
BO
VBO UV turn OFF threshold
V
UV hysteresis
BO
VBO undervoltage quiescent supply current
(2)
VBO quiescent supply current
(2)
(2)
(2)
VBO = 3.4 V
VBO = 6 V; LIN = GND;
(2)
SD/OD = HIN = 5 V;
3.6 4.0 4.4 V
3.4 3.7 4.0 V
0.1 0.3 0.5 V
140 200 μA
217 μA
VBO = 6 V;
SD/OD = 5 V;
2 mA
VS = 0 V; FSW = 500 kHz
DS13417 - Rev 3
I
LK
R
DBoot
BOOT vs. SGND High voltage leakage current BOOT = OUT = 600 V 11 μA
SD/OD = LIN = 5 V;
VCC vs. BOOT
Bootstrap diode on resistance
(3)
HIN = GND = PGND
140 175 Ω
page 7/27
MASTERGAN1

GaN power transistor

Symbol Parameter Test condition Min Typ Max Unit
VCC – BOOT = 0.5 V
RON
H
ROFF
H
Logic inputs
V
il
V
ih
V
ihys
I
INh
I
INl
R
PD_IN
I
SDh
I
SDl
R
PD_SD
V
TSD
R
ON_OD
I
OL_OD
LIN, HIN, SD/OD
LIN, HIN
SD/OD Logic “1” input bias current SD/OD = 5 V 11 15 20 μA
SD/OD Logic “0” input bias current SD/OD = 0 V 1 μA
SD/OD Pull-down resistor
SD/OD
SD/OD Open drain ON resistance
SD/OD
High side turn on resistor I(GH) = 1 mA (source) 50
High side turn off resistor I(GH) = 1 mA (sink) 2
Low level logic threshold voltage
High level logic threshold voltage
TJ = 25°C
Full Temperature range
TJ = 25°C
Full Temperature range
(4)
(4)
1.1 1.31 1.45
0.8
2 2.17 2.5
2.7
Logic input threshold hysteresis 0.7 0.96 1.2 V
Logic ‘1’ input bias current LIN, HIN = 5 V 23 33 55 μA
Logic ‘0’ input bias current LIN, HIN = GND 1 μA
Input pull-down resistor LIN, HIN = 5 V 90 150 220
Thermal shutdown unlatch threshold
SD/OD = 5 V
OpenDrain OFF
TJ = 25°C
(5)
250 330 450
0.5 0.75 1 V
TJ = 25°C;
8 10 18 Ω
22 40 50 mA
Open Drain low level sink current
I
= 400 mV
OD
TJ = 25°C;
VOD = 400 mV
(5)
(5)
V
V
4.2
Over temperature protection
T
TSD
T
HYS
Shutdown temperature
Temperature hysteresis
(4)
(4)
175 °C
20 °C
1. VCC UVLO is referred to VCC - GND.
2. V
3. R
= V
BO
BD(on)
R
BD(on)
- V
BOOT
OUT.
is tested in the following way:
= [(VCC - V
BOOTa
) - (VCC - V
Where: Ia is BOOT pin current when V
BOOTb
BOOT
)] / [Ia - Ib]
= V
BOOTa
; Ib is BOOT pin current when V
BOOT
= V
BOOTb
4. Range estimated by characterization, not tested in production.
5. Tested on wafer.
GaN power transistor
Table 6. GaN power transistor electrical characteristics (V
Symbol Parameter Test condition Min Typ Max Unit
GaN on/off states
I
< 18 µA
V
(BR)DS
Drain-source breakdown voltage
DSS
VGS = 0 V
= 6 V; TJ = 25°C, unless otherwise specified. )
GS
(1)
650 V
DS13417 - Rev 3
page 8/27
MASTERGAN1
GaN power transistor
Symbol Parameter Test condition Min Typ Max Unit
I
V
I
R
DSS
GS(th)
GS
DS(on)
Zero gate voltage drain current
Gate threshold voltage
Gate to source voltage
Static drain-source on-resistance
1. Tested on wafer.
2. Value estimated by characterization, not tested in production.
VDS = 600 V
VGS = 0 V
VDS = V
GS, ID
VDS = 0 V
(2)
ID = 3.2 A
= 2.5 mA
TJ = 25°C
TJ = 125°C
0.7 µA
(1)
1.7 V
57 µA
150 220
(2)
330
DS13417 - Rev 3
page 9/27

5 Device characterization values

The information in Table 7 and Table 8 represents typical values based on characterization and simulation results and are not subject to the production test.
Table 7. GaN power transistor characterization values
Symbol Parameter Test condition Min Typ Max Unit
Q
G
Q
OSS
E
OSS
C
OSS
C
O(ER)
C
O(TR)
Q
RR
I
RRM
1. C
2. C
V
V
O(ER)
DS
O(TR)
DS
Total gate charge
Output charge
Output capacitance stored energy 2.7 µJ
Output capacitance 20 pF
Effective output capacitance energy
(1)
related
Effective output capacitance time
(2)
related
Reverse recovery charge 0 nC
Reverse recovery current 0 A
is the fixed capacitance that would give the same stored energy as C
is the fixed capacitance that would give the same charging time as C
VGS = 6 V,
TJ = 25°C
V
= 0 to 400 V
DS
VGS = 0 V,
V
= 400 V
DS
V
= 0 V,
GS
VDS = 0 to 400 V
MASTERGAN1
Device characterization values
2 nC
20 nC
31 pF
50 pF
while VDS is rising from 0 V to the stated
OSS
while VDS is rising from 0 V to the stated
OSS
t
(on)
t
C(on)
t(off)
t
C(off)
t
SD
E
E
1. t
2. t
Symbol
(1)
(1)
on
off
(on)
C(on)
(2)
(2)
Table 8. Inductive load switching characteristics
Parameter Test condition Min Typ Max Unit
Turn-on time
Crossover time (on) 15 ns
Turn-off time 70 ns
Crossover time (off) 15 ns
Shutdown to high/low-side propagation delay
Turn-on switching losses 12.5 µJ
Turn-off switching losses 2.5 µJ
and t
include the propagation delay time of the internal driver
(off)
and t
are the switching times of GaN transistor itself under the internally given gate driving conditions
C(off)
VS = 400 V,
VGS = 6 V,
ID = 3.2 A
See Figure 3
70 ns
70 ns
DS13417 - Rev 3
page 10/27
Figure 3. Switching time definition
I
D
I
D
V
DS
V
DS
V
IN
V
IN
t
(ON)
t
(OFF)
t
C(ON)
t
C(OFF)
10%I
D
10%V
DS
10%I
D
10%V
DS
(a) turn-on
(b) turn-off
0
1
2 3
4
5
VDS (V)
I
D
(A)
0
10
5
15
20
25
30
TJ=25°C
4V
5V
6V
0
1
2 3
4
5
VDS (V)
I
D
(A)
0
4
2
6
8
10
12
TJ=125°C
4V
5V
6V
MASTERGAN1
Device characterization values
Figure 4. Typ ID vs. VDS at TJ=25°C
Figure 5. Typ ID vs. VDS at TJ=125°C
page 11/27
DS13417 - Rev 3
0
5 10 15 20 25
30
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22 TJ=25°C
4V
5V
6V
ID (A)
R
DS(on)
(Ω)
0
2 4
6 8 10
12
0.35
0.37
0.39
0.41
0.43
0.45
0.47
0.49
0.51 TJ=125°C
4V
5V
6V
ID (A)
R
DS(on)
(Ω)
0
1
2 3
4
5
VDS (V)
I
D
(A)
0
10
5
15
20
25
30
VGS=6V
TJ=25°C
TJ=50°C
TJ=75°C
TJ=125°C
TJ=100°C
Normalized R
DS(on)
(1 at 25°C)
0
1.0
0.5
1.5
2.0
2.5
3.0
Temperature (°C)
-50
-10
30
70
110
150
MASTERGAN1
Device characterization values
Figure 6. Typ R
Figure 8. Typ ID vs. V
vs. ID at TJ=25°C
DS(on)
DS
Figure 7. Typ R
Figure 9. Typ R
vs. ID at TJ=125°C
DS(on)
vs. TJ, normalized at 25°C
DS(on)
DS13417 - Rev 3
page 12/27
VSD (V)
I
S
(A)
VGS=6V
TJ=25°C
VGS=0V
0
1 2 3 4 5 6 7 8 9 10
0
5
10
15
20
25
30
35
40
45
50
TJ=125°C
VSD (V)
I
S
(A)
0
1 2 3 4 5 6 7 8 9 10
0
2
4
6
8
10
12
14
16
18
20
22
24
VGS=6V
VGS=0V
0
25
50
75
100
125
T
CaseBottom
(°C)
0
150
10
20
30
40
50
60
70
P
DISS
(W)
Device mounted on a 2s2p (4 layer) FR4 board as JESD51-5,7 with 6 thermal vias for each exposed pad. Power dissipation uniformly distributed over the two GaN transistors.
MASTERGAN1
Device characterization values
Figure 10. Typ ISD vs. VSD, at TJ=25°C
Figure 12. Safe Operating Area at TJ=25°C
Figure 11. Typ ISD vs. VSD, at TJ=125°C
Figure 13. Derating curve
DS13417 - Rev 3
page 13/27
0 0.5
1
1.5
2
2.5
QG (nC)
V
GS
(V)
0
2
1
3
4
5
6
400 V
100 V
7
R
DBoot
(ohm)
0
100
50
150
200
250
300
Temperature (°C)
-50
-10
30
70
110
150
MASTERGAN1
Device characterization values
Figure 14. Typ Gate Charge at TJ=25°C
Figure 15. Typ R
Dboot
vs T
J
DS13417 - Rev 3
page 14/27

6 Functional description

6.1 Logic inputs

The MASTERGAN1 features a half-bridge gate driver with three logic inputs to control the internal high-side and low-side GaN transistors.
The devices are controlled through the following logic inputs:
SD/OD: Shutdown input, active low;
LIN: low-side driver inputs, active high;
HIN: high-side driver inputs, active high.
Table 9. Inputs truth table (applicable when device is not in UVLO)
Input pins GaN transistors status
SD/OD LIN HIN LS HS
L
H L L OFF OFF
H L H OFF ON
H H L ON OFF
1. X: Don’t care
2. Interlocking
H
(1)
X
(2)
H
MASTERGAN1
Functional description
(1)
X
(2)
H
OFF OFF
OFF OFF
6.2
6.3
The logic inputs have internal pull-down resistors. The purpose of these resistors is to set a proper logic level in case, for example, there is an interruption in the logic lines or the controller outputs are in tri-state conditions.
If logic inputs are left floating, the gate driver outputs are set to low level and the correspondent GaN transistors are turned off.
The internal logic is able to transfer the control signal pulse longer than T
= 120 ns and introduces a very
IN_MIN
short propagation delay to output.

Bootstrap structure

A bootstrap circuitry is typically used to supply the high-voltage section. MASTERGAN1 integrates this structure, realized by a patented integrated high-voltage DMOS, to reduce the external components.
The Boostrap integrated circuit is connected to VCC pin and is driven synchronously with the low-side driver.
The use of an external bootstrap diode in parallel to the integrated structure is possible, in particular if the operating frequency is approximately higher than 500 kHz.

VCC supply pins and UVLO function

The VCC pin supplies current to the logic circuit, level-shifters in the low-side section and the integrated bootstrap diode.
The PVCC pin supplies low-side output buffer. During output commutations the average current used to provide gate charge to the high-side and low-side GaN transistors flows through this pin.
The PVCC pin can be connected either to the same supply voltage of the VCC pin or to a separated voltage source. In case the same voltage source is used, it is suggested to connect VCC and PVCC pins by means of a small decoupling resistance. The use of dedicated bypass ceramic capacitors located as close as possible to each supply pin is highly recommended.
DS13417 - Rev 3
page 15/27
VCC = PVCC
VCC
thON
VCC
thOFF
UVLO VCC
0V
0V
VCC rise
LIN
GL-PGND
0V
PVCC
VCC
VCCthON VCCthOFF
HIN
UVLO VBO
0V
0V
VBOrise
(GH-OUTB)
VBO
0V
V
BOthON
VBOthOFF
0V
VBO
MASTERGAN1
VBO UVLO protection
The MASTERGAN1 VCC supply voltage is continuously monitored by an under-voltage lockout (UVLO) circuitry that turns both the high-side and low-side GaN transistors off when the supply voltage goes below the V
threshold. The UVLO circuitry turns on the GaN, according to LIN and HIN status, as soon as the supply voltage goes above the V
CCthON
voltage. A V
hysteresis is provided for noise rejection purpose.
CChys
Figure 16. VCC UVLO and Low Side
CC_thOFF

6.4 VBO UVLO protection

Dedicated undervoltage protection is available on the bootstrap section between BOOT and OUTb supply pins. In order to avoid intermittent operation, a hysteresis sets the turn-off threshold with respect to the turn-on threshold.
When VBO voltage goes below V reaches V the HIN pin's rising edge, that activates the high side transistor's turn-on.
threshold the device returns to normal operation and the output remains off until the detection of
BOthON
BOthOFF
threshold the high-side GaN transistor is switched off. When VBO voltage
Figure 17. VBO UVLO and High Side
DS13417 - Rev 3
page 16/27

6.5 Thermal shutdown

THERMAL SHUTDOWN CIRCUIT
GH/GL
OD gate
(internal)
Fast shut down
the driver outputs are switched off
disable time
SD/OD
T
TSDTHYSTTSD -
VihV
0 V
TSDVOD
TJ
t1t
2
VPU
SD/OD
FROM / TO
CONTROLLER
C
OD
THERMAL
SHUTDOWN
LOGIC
R
ON_ODRPD_SD
R
OD_ext
2
1
immediately after overtemperature
The integrated gate driver has a thermal shutdown protection.
When junction temperature reaches the T leaving the half-bridge in 3-state and signaling the state forcing
junction temperature is below T
GaN are driven again according to inputs when SD/OD rises above Vih.
The thermal smart shutdown system gives the possibility to increase the time constant of the external RC network (that determines the disable time after the overtemperature event) up to very large values without delaying the protection.
temperature threshold, the device turns off both GaN transistors
TSD
SD/OD pin low. SD/OD pin is released when
TSD-THYS
and SD/OD is below V
TSD
.
Figure 18. Thermal shutdown timing waveform
MASTERGAN1
Thermal shutdown
DS13417 - Rev 3
page 17/27

7 Typical application diagrams

+
C
PVCC
FROM/TO CONTROLLER
H.V.
C
R
CBOOT
CVCC
C
R
COD
R
VCC
VCC
VPU
CbuS
FROM/TO CONTROLLER
FROM/TO CONTROLLER
VOUT
Driver
Driver
Logic,
interlocking,
overtemp
Level Shifter
Level Shifter
VCC UVLO
UVLO
Vbo
PGNDPVCC
OUTbBOOT
GL
GH
VCC
HIN
LIN
SD/OD
GND
OUT
VS
SENSE
HON
HOFF
LON
LOFF
R
BLEED
RGON
L
RGOFF
L
RGOFF
H
RGON
H
+
C
PVCC
FROM/TO CONTROLLER
H.V.
C
R
CBOOT
CVCC
C
R
COD
R
VOUT
VCC
VCC
VPU
CC
CbuS
FROM/TO CONTROLLER
FROM/TO CONTROLLER
TO CONTROLLER
Driver
Driver
Logic,
interlocking,
overtemp
Level Shifter
Level Shifter
VCC UVLO
UVLO
Vbo
PGNDPVCC
OUTbBOOT
GL
GH
VCC
HIN
LIN
SD/OD
GND
OUT
VS
SENSE
HON
HOFF
LON
LOFF
R
BLEED
RGON
L
RGOFF
L
RGOFF
H
RGON
H
Figure 19. Typical application diagram – Resonant LLC converter
MASTERGAN1
Typical application diagrams
DS13417 - Rev 3
Figure 20.
Typical application diagram – Active clamp flyback
page 18/27

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 QFN 9 x 9 x 1 mm, 31 leads, pitch 0.6 mm package information

Table 10. QFN 9 x 9 x 1 mm package dimensions
MASTERGAN1
Package information
Symbol
A
A3 0.10
b 0.25 0.30 0.35
D 8.96 9.00 9.04
E 8.96 9.00 9.04
D1 3.30 3.40 3.50
E1 2.06 2.16 2.26
D2 1.76 1.86 1.96
E2 3.10 3.20 3.30
D3 1.70 1.80 1.90
E3 3.10 3.20 3.30
e 0.60
K 0.24
L 0.35 0.45 0.55
N 31
aaa 0.10
bbb 0.10
ccc 0.10
ddd 0.05
eee 0.08
Min. Typ. Max.
0.90 0.95 1.00
Dimensions (mm)
Note: 1. Dimensioning and tolerances conform to ASME Y14.5-2009.
2. All dimensions are in millimeters.
3. N total number of terminals.
4. Dimensions do not include mold protrusion, not to exceed 0.15 mm.
5. Package outline exclusive of metal burr dimensions.
DS13417 - Rev 3
page 19/27
Figure 21. QFN 9 x 9 x 1 mm package dimensions
TOP VIEW
SIDE
VIEW
BOTTOM VIEW
MASTERGAN1
QFN 9 x 9 x 1 mm, 31 leads, pitch 0.6 mm package information
DS13417 - Rev 3
page 20/27

9 Suggested footprint

TOP VIEW
Dimensions in mm
The MASTERGAN1 footprint for the PCB layout is usually defined based on several design factors such as assembly plant technology capabilities and board component density. For easy device usage and evaluation, ST provides the following footprint design, which is suitable for the largest variety of PCBs.
The following footprint indicates the copper area which should be free from the solder mask, while the copper area shall extend beyond the indicated areas especially for EP2 and EP3. To aid thermal dissipation, it is recommended to add thermal vias under these EPADs to transfer and dissipate device heat to the other PCB copper layers. A PCB layout example is available with the MASTERGAN1 evaluation board.
Figure 22. Suggested footprint (top view drawing)
MASTERGAN1
Suggested footprint
DS13417 - Rev 3
page 21/27

10 Ordering information

Order code Package Package Marking Packaging
MASTERGAN1 QFN 9 x 9 x 1 mm MASTERGAN1 Tray
MASTERGAN1TR QFN 9 x 9 x 1 mm MASTERGAN1 Tape and Reel
MASTERGAN1
Ordering information
Table 11. Order codes
DS13417 - Rev 3
page 22/27

Revision history

Table 12. Document revision history
Date Version Changes
15-Jul-2020 1 Initial release.
10-Aug-2020 2
21-Oct-2020 3
Changed R
Changed Figure 1, Figure 2, Figure 13, Figure 19 and Figure 20 ; added test conditions of some parameters in Table 2 and Table 5; updated text in
Section Features.
unit in Table 6
DS(on)
MASTERGAN1
DS13417 - Rev 3
page 23/27
MASTERGAN1

Contents

Contents
1 Block diagram .....................................................................2
2 Pin description and connection diagram ...........................................3
2.1 Pin list ........................................................................3
3 Electrical Data .....................................................................5
3.1 Absolute maximum ratings.......................................................5
3.2 Recommended operating conditions ..............................................6
3.3 Thermal data ..................................................................6
4 Electrical characteristics...........................................................7
4.1 Driver ........................................................................7
4.2 GaN power transistor ...........................................................8
5 Device characterization values....................................................10
6 Functional description ............................................................15
6.1 Logic inputs ..................................................................15
6.2 Bootstrap structure ............................................................15
6.3 VCC supply pins and UVLO function .............................................15
6.4 VBO UVLO protection ..........................................................16
6.5 Thermal shutdown.............................................................17
7 Typical application diagrams......................................................18
8 Package information..............................................................19
8.1 QFN 9 x 9 x 1 mm, 31 leads, pitch 0.6 mm package information ......................19
9 Suggested footprint ..............................................................21
10 Ordering information .............................................................22
Revision history .......................................................................23
Contents ..............................................................................24
List of tables ..........................................................................25
List of figures..........................................................................26
DS13417 - Rev 3
page 24/27
MASTERGAN1

List of tables

List of tables
Table 1. Pin description......................................................................3
Table 2. Absolute maximum ratings (each voltage referred to GND unless otherwise specified) ....................5
Table 3. Recommended operating conditions (Each voltage referred to GND unless otherwise specified) ............. 6
Table 4. Thermal data.......................................................................6
Table 5. Driver electrical characteristics : VCC = PVCC = 6 V; SENSE = GND; TJ = 25°C, unless otherwise specified (Each
voltage referred to GND unless otherwise specified.) ........................................... 7
Table 6. GaN power transistor electrical characteristics (V
Table 7. GaN power transistor characterization values ............................................... 10
Table 8. Inductive load switching characteristics .................................................... 10
Table 9. Inputs truth table (applicable when device is not in UVLO)....................................... 15
Table 10. QFN 9 x 9 x 1 mm package dimensions ................................................... 19
Table 11. Order codes ...................................................................... 22
Table 12. Document revision history ............................................................. 23
= 6 V; TJ = 25°C, unless otherwise specified. ) .........8
GS
DS13417 - Rev 3
page 25/27
MASTERGAN1

List of figures

List of figures
Figure 1. Block diagram ....................................................................2
Figure 2. Pin connection (top view) .............................................................3
Figure 3. Switching time definition ............................................................ 11
Figure 4. Typ ID vs. VDS at TJ=25°C ........................................................... 11
Figure 5. Typ ID vs. VDS at TJ=125°C .......................................................... 11
Figure 6. Typ R
Figure 7. Typ R
Figure 8. Typ ID vs. VDS................................................................... 12
Figure 9. Typ R
Figure 10. Typ ISD vs. VSD, at TJ=25°C ..........................................................13
Figure 11. Typ ISD vs. VSD, at TJ=125°C ......................................................... 13
Figure 12. Safe Operating Area at TJ=25°C ....................................................... 13
Figure 13. Derating curve ................................................................... 13
Figure 14. Typ Gate Charge at TJ=25°C ......................................................... 14
Figure 15. Typ R
Figure 16. VCC UVLO and Low Side ........................................................... 16
Figure 17. VBO UVLO and High Side ........................................................... 16
Figure 18. Thermal shutdown timing waveform ....................................................17
Figure 19. Typical application diagram – Resonant LLC converter ....................................... 18
Figure 20. Typical application diagram – Active clamp flyback .......................................... 18
Figure 21. QFN 9 x 9 x 1 mm package dimensions.................................................. 20
Figure 22. Suggested footprint (top view drawing) .................................................. 21
vs. ID at TJ=25°C ......................................................... 12
DS(on)
vs. ID at TJ=125°C ........................................................ 12
DS(on)
vs. TJ, normalized at 25°C................................................... 12
DS(on)
vs TJ.................................................................. 14
Dboot
DS13417 - Rev 3
page 26/27
MASTERGAN1
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved
DS13417 - Rev 3
page 27/27
Loading...