ST MICROELECTRONICS M 48T18-100PC Datasheet

FEAT URES SUMMARY

M48T08
M48T08Y, M48 T1 8
5V, 64 Kbit (8 Kb x8) TIMEKEEPER® SRAM
REAL TIME CLOCK, POWER-FAIL CONTROL CIRCUIT, AND BATTERY
BYTEWIDE™ RAM-LIKE CLOCK ACCESS
BCD CODED YEAR, MONTH, DAY, DATE,
HOURS, MINUTES, and SECONDS
TYPICAL CLOCK ACCURACY OF ±1
MINUTE A MONTH, AT 25°C
AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECT ION
WRITE PROTECT VOLTAGES
= Power-fail Deselect Voltage):
(V
PFD
M48T08: V
4.5V V
M48T18/T08Y: V
4.2V V
SOFTWARE CONTROLLED CLOCK
= 4.75 to 5.5V
CC
4.75V
PFD
4.5V
PFD
= 4.5 to 5.5V
CC
CALIBRATION FOR HIGH ACCURACY APPLICATIONS
SELF-CONTAINED BATTERY AND
CRYSTAL IN THE CAPHAT™ DIP PACKAGE
PACKAGING INCLUDES A 28-LEAD SOIC
AND SNAPHAT
®
TOP (to be ordered
separately)
SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAPHAT TOP WHICH CONTAINS THE BATTERY AND CRYSTAL
PIN AND FUNCTION COMPATIBLE WITH
DS1643 and JEDEC STANDARD 8K x8 SRAMs
RoHS COMPLIANCE
Lead-free components are compliant with the RoHS Directive.

Figure 1. 28-pin PCDIP, CAPHAT™ Package

28
1
PCDIP28 (PC) Battery/Crystal
CAPHAT

Figure 2. 28-pi n S O I C Package

SNAPHAT (SH)
Battery/Crystal
28
1
SOH28 (MH)
Rev 7.0
1/27December 2005
M48T08, M48T08Y, M48T18
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. 28-pin PCDIP, CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. RE A D Mode AC Charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 8. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 9. Chip Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Power-fail Interrupt Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Reading the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Setting the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11.Clock Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
V
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CC
Figure 12.Supply Voltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 13.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 14.Power Down/Up Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/27
M48T08, M48T08Y, M48T18
Table 10.Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11.Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . . 21
Table 12. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . . 21
Figure 16.SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline. 22
Table 13. SOH28 – 28-lead Plastic SO, 4-socket battery SNAPHAT, Package Mech. Data . . . . . 22
Figure 17.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 23
Table 14. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 23
Figure 18.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 24
Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 24
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 16.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17.SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 18.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/27
M48T08, M48T08Y, M48T18

SUMMARY DESCRIPTIO N

The M48T08/18/08Y TIMEKEEPER® RAM is an 8K x 8 non-volatile static RAM and real time clock which is pin and functional compatible with the DS1643. The monolithic chip is available in two special packages to provide a highly integrated battery backed-up memory and real time clock so­lution.
The M48T08/18/08Y is a non-volatile pin and func­tion equivalent to any JEDEC standard 8K x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.
The 28-pin, 600mil DIP CAPHAT™ houses the M48T08/18/08Y silicon with a quartz crystal and a long- life lithium button cell in a single package.
The 28-pin, 330mil SOIC provides sockets with gold plated contacts at bot h ends for direct con­nection to a separate SNAPHAT taining the battery and crystal. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface mount process. Inser­tion of the SNAPHAT housing after reflow pre­vents potential battery and c rystal dam age due to the high temperatures required for device surface­mounting. The SNAPHAT housing is keyed to pre­vent reverse insertion.
The SOIC and battery/crystal packages are shipped separately in plastic anti-static tubes or in Tape & Reel form. For t he 28 lead SOIC, the ba t­tery/crystal package (e.g., SNAPHAT) part num­ber is “M4T28-BR12SH” or “M4T32-BR12SH” (see Table 17., page 25).

Figure 3. Logic Diagram Table 1. Signal Names

A0-A12 Address Inputs DQ0-DQ7 Data Inputs / Outputs INT E1
Power Fail Interrupt (Open Drain) Chip Enable 1
A0-A12
13
V
CC
8
DQ0-DQ7
®
housing con-
W
E1 INT
E2
G
M48T08
M48T08Y
M48T18
V
SS
AI01020
E2 Chip Enable 2 G W V V
CC
SS
Output Enable WRITE Enable Supply Voltage Ground
4/27
M48T08, M48T08Y, M48T18

Figure 4. DIP C on ne ctions Figure 5. SOI C Co nn e ct io ns

1
INT V
2
A12
3
A7
4
A6
5
A5 A4
6
A3
7
M48T08
8
A2 A1 A0
DQ0
M48T18 9 10 11 12
DQ2
13 14
SS

Figure 6. Block Diagram

28 27 26 25 24 23 22 21 20 19 18 17 16 15
AI01182
CC
W E2 A8 A9 A11 G A10 E1 DQ7 DQ6 DQ5DQ1 DQ4 DQ3V
INT V
A12
A7 A6 A5 A4 A3 A2 A1 A0
DQ0
1 2 3 4 5 6 7 8 9 10 11
M48T08Y
12
DQ2
SS
13 14
AI01021B
28 27 26 25 24 23 22 21 20 19 18 17 16 15
CC
W E2 A8 A9 A11 G A10 E1 DQ7 DQ6 DQ5DQ1 DQ4 DQ3V
32,768 Hz CRYSTAL
LITHIUM
CELL
OSCILLATOR AND
CLOCK CHAIN
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
CC
INTV
POWER
V
PFD
8 x 8 BiPORT
SRAM ARRAY
8184 x 8
SRAM ARRAY
V
SS
A0-A12
DQ0-DQ7
E1 E2 W G
AI01333
5/27
M48T08, M48T08Y, M48T18

OPERATION MODES

As Figure 6., page 5 shows, the static memory ar­ray and the quartz-controlled clock oscillator of the M48T08/18/08Y are integrated on one silicon chip. The two circuits are interconnected at the upper eight memory locations to provide user accessible BYTEWIDE™ clock information in t he bytes with addresses 1FF8h-1FFFh.
The clock locations contain the year, month, date, day, hour, minute, and second in 24 hour BCD for­mat. Corrections for 28, 29 (leap yea r - valid until
2100), 30, and 31 day months are made automat­ically. Byte 1FF8h is the clock control register. This byte controls user access t o the clock inform ation and also stores the clock calibration setting.
The eight clock bytes are not the actual clock counters themselves; they are memory locations consisting of BiPORT™ READ/WRITE memory

Table 2. Operating Modes

Mode
Deselect Deselect X WRITE READ READ Deselect
Deselect
Note: X = VIH or VIL; VSO = Batte ry Back-up Switchover Vo l tage.
1. See Table 11., page 20 for details.
VSO to V
V
CC
4.75 to 5.5V or
4.5 to 5.5V
(min)
PFD
(1)
V
SO
(1)
E1 E2 G W DQ0-DQ7 Power
V
IH
V
IL
V
IL
V
IL
X X X X High Z CMOS Standby X X X X High Z Battery Back-up Mode
X X X High Z Standby
V
IL
V
IH
V
IH
V
IH
cells. The M48T08/18/08Y includes a clock control circuit which updates the clock bytes with current information once per second. The information can be accessed by the user in the same manner as any other location in the static memory array.
The M48T08/18/08Y also has its own Power-fail Detect circuit. The control circuitry constantly mon­itors the single 5V supply for an out of tolerance condition. When V
is out of tolerance, the circuit
CC
write protects the SRAM, providing a high degree of data security in the midst of unpredictable sys­tem operation brought on by low V
. As VCC falls
CC
below the Battery Back-up Switchover Voltage
), the control circuitry connects the battery
(V
SO
which maintains data and clock operation until val­id power returns.
X X High Z Standby X
V
IL
V
IH
V
IL
V
IH
V
IH
D
IN
D
OUT
High Z Active
Active Active
6/27

READ Mode

M48T08, M48T08Y, M48T18
The M48T08/18/08Y i s in the RE AD Mode when­ever W
(WRITE Enable) is high, E1 (Chip Enable
1) is low, and E2 (Chip Enable 2 ) is hi gh. The de­vice architecture allows ripple-through access of data from eight of 65,536 locations in the static storage array. Thus, the unique address specified by the 13 address inputs defines which one of the 8,192 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within address access time (t signal is stable, providing that the E1
) after the last address input
AVQV
, E2, and G
access times are a lso satisfied. I f the E1, E 2 and
access times are not met, valid data will be
G

Figure 7. READ Mode AC Waveforms

A0-A12
tAVQV tAXQX
tE1LQV
E1
tE1LQX
tE2HQV
available after the latter of the Chip Enable Access times ( t time ( t
E1LQV
GLQV
or t
).
) or Output Enable Access
E2HQV
The state of the eight t hree-state Da ta I/O si gnals is controlled by E1 tivated before t an indeterminate state until t inputs are changed while E1
, E2 and G. If the outputs are ac-
, the data lines will be driven to
AVQV
. If the address
AVQV
, E2 and G remain ac­tive, output data will remain valid for Output Data Hold time (t
) but will go indeterminate until the
AXQX
next address access.
tAVAV VALID
tE1HQZ
tE2LQZ
E2
G
DQ0-DQ7
Note: W RITE Enable (W) = High.
tE2HQX
tGLQX
tGLQV
tGHQZ
VALID
AI00962
7/27
M48T08, M48T08Y, M48T18

Table 3. READ Mode AC Characteristics

M48T08/M48T18/T08Y
Symbol
t
AVAV
t
AVQV
t
E1LQV
t
E2HQV
t
GLQV
t
E1LQX
t
E2HQX
t
GLQX
t
E1HQZ
t
E2LQZ
t
GHQZ
t
AXQX
Note: 1. Valid for Ambient Op erating Temp erature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).
READ Cycle Time 100 150 ns Address Valid to Output Valid 100 150 ns Chip Enable 1 Low to Output Valid 100 150 ns Chip Enable 2 High to Output Valid 100 150 ns Output Enable Low to Output Valid 50 75 ns Chip Enable 1 Low to Output Transition 10 10 ns Chip Enable 2 High to Output Transition 10 10 ns Output Enable Low to Output Transition 5 5 ns Chip Enable 1 High to Output Hi-Z 50 75 ns Chip Enable 2 Low to Output Hi-Z 50 75 ns Output Enable High to Output Hi-Z 40 60 ns Address Transition to Output Transition 5 5 ns
Parameter
(1)
MinMaxMinMax
Unit–100/–10 (T08Y) –150/–15 (T08Y)
8/27

WRITE Mode

M48T08, M48T08Y, M48T18
The M48T08/18/08Y is in the WRITE Mode when­ever W
, E1, and E2 are active. The start of a WRITE is referenced from the latter occurring fall­ing edge of W
or E1, or the rising edge of E2. A
WRITE is terminated by the earlier rising edge of
or E1, or the falling edge of E 2. The addr ess es
W must be held valid throughout the cycle. E1 must return high or E2 low for a minimum of t or t
from Chip Enabl e or t
E2LAX
from WRITE
WHAX
or W
E1HAX
Enable prior to the initiation of another READ or WRITE Cycle. Data-in must be valid t the end of WRITE and remain valid for t terward. G cles to avoid bus contention; however, if the output bus has been activated by a low on E1 a high on E2, a low o n W t
WLQZ

Figure 8. WRITE Enable Controlled, WRITE AC Waveform

tAVAV
A0-A12
tAVE1L
E1
tAVE2H
E2
tAVWL
W
tWLQZ
VALID
tAVWH
tWLWH
DVWH
should be kept high during WRITE Cy-
will disable the o utputs
after W falls.
tWHAX
tWHQX
tWHDX
prior to
af-
WHDX
and G and
DQ0-DQ7
tDVWH
DATA INPUT
AI00963
9/27
Loading...
+ 18 hidden pages