ST MICROELECTRONICS L 6202 Datasheet

L6201
L6202 - L6203
DMOS FULL BRIDGE DRIVER
SUPPLYVOLTAGEUP TO 48V 5AMAXPEAKCURRENT (2A max.forL6201) TOTALRMS CURRENT UP TO
L6201: 1A;L6202:1.5A; L6203/L6201PS:4A R
CROSSCONDUCTION PROTECTION TTL COMPATIBLEDRIVE OPERATINGFREQUENCYUP TO 100 KHz THERMALSHUTDOWN INTERNALLOGIC SUPPLY HIGHEFFICIENCY
DESCRIPTION
The I.C. is a full bridgedriver for motor controlap­plications realized in Multipower-BCD technology which combinesisolated DMOSpower transistors with CMOS and Bipolar circuits on the same chip. By using mixed technologyit has beenpossibleto optimize the logic circuitry and thepower stage to achieve the best possible performance. The DMOS output transistors can operate at supply voltages up to 42V and efficiently at high switch-
BLOCK DIAGRAM
0.3 (typicalvalue at 25 °C)
MULTIPOWER BCD TECHNOLOGY
Powerdip 12+3+3
Multiwatt11
ORDERING NUMBERS:
L6201 (SO20)
L6201PS
L6202 (Powerdip18) L6203 (Multiwatt)
ing speeds. All the logic inputs are TTL, CMOS andµC compatible.Each channel (half-bridge) of the device is controlledby a separate logic input, while a common enable controls both channels. The I.C. is mountedin three different packages.
SO20 (12+4+4)
PowerSO20
(PowerSO20)
July 1997
This is advanced information on a new product now in development or undergoing evaluation. Details are subjectto change without notice.
1/20
L6201 - L6202 - L6203
PIN CONNECTIONS (Top view)
SO20
GND
N.C. N.C.
OUT2
V
S
OUT1
BOOT1
IN1
N.C.
GND 10
1 2 3 4 5 6 7 8 9
D95IN216
PowerSO20
20 19 18 17 16 15 14 13 12 11
POWERDIP
GND N.C. N.C. ENABLE SENSE Vref BOOT2 IN2 N.C. GND
2/20
MULTIWATT11
PINS FUNCTIONS
L6201 - L6202 - L6203
Device
L6201 L6201PS L6202 L6203
1 16 1 10 SENSE A resistor R
Name Function
connected to this pin provides feedback for
motor current control.
sense
2 17 2 11 ENABLEWhen a logic high is present on this pin the DMOS POWER
transistors are enabled to be selectively driven by IN1 and IN2.
3 2,3,9,12,
3 N.C. Not Connected
18,19
4,5 4
1, 10 5 GND Common Ground Terminal
GND Common Ground Terminal
6
6,7 6 GND Common Ground Terminal
8 7 N.C. Not Connected 9481OUT2Ouput of 2nd Half Bridge
10592V
s
Supply Voltage 11 6 10 3 OUT1 Output of first Half Bridge 12 7 11 4 BOOT1 A boostrap capacitor connected to this pin ensures efficient
driving ofthe upper POWER DMOS transistor. 13 8 12 5 IN1 Digital Input from the Motor Controller
14,15 13
11, 20 14 GND Common Ground Terminal
GND Common Ground Terminal
6
16,17 15 GND Common Ground Terminal
18 13 16 7 IN2 Digital Input from the Motor Controller 19 14 17 8 BOOT2 A boostrap capacitor connected to this pin ensures efficient
driving ofthe upper POWER DMOS transistor. 20 15 18 9 V
ref
Internal voltage reference. A capacitor from this pin to GND is
recommended. The internal Ref. Voltage can source out a
current of 2mA max.
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
V
OD
V
IN,VEN
I
V
sense
V
P
T
stg,Tj
Note 1: Pulse width limitedonly by junction temperature and transient thermal impedance (see thermal characteristics) Note 2:
Power Supply 52 V
s
Differential Output Voltage (between Out1 and Out2) 60 V Input or Enable Voltage – 0.3 to + 7 V Pulsed Output Current for L6201PS/L6202/L6203 (Note 1)
o
– Non Repetitive (< 1 ms) for L6201
for L6201PS/L6202/L6203
DC Output Current for L6201 (Note 1)
5 5
10
1 Sensing Voltage – 1 to + 4 V Boostrap Peak Voltage 60 V
b
Total Power Dissipation:
tot
=90°C for L6201
T
pins
T
case
T
amb
for L6202
=90°C for L6201PS/L6203
=70°C for L6201(Note 2)
for L6202 (Note 2) for L6201PS/L6203 (Note 2)
4
5
20
0.9
1.3
2.3
Storage and Junction Temperature – 40 to + 150 °C
Mountedon board with minimized dissipating copper area.
A A A A
W W W W W W
3/20
L6201 - L6202 - L6203
THERMAL DATA
– –
13 (*)
Value
12 60
3
35
= 0, unless
sens
Symbol Parameter
Rt
h j-pins
Rt
h j-case
Rt
h j-amb
(*) Mounted on aluminiumsubstrate.
Thermal Resistance Junction-pins max Thermal Resistance Junction Case max. Thermal Resistance Junction-ambient max.
L6201 L6201PS L6202 L6203
15
85
ELECTRICAL CHARACTERISTICS (Refer to the Test Circuits; Tj=25°C, VS= 42V, V otherwise specified).
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V
s
V
ref
I
REF
I
s
f
c
T
j
T
d
Supply Voltage 12 36 48 V Reference Voltage I
= 2mA 13.5 V
REF
Output Current 2mA Quiescent Supply Current EN = H VIN=L
EN = H V EN = L ( Fig. 1,2,3)
=H
IN
IL=0
10 10
15 15
8
15 Commutation Frequency(*) 30 100 KHz Thermal Shutdown 150 Dead Time Protection 100 ns
TRANSISTORS
OFF
I
DSS
Leakage Current Fig. 11 Vs=52V 1 mA
ON
R
V
DS(ON)
V
DS
sens
On Resistance Fig. 4,5 0.3 0.55 Drain Source Voltage Fig. 9
I
DS
I
DS
I
DS
=1A = 1.2A =3A
L6201 L6202
L6201PS/0
3
0.3
0.36
0.9
Sensing Voltage – 1 4 V
SOURCEDRAIN DIODE
Unit
°C/W
mA mA mA
°
C
V V V
V
sd
t
rr
t
fr
Forward ON Voltage Fig. 6a and b
Reverse Recovery Time
Forward Recovery Time 200 ns
LOGIC LEVELS
V
IN L,VEN L
V
IN H,VEN H
I
IN L,IEN L
I
IN H,IEN H
4/20
Input Low Voltage – 0.3 0.8 V Input High Voltage 2 7 V Input Low Current VIN,VEN= L –10 Input High Current VIN,VEN=H 30 µA
L6201
=1A
I
SD
= 1.2A L6202 EN = L
I
SD
I
=3A
SD
L dif
=25A/µs
dt
=1A
I
F
= 1.2A
I
F
=3A
I
F
L6201PS/03
EN = L
EN =
L6201 L6202 L6203
0.9 (**)
0.9 (**)
1.35(**)
300 ns
V V V
A
µ
L6201 - L6202 - L6203
ELECTRICALCHARACTERISTICS (Continued)
LOGIC CONTROL TO POWERDRIVETIMING
Symbol Parameter Test Conditions Min. Typ. Max. Unit
t
) Source Current Turn-off Delay Fig. 12 300 ns
1(Vi
t
) Source Current Fall Time Fig. 12 200 ns
2(Vi
t
) Source Current Turn-on Delay Fig. 12 400 ns
3(Vi
t
) Source Current Rise Time Fig. 12 200 ns
4(Vi
t
) Sink Current Turn-off Delay Fig. 13 300 ns
5(Vi
t
) Sink Current Fall Time Fig. 13 200 ns
6(Vi
t
) Sink Current Turn-on Delay Fig. 13 400 ns
7(Vi
t
) Sink Current Rise Time Fig. 13 200 ns
8(Vi
(*)Limited by power dissipation (**) Insynchronous rectification the drain-source voltagedrop VDS is shown in fig.4 (L6202/03); typicalvalue for the L6201is of0.3V.
Figure 1: Typical NormalizedISvs.T
Figure 3: Typical NormalizedISvs. V
j
Figure2:
TypicalNormalized QuiescentCurrent
vs. Frequency
S
Figure4: TypicalR
DS (ON)
vs. VS~V
ref
5/20
L6201 - L6202 - L6203
Figure 5: NormalizedR
at 25°Cvs. TemperatureTypical Values
DS (ON)
Figure 6a: TypicalDiodeBehaviour in Synchro-
nous Rectification (L6201)
Figure6b: TypicalDiode Behaviourin Synchro-
nous Rectification (L6201PS/02/03)
Figure 7a: TypicalPowerDissipation vs I
(L6201)
6/20
L
Figure7b:
TypicalPower Dissipation vs I
L
(L6201PS,L6202, L6203))
Loading...
+ 14 hidden pages