ST VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04 User Manual

Features
3
TYPE R
DS(on)
VNB14NV04 VND14NV04 VND14NV04-1
35 mΩ 12 A 40 V
VNS14NV04
Thermal shutdown
Short circuit protection
Integrated clamp
Low current drawn from input pin
Diagnostic feedback through input pin
ESD protection
Direct access to the gate of the Power
MOSFET (analog driving)
Compatible with standard Power MOSFET
I
lim
V
clamp
VNB14NV04, VND14NV04
VND14NV04-1, VNS14NV04
"OMNIFET II"
fully autoprotected Power MOSFET
TO-252 (DPAK)
Description
The VNB14NV04, VND14NV04, VND14NV04-1 and
VNS14NV04
STMicroelectronics VIPower™ M0 technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.
are monolithic devices made using
3
1
TO-251 (IPAK)
SO-8 D
2
PAK
2
1
3
1
Fault feedback can be detected by monitoring the voltage at the input pin.

Table 1. Device summary

Package Tube Tube (lead free) Tape and reel Tape and reel (lead free)
2
PAK VNB14NV04 VNB14NV04-E
D
TO-252 (DPAK) VND14NV04 VND14NV04-E
TO-251 (IPAK) VND14NV04-1 VND14NV04-1-E -
SO-8 VNS14NV04 - -
April 2010 Doc ID 7393 Rev 8 1/31
VNB14NV0413TR VNB14NV04TR-E
VND14NV0413TR VND14NV04TR-E
-
-
www.st.com
1
Contents VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Protection features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Package thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 DPAK thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 SO-8 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 D
2
PAK thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 TO-251 (IPAK) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 D
5.4 TO-252 (DPAK) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2
PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2/31 Doc ID 7393 Rev 8
VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. DPAK thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. D
Table 7. TO-251 (IPAK) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. D
Table 9. TO-252 (DPAK) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 11. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2
PAK thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2
PAK mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 7393 Rev 8 3/31
List of figures VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Switching time test circuit for resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. Test circuit for diode recovery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Unclamped inductive load test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Unclamped inductive waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Input charge test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Source-drain diode forward characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 9. Static drain source on resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 10. Derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. Static drain-source on resistance vs. input voltage (part 1/2) . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Static drain-source on resistance vs. input voltage (part 2/2) . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 13. Transconductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 14. Static drain-source on resistance vs. id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 15. Transfer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 16. Turn-on current slope (part 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 17. Turn-on current slope (part 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 18. Input voltage vs. input charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 19. Turn-off drain source voltage slope (part 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 20. Turn-off drain source voltage slope (part 2/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 21. Capacitance variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 22. Switching time resistive load (part 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 23. Switching time resistive load (part 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 24. Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 25. Normalized on resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 26. Normalized input threshold voltage vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 27. Current limit vs. junction temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 28. Step response current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 29. DPAK maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 30. DPAK demagnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 31. D Figure 32. D Figure 33. DPAK PC board Figure 34. DPAK R
Figure 35. DPAK thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 36. Thermal fitting model of an OMNIFET II in DPAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 37. SO-8 PC board Figure 38. SO-8 R Figure 39. D Figure 40. D Figure 41. D Figure 42. Thermal fitting model of an OMNIFET II in D
Figure 43. TO-251 (IPAK) package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 44. D
Figure 45. TO-252 (DPAK) package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 46. SO-8 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2
PAK maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . 17
2
PAK demagnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
thj-amb
thj-amb
2
PAK PC board
2
PAK R
2
2
thj-amb
PAK thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . 22
PAK package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
vs PCB copper area in open box free air condition. . . . . . . . . . . . . . . . . . . 18
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . 20
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . 21
2
PAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4/31 Doc ID 7393 Rev 8
VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04 Block diagram

1 Block diagram

Figure 1. Block diagram

Doc ID 7393 Rev 8 5/31
Electrical specification VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04

2 Electrical specification

Figure 2. Current and voltage conventions

2.1 Absolute maximum rating

Table 2. Absolute maximum rating

Symbol Parameter
V
V
I
R
IN MIN
I
I
V
ESD1
V
ESD2
P
E
MAX
T
T
T
Drain-source voltage (VIN=0 V) Internally clamped V
DS
Input voltage Internally clamped V
IN
Input current +/-20 mA
IN
Minimum input series impedance 10 Ω
Drain current Internally limited A
D
Reverse DC output current -15 A
R
Electrostatic discharge (R=1.5 KΩ, C=100 pF) 4000 V
Electrostatic discharge on output pin only (R=330 Ω, C=150 pF)
Total dissipation at Tc=25 °C 4.6 74 74 74 W
tot
Maximum switching energy (L=0.4 mH; R V
=13.5 V; T
bat
Operating junction temperature Internally limited °C
j
c
stg
Case operating temperature Internally limited °C
Storage temperature -55 to 150 °C
=150 °C; IL=18 A)
jstart
=0 Ω;
L
Value
SO-8 DPAK IPAK D
16500 V
93 93 mJ
2
PAK
Unit
6/31 Doc ID 7393 Rev 8
VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04 Electrical specification

2.2 Thermal data

Table 3. Thermal data

Value
Symbol Parameter
SO-8 DPAK IPAK D
Rthj-case Thermal resistance junction-case max 1.7 1.7 1.7 °C/W
Rthj-lead Thermal resistance junction-lead max 27 °C/W
Rthj-amb Thermal resistance junction-ambient max 90
1. When mounted on a standard single-sided FR4 board with 0.5 cm2 of Cu (at least 35 µm thick) connected to all DRAIN pins. Horizontal mounting and no artificial air flow.
(1)
65
(1)
102 52
2
PAK
(1)
Unit
°C/W

2.3 Electrical characteristics

-40 < Tj < 150 °C unless otherwise specified.

Table 4. Electrical characteristics

Symbol Parameter Test Conditions Min Typ Max Unit
Off
V
CLAMP
V
CLTH
V
INTH
I
ISS
V
INCL
Drain-source clamp voltage V
Drain-source clamp threshold voltage
Input threshold voltage VDS=VIN; ID=1 mA 0.5 2.5 V
Supply current from input pin V
Input-source clamp voltage
=0 V; ID=7 A 40 45 55 V
IN
=0 V; ID=2 mA 36 V
V
IN
=0 V; VIN=5 V 100 150 µA
DS
IIN=1 mA IIN=-1 mA
6
-1.0
6.8 8
-0.3
V
I
DSS
Zero input voltage drain current (V
=0 V)
IN
VDS=13 V; VIN=0 V; Tj=25 °C V
DS
On
V
R
DS(on)
Static drain-source on resistance
in
V
in
Dynamic (Tj=25°C, unless otherwise specified)
(1)
g
fs
C
Forward transconductance VDD = 13 V ID = 7 A 18 S
Output capacitance VDS = 13 V f = 1 MHz VIN = 0 V 400 pF
oss
Switching
t
d(on)
t
d(off)
Turn-on delay time
V
Rise time 350 1000 ns
t
r
Turn-off delay time 450 1350 ns
t
Fall time 150 500 ns
f
DD
V
gen
(see Figure 3)
Doc ID 7393 Rev 8 7/31
=25 V; VIN=0 V
= 5 V ID = 7 A Tj = 25 °C = 5 V ID = 7 A
= 15 V ID = 7 A
= 5 V R
gen
= R
IN MIN
=10 Ω
30 75
35 70
µA
mΩ
80 250 ns
Electrical specification VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04
Table 4. Electrical characteristics (continued)
Symbol Parameter Test Conditions Min Typ Max Unit
t
d(on)
t
d(off)
(di/dt)
Turn-on delay time
t
Rise time 9.7 30.0 µs
r
Turn-off delay time 25.0 µs
Fall time 10.2 30.0 µs
t
f
Turn-on current slope
on
Q
Total input charge
i
Source drain diode
(1)
V
I
SD
Q
RRM
Forward on voltage ISD = 7 A Vin = 0 V 0.8 V
Reverse recovery time
t
rr
Reverse recovery charge 0.8 µC
rr
Reverse recovery current 5 A
Protection
I
t
dlim
T
T
Drain current limit V
lim
Step response current limit V
Over temperature shutdown 150 175 200 °C
jsh
Over temperature reset 135 °C
jrs
I
Fault sink current V
gf
Eas Single pulse avalanche energy
1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %
1.5 4.5 µs
V
= 15 V Id = 7 A
DD
V
gen
= 5 V R
= 2.2 KΩ
gen
(see Figure 3)
VDD = 15 V ID = 7 A V
gen
= 5 V R
gen
= R
IN MIN
=10 Ω
VDD = 12 V ID = 7 A Vin = 5 V; I
= 2.13 mA (see Figure 7)
gen
= 7 A; di/dt = 40 A/µs
I
SD
= 30 V L = 200 µH
V
DD
16 A/µs
36.8 nC
300 ns
(see test circuit, Figure 4)
= 5 V; V
IN
= 5 V; VDS = 13 V 45 µs
IN
= 5 V; VDS = 13 V; Tj = T
IN
starting T
= 5 V; R
V
IN
L = 24 mH (see Figure 5 and
= 13 V 12 18 24 A
DS
10 15 20 mA
jsh
= 25 °C; VDD = 24 V
j
gen
= R
IN MIN
= 10 Ω;
400 mJ
Figure 6)
8/31 Doc ID 7393 Rev 8
VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04 Protection features

3 Protection features

During normal operation, the input pin is electrically connected to the gate of the internal power MOSFET through a low impedance path.
The device then behaves like a standard power MOSFET and can be used as a switch from DC up to 50 KHz. The only difference from the user’s standpoint is that a small DC current I
(typ. 100 µA) flows into the input pin in order to supply the internal circuitry.
ISS
The device integrates:
Overvoltage clamp protection: internally set at 45 V, along with the rugged avalanche
characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
Linear current limiter circuit: limits the drain current I
voltages. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the over temperature threshold T
Over temperature and short circuit protection: these are based on sensing the chip
jsh
.
temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Over temperature cutout occurs in the range 150 to 190 °C, a typical value being 170 °C. The device is automatically restarted when the chip temperature falls of about 15 °C below shutdown temperature.
Status feedback: in the case of an over temperature fault condition (T
device tries to sink a diagnostic current Igf through the input pin in order to indicate fault condition. If driven from a low impedance source, this current may be used in order to warn the control circuit of a device shutdown. If the drive impedance is high enough so that the input pin driver is not able to supply the current I This will not however affect the device operation: no requirement is put on the current capability of the input pin driver except to be able to supply the normal operation drive current I
ISS
.
Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit.
to I
D
whatever the input pin
lim
> T
j
, the input pin will fall to 0 V.
gf
jsh
), the
Doc ID 7393 Rev 8 9/31
Protection features VNB14NV04, VND14NV04, VND14NV04-1, VNS14NV04

Figure 3. Switching time test circuit for resistive load

Figure 4. Test circuit for diode recovery times

10/31 Doc ID 7393 Rev 8
Loading...
+ 21 hidden pages