ST VIPer20-E, VIPer20DIP-E User Manual

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
General Features
VIPer20-E
VIPer20DIP-E
SMPS PRIMARY I.C.
Type
V
DSS
I
n
R
DS(on)
VIPer20-E/DIP-E 620V 0.5A 16
TO 200 kHz
CURRENT MODE CONTROL
SOFT START AND SHUTDOWN CONTROL
AUTOMATIC BURST MODE OPERATION IN
STAND-BY CONDI T ION ABLE TO MEET “BLUE ANGEL” NORM (<1w TOTAL POWER CONSUMPTION)
INTERNALLY TRIMMED ZENER
REFERENCE
UNDERVOLTAGE LOCK-OUT WITH
HYSTERESIS
INTEGRATED START-UP SUPPLY
OVER-TEMPERATURE PROTECTION
LOW STAND-BY CURRENT
ADJUSTABLE CURRENT LIMITATION
Block Diagr am
PENTAWATT HV
DIP-8
PENTAWATT HV (022Y)
Description
VIPer20-E/DIP-E, made using VIPower M0 Technology, combines on the same silicon chip a state-of-the-art PWM circuit together with an optimized, high voltage, Vertical Power MOSFET (620V/ 0.5A).
Typical applications cover offline power supplies with a secondary power capability of 10W in wide range condition and 20W in single ran ge or with doubler configuration. It is compatible from both primary or secondary regulation loop despite using around 50% less components when compared with a discrete solution. Burst mode operation is an additional feature of this device, offering the ability to operate in stand-by mode without extra components.
OSC
DRAIN
VDD
13 V
_
+
ERROR
AMPLIFIER
UVLO
LOGIC
0.5 V +
ON/OFF
_
4.5 V
SECURITY
LATCH
R/SSQ
OVERTEMP. DETECTOR
delay
1.7 s
µ
OSCILLATOR
PWM
LATCH
R1
R2 R3
COMP
S
FFFF
Q
0.5V _
+
+
250 ns
Blanking
6 V/A
_
CURRENT
AMPLIFIER
SOURCE
FC00491
Rev 1
September 2005 1/31
www.st.com
31
VIPer20-E/DIP-E
Contents
1 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Drain Pin (Integrated Power MOSFET Drain): . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Source Pin: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 VDD Pin (Power Supply): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Compensation Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 OSC Pin (Oscillat or Freque nc y ): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Typical Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Operation Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1 Current Mode Topology: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.2 Stand-by Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
5.3 High Voltage Start-up Current Suorce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Transconducta nce Error Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 External Clock Synchronization: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 Primary Peak Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.7 Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8 Operation Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/31
VIPer20-E/DIP-E
6 Electrical Over Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Electrical Over Stress Ruggedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Order Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3/31
1 Electrical Data VIPer20-E/DIP-E
1 Electrical Data
1.1 Maximum Rating
Table 1. Absolute Maximum Rating
Symbol Parameter Value Unit
V
I
V
V
OSC
V
COMP
I
COMP
V
ESD
I
D(AR)
P
TOT
T
T
STG
DS
D
DD
Continuous Drain-Source Voltage (TJ = 25 to 125°C) –0.3 to 620 V Maximum Current Internally limited A Supply Voltage 0 to 15 V Voltage Range Input 0 to V
DD
Voltage Range Input 0 to 5 V Maximum Continuous Current ±2 mA Electrostati c Discharge (R = 1.5k; C = 100pF) 4000 V Avalanche Drai n-Source Current, Repetitive or Not Repetitive
= 100°C; Pulse width limited by TJ max; δ < 1%)
(T
C
0.5 A
Power Dissipati on at TC= 25ºC 57 W Junction Operat ing Temperature Internally limited °C
J
Storage Temperature -65 to 150 °C
V
4/31
VIPer20-E/DIP-E 1 Electric al Data
1.2 Electrical Characteristics
TJ = 25°C; VDD = 13V, unless otherwise spec ified
Table 2. Power Section
Symbol Parameter Test Conditions Min Typ Max Unit
BV
I
DSS
R
DS(on)
t t
C
oss
(1) On Inductive Load, Clamped.
Drain-Source Voltage ID = 1mA; V
DS
Off-State Drain Current
St atic Drain-Source On Resistance
Fall Ti me
f
Rise Time
r
Output Capacitance V
= 0V 620 V
COMP
V
= 0V; Tj = 125°C
COMP
= 620V
V
DS
ID = 0.4A
= 0.4A; TJ= 100°C
I
D
= 0.2A; V
I
D
= 0.4A; V
I
D
DS
13.5 16
=300V
IN
= 300V
IN
(1)
Figure 7
(1)
Figure 7
100 ns
50 ns
= 25V 90 pF
1.0 mA
29
Table 3. Supply Section
Symbol Parameter Test Conditions Min Typ Max Unit
I
DDch
I
DD0
I
DD1
I
DD2
V
DDoff
V
DDon
V
DDhyst
Start-Up Charging Current V
Operating Supply Current V
Operating Supply Current V Operating Supply Current V Undervoltage Shutdown (see Figure 6) 7.5 8 9 V Undervoltage Reset (see Figure 6) 11 12 V Hys teres is Start-up (see Figure 6) 2.4 3 V
= 5V; VDS = 35V
DD
(see Figure 6)(see Fig ure 11)
= 12V; F
DD
SW
= 0kHz
(see Figure 6)
= 12V; F
DD
= 12V; F
DD
= 100kHz 13 mA
sw
= 200kHz 14 mA
sw
-2 mA
12 16 mA
Table 4. Oscillator Section
Symbol Parameter Test Conditions‘ Min Typ Max Unit
F
V
OSCIH
V
OSCIL
SW
Oscillator Frequency Total Variation
RT=8.2K; CT=2.4nF V
=9 to 15V;
DD
with R
± 1%; C5%
T
(see Figure 10)(see Figure 14)
Oscillator Peak Voltage 7.1 V Oscillator Valley Voltage 3.7 V
90 100 110 KHz
5/31
1 Electrical Data VIPer20-E/DIP-E
Table 5. Error Amplifier Section
Symbol Parameter Test Conditions‘ Min Typ Max Unit
V
DDREG
V
DDreg
G
BW
VDD Regulation Point I
=0mA (see Figure 5) 12.6 13 13.4 V
COMP
Tota l Variatio n TJ = 0 to 100°C 2 % Unity Gain Bandwidth From Input =VDD to
Output = V
COMP
150 KHz
COMP pin is open
(see Figure 15)
A
VOL
Open Loop Voltage Gain COMP pin is open
45 52 dB
(see Figure 15)
G
m
V
COMPLO
V
COMPHI
I
COMPLO
I
COMPHI
DC Transconductance V Output Low Level I Output High Level I Output Low Curre nt Capability V Output High Current
=2.5V(see Figure 5) 1.1 1.5 1.9 mA/V
COMP
=-400µA; VDD=14V 0.2 V
COMP
=400µA; VDD=12V 4.5 V
COMP
=2.5V; VDD=14V -600 µ A
COMP
V
=2.5V; VDD=12V 600 µA
COMP
Capability
Table 6. PWM Comparator Section
Symbol Parameter Test Conditions‘ Min Typ Max Unit
H
V
COMPoffVCOMP
I
Dpeak
t
V
ID
COMP
/ ∆I
DPEAK
Offset I Peak Current Limitat ion V Current Sense Delay to Turn-
d
Off
V
= 1 to 3 V 4.2 6 7.8 V/A
COMP
= 10mA 0.5 V
DPEAK
= 12V; COMP pin open 0.5 0.67 0.9 A
DD
ID = 1A 250 ns
t
t
on(min)
Blanking Ti m e 250 360 ns
b
Minimum On Time 350 1200 ns
Table 7. Shutdown and Overtemperature Section
Symbol Parameter Test Conditions‘ Min Typ Max Unit
V
COMPth
t
DISsu
T
tsd
T
hyst
6/31
Restart Threshold (see Figure 8) 0.5 V Disable Set Up Time (see Figure 8) 1.7 5 µs Thermal Shutdown
(see Figure 8) 140 170 190 °C
Temperature Thermal Shutdown Hyst eresis (see Figure 8) 40 °C
VIPer20-E/DIP-E 2 Thermal Data
2 Thermal Data
Table 8. Thermal data
Symbol Parameter PENTAWATT HV Unit
R
thJC
R
thJA
Thermal Resistance Junction-case Max 1.9 °C/W Thermal Resi stance Ambient-case Max 60 °C/W
7/31
3 Pin Descript ion VIPer20-E/DIP-E
3 Pin Description
3.1 Drain Pin (Integrated Power MOSFET Drain):
Integrated Power MOSFET drain pin. It provides internal bias current during start-up via an integrated high voltage current source which is switched off during normal operation. The device is able to handle an unclamped current during its normal operation, assuring self protection against voltage surges, PCB stray inductance, and allowing a snubberless operation for low output power.
3.2 Source Pin:
Power MOSFET source pin. Primary side circuit common ground connection.
3.3 VDD Pin (Power Supply):
This pin provides two functions :
It corresponds to the low volt age supply of t he control part of the circuit. If V
8V, the start-up current source is activated and the output power MOSFET is switched off until the V
reduced, the V ground. After that, the current source is shut down, and the device tries to start up by
switching again.
This pin is also connected to the error amplifier, in order to allow primary as well as
secondary regulation configurations. In case of primary regulation, an internal 13V trimmed reference voltage is used to maintain V
voltage between 8.5V and 12.5V will be put on V stuck the output of the transconductance amplifier to the high state. The COMP pin
behaves as a constant current source, and can easily be connected to the output of an optocoupler. Note that any overvoltage due to regulation loop failure is still detected by the error amplifier through the V
will be somewhat higher than the nominal one, but still under control.
voltage reaches 11V. During this phase, the internal current consumption is
DD
pin is sourcing a current of about 2mA and the COMP pin is shorted to
DD
at 13V. For secondary regulation, a
DD
pin by transformer design, in order to
DD
voltage, which cannot overpass 13V. The output voltage
DD
goes below
DD
3.4 Compensation Pin
This pin provides two functions :
It is the output of the error transconductance amplifier, and allows for the connection of a
compensation network to provide the desired transfer function of the regulation loop. Its bandwidth can be easily adjusted to the needed value with usual components value. As stated above, secondary regulation configurations are also implemented through the COMP pin.
When the COMP voltage is going below 0.5V, the shut-down of the circuit occurs, with a
zero duty cycle for the power MOSFET. This feature can be used to switch off the converter, and is automatically activated by the regulation loop (no matter what the configuration is) to provide a burst mode operation in case of negligible output power or open load condition.
8/31
VIPer20-E/DIP-E 3 Pin Description
S
N
N
N
DRAIN
SC10540
FC00020
3.5 OSC Pin (Oscillator Frequency):
An Rt-Ct network must be connected on that to define the switching frequency. Note that despite the connection of R from 8V to 15V. It provides also a synchronisation ca pabilit y, when connected to an external frequency source.
Figure 1. Connection Diagrams (T o p View)
to VDD, no significant frequency change occurs for VDD varying
t
PENTAWATT HV
Figure 2. Current and Voltage Convention
DD
I
IOSC
OSC
13V
VDD
­+
I
OSC
Vdd
OURCE
COMP
1
4
PENTAWATT HV (022Y) DIP-8
D
I
DRAINVDD
COMP SOURCE
COMP
DS
V
DRAI
8
DRAI
DRAI
5
OSC
V
VCOMP
9/31
4 T ypical Circuit VIPer20-E/DIP-E
4 Typical Circuit
Figure 3. Offline Power Supply With Auxiliary Supply Feedback
F1
BR1
TR1
D2
D1
C2
R1
L2
+Vcc
C9C7
AC IN
TR2
C1
R9
D3
C4
C3
R7
R2
DRAINVDD
13V
­+
C11
VIPer20
COMP SOURCE
C6
OSC
C5
R3
Figure 4. Offline Power Supply With Optocoupler Feedback
AC IN
F1
TR2
C1
R9
BR1
TR1
D1
C2
C4
R1
D3
C3
R7
GND
C10
FC00401
D2
C7
C10
L2
C9
+Vcc
GND
R2
13V
­+
COMP SOURCE
C11
OSC
C5
10/31
DRAINVDD
VIPer20
C6
R3
R6
ISO1
R4
U2
C8
R5
FC00411
Loading...
+ 21 hidden pages