ST VIPer20A-E User Manual

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
General features
I
Typ e
VIPer20A-E
VIPer20ASP-E
VIPer20ADIP-E
V
DSS
700V 700V 700V
0.5A
0.5A
0.5A
R
n
DS(on)
18 18 18
VIPer20A-E
SMPS primary I.C.
PENTAWATT HV
DIP-8
Adjustable switching frequency up to 200 kHz
Current mode control
Automatic burst mode operation in stand-by
condition able to meet “blue angel” norm (<1w total power consumption)
Internally trimmed zener reference
Undervoltage lock-out with hysteresis
Integrated start-up supply
Over-temperature protection
Low stand-by current
Adjustable current limitation
Block diagram
10
1
PENTAWATT HV (022Y)
POWERSO-10
TM
Description
All the devices are made using VIPower M0 Technology, combines on the same silicon chip a state-of-the-art PWM circuit together with an optimized, high voltage, Vertical Power MOSFET (700V/ 0.5A).
Typical applications cover offline power supplies with a secondary power capability of 10W in wide range condition and 20W in single range or with doubler configuration. It is compatible from both primary or secondary regulation loop despite using around 50% less components when compared with a discrete solution. Burst mode operation is an additional feature of this device, offering the ability to operate in stand-by mode without extra components.
OSC
DRAIN
ON/OFF
SECURITY
LATCH
ERROR
AMPLIFIER
UVLO LOGIC
0.5 V
R/SSQ
OVERTEMP.
DETECTOR
delay
1.7
µ
+
_
4.5 V
VDD
_
13 V
+
OSCILLATOR
PWM
LATCH
S FFFF
R1
Q
R2 R3
0.5V _
+
+
6 V/A
_
CURRENT
AMPLIFIER
FC00491
SOURCE
COMP
250 ns
Blanking
s
June 2006 Rev 2 1/34
www.st.com
34
Contents VIPer20A-E
Contents
1 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Drain pin (Integrated Power MOSFET drain): . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Source pin: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 VDD pin (power supply): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Compensation pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 OSC pin (oscillator frequency): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Typical circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Operation description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1 Current mode topology: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 High voltage start-up current suorce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Transconductance error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 External clock synchronization: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 Primary peak current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.7 Over-temperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.8 Operation pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/34
VIPer20A-E Contents
6 Electrical over stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Electrical over stress ruggedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3/34
Electrical data VIPer20A-E
1 Electrical data
1.1 Maximum rating
Table 1. Absolute maximum rating
Symbol Parameter Value Unit
V
I
V
V
OSC
V
COMP
I
COMP
V
ESD
I
D(AR)
P
TOT
T
T
STG
DS
D
DD
Continuous Drain-Source Voltage (TJ = 25 to 125°C)
–0.3 to 700 V
Maximum Current Internally limited A
Supply Voltage 0 to 15 V
Voltage Range Input
0 to V
DD
V
Voltage Range Input 0 to 5 V
Maximum Continuous Current ±2mA
Electrostatic Discharge (R = 1.5kΩ; C = 100pF) 4000 V
Avalanche Drain-Source Current, Repetitive or Not Repetitive
= 100°C; Pulse width limited by TJ max; δ < 1%)
(T
C
Power Dissipation at TC= 25ºC
Junction Operating Temperature Internally limited ° C
J
0.4 A
57 W
Storage Temperature -65 to 150 °C
4/34
VIPer20A-E Electrical data
1.2 Electrical characteristics
TJ = 25°C; VDD = 13V, unless otherwise specified
Table 2. Power section
Symbol Parameter Test conditions Min Typ Max Unit
BV
I
DSS
R
DS(on)
t
t
C
oss
(1) On Inductive Load, Clamped.
Drain-Source Voltage
DS
Off-State Drain Current
Static Drain-Source On Resistance
Fall Time
f
Rise Time
r
Output Capacitance
I
= 1mA; V
D
V
V
= 0V; Tj = 125°C
COMP
= 700V
DS
ID = 0.4A
= 0.4A; TJ= 100°C
I
D
= 0.2A; V
I
D
ID = 0.4A; V
= 25V 90 pF
V
DS
= 0V 700 V
COMP
15.5 18
=300V
IN
= 300V
IN
(1)
Figure 7
(1)
Figure 7
100 ns
50 ns
1.0 mA
32
Table 3. Supply section
Symbol Parameter Test conditions Min Typ Max Unit
I
DDch
I
DD0
I
DD1
I
DD2
V
DDoff
V
DDon
V
DDhyst
Start-Up Charging Current V
Operating Supply Current V
Operating Supply Current V
Operating Supply Current V
Undervoltage Shutdown
Undervoltage Reset
Hysteresis Start-up
= 5V; VDS = 35V
DD
Figure 6, Figure 11
= 12V; F
DD
SW
= 0kHz
Figure 6
= 12V; F
DD
= 12V; F
DD
= 100kHz
sw
= 200kHz
sw
-2 mA
12 16 mA
13 mA
14 mA
Figure 6 7.5 8 9 V
Figure 6 11 12 V
Figure 6 2.4 3 V
Ω Ω
Table 4. Oscillator section
Symbol Parameter Test conditions Min Typ Max Unit
=8.2KΩ; CT=2.4nF
R
T
=9 to 15V;
F
V
OSCIH
V
OSCIL
SW
Oscillator Frequency Total Variat ion
Oscillator Peak Voltage 7.1 V
Oscillator Valley Voltage 3.7 V
V
DD
± 1%; C5%
with R
T
(see Figure )(see Figure 14)
90 100 110 KHz
5/34
Electrical data VIPer20A-E
Table 5. Error amplifier section
Symbol Parameter Test conditions Min Typ Max Unit
V
DDREGVDD
V
DDreg
G
BW
Regulation Point I
Total Variation
Unity Gain Bandwidth
=0mA (see Figure 5)
COMP
= 0 to 100°C
T
J
From Input =V
Output = V
DD
COMP
to
COMP pin is open
12.6 13 13.4 V
2%
150 KHz
Figure 15
A
VOL
G
V
COMPLO
V
COMPHI
I
COMPLO
I
COMPHI
Open Loop Voltage Gain
DC Transconductance
m
Output Low Level
Output High Level
Output Low Current Capability
Output High Current Capability
COMP pin is open
Figure 15
=2.5V(see Figure 5)
V
COMP
=-400µA; VDD=14V
I
COMP
=400µA; VDD=12V
I
COMP
V
=2.5V; VDD=14V
COMP
V
=2.5V; VDD=12V
COMP
45 52 dB
1.1 1.5 1.9 mA/V
0.2 V
4.5 V
-600 µA
600 µA
Table 6. PWM comparator section
Symbol Parameter Test conditions Min Typ Max Unit
H
V
COMPoffVCOMP
I
Dpeak
t
V
ID
COMP
/ ∆I
DPEAK
Offset I
Peak Current Limitation
Current Sense Delay to Turn-
d
Off
V
= 1 to 3 V
COMP
= 10mA
DPEAK
= 12V; COMP pin open
V
DD
ID = 1A
4.267.8V/A
0.5 V
0.50.670.9 A
250 ns
t
t
on(min)
Blanking Time 250 360 ns
b
Minimum On Time 350 1200 ns
Table 7. Shutdown and overtemperature section
Symbol Parameter Test conditions Min Typ Max Unit
V
COMPth
t
DISsu
T
tsd
T
hyst
6/34
Restart Threshold (see Figure 8) 0.5 V
Disable Set Up Time (see Figure 8) 1.7 5 µs
Thermal Shutdown Temperature
(see Figure 8) 140 170 190 °C
Thermal Shutdown Hysteresis (see Figure 8) 40 °C
VIPer20A-E Thermal data
2 Thermal data
Table 8. Thermal data
Symbol Parameter PENTAWATT
PowerSO-10™
(1)
DIP-8 Unit
R
R
R
1. When mounted using the minimum recommended pad size on FR-4 board.
2. On multylayer PCB.
Thermal Resistance Junction-pin Max 20 °C/W
thJA
Thermal Resistance Junction-case Max 2.0 2.0 °C/W
thJC
Thermal Resistance Ambient-case Max 70 60
thJC
35
(2)
°C/W
7/34
Pin description VIPer20A-E
3 Pin description
3.1 Drain pin (Integrated Power MOSFET drain):
Integrated Power MOSFET drain pin. It provides internal bias current during start-up via an integrated high voltage current source which is switched off during normal operation. The device is able to handle an unclamped current during its normal operation, assuring self protection against voltage surges, PCB stray inductance, and allowing a snubberless operation for low output power.
3.2 Source pin:
Power MOSFET source pin. Primary side circuit common ground connection.
3.3 VDD pin (power supply):
This pin provides two functions :
It corresponds to the low voltage supply of the control part of the circuit. If V
8V, the start-up current source is activated and the output power MOSFET is switched off until the V
reduced, the V ground. After that, the current source is shut down, and the device tries to start up by
switching again.
This pin is also connected to the error amplifier, in order to allow primary as well as
secondary regulation configurations. In case of primary regulation, an internal 13V trimmed reference voltage is used to maintain V
voltage between 8.5V and 12.5V will be put on V stuck the output of the transconductance amplifier to the high state. The COMP pin
behaves as a constant current source, and can easily be connected to the output of an optocoupler. Note that any overvoltage due to regulation loop failure is still detected by the error amplifier through the V
will be somewhat higher than the nominal one, but still under control.
voltage reaches 11V. During this phase, the internal current consumption is
DD
pin is sourcing a current of about 2mA and the COMP pin is shorted to
DD
at 13V. For secondary regulation, a
DD
pin by transformer design, in order to
DD
voltage, which cannot overpass 13V. The output voltage
DD
goes below
DD
3.4 Compensation pin
This pin provides two functions :
It is the output of the error transconductance amplifier, and allows for the connection of a
compensation network to provide the desired transfer function of the regulation loop. Its bandwidth can be easily adjusted to the needed value with usual components value. As stated above, secondary regulation configurations are also implemented through the COMP pin.
When the COMP voltage is going below 0.5V, the shut-down of the circuit occurs, with a
zero duty cycle for the power MOSFET. This feature can be used to switch off the converter, and is automatically activated by the regulation loop (no matter what the configuration is) to provide a burst mode operation in case of negligible output power or open load condition.
8/34
VIPer20A-E Pin description
3.5 OSC pin (oscillator frequency):
An Rt-Ct network must be connected on that to define the switching frequency. Note that despite the connection of R from 8V to 15V. It provides also a synchronisation capability, when connected to an external frequency source.
Figure 1. Connection diagrams (top view)
to VDD, no significant frequency change occurs for VDD varying
t
PENTAWATT HV
PENTAWATT HV (022Y)
Figure 2. Current and voltage convention
IDD ID
IOSC
OSC
13V
VDD
VOSC
-
+
VCOMP
COMP SOURCE
ICOMP
DIP-8
DRAINVDD
VDS
FC00020
PowerSO-10
TM
9/34
Typical circuit VIPer20A-E
4 Typical circuit
Figure 3. Offline power supply with auxiliary supply feedback
F1
BR1
TR1
D2
D1
C2
R1
C7
L2
+Vcc
C9
AC IN
TR2
C1
R9
D3
C4
C3
R7
R2
DRAINVDD
13V
-
+
C11
COMP SOURCE
C6
OSC
C5
R3
Figure 4. Offline power supply with optocoupler feedback
AC IN
F1
TR2
C1
R9
BR1
D1
C2
C4
R1
D3
C3
R7
VIPer20
TR1
GND
C10
FC00401
D2
C7
C10
L2
C9
+Vcc
GND
R2
13V
-
+
COMP SOURCE
C11
OSC
C5
10/34
DRAINVDD
VIPer20
C6
R3
R6
ISO1
R4
U2
C8
R5
FC00411
VIPer20A-E Operation description
5 Operation description
5.1 Current mode topology:
The current mode control method, like the one integrated in the devices, uses two control loops
- an inner current control loop and an outer loop for voltage control. When the Power MOSFET output transistor is on, the inductor current (primary side of the transformer) is monitored with a SenseFET technique and converted into a voltage V reaches V
(the amplified output voltage error) the power switch is switched off. Thus, the
COMP
outer voltage control loop defines the level at which the inner loop regulates peak current through the power switch and the primary winding of the transformer.
Excellent open loop D.C. and dynamic line regulation is ensured due to the inherent input voltage feedforward characteristic of the current mode control. This results in improved line regulation, instantaneous correction to line changes, and better stability for the voltage regulation loop.
Current mode topology also ensures good limitation in case there is a short circuit. During the first phase the output current increases slowly following the dynamic of the regulation loop. Then it reaches the maximum limitation current internally set and finally stops because the power supply on V
is no longer correct. For specific applications the maximum peak current
DD
internally set can be overridden by externally limiting the voltage excursion on the COMP pin. An integrated blanking filter inhibits the PWM comparator output for a short time after the integrated Power MOSFET is switched on. This function prevents anomalous or premature termination of the switching pulse in case there are current spikes caused by primary side capacitance or secondary side rectifier reverse recovery time.
proportional to this current. When VS
S
5.2 Stand-by mode
Stand-by operation in nearly open load conditions automatically leads to a burst mode operation allowing voltage regulation on the secondary side. The transition from normal operation to burst mode operation happens for a power P
1
Where:
is the primary inductance of the transformer. FSW is the normal switching frequency.
L
P
I
STBY
P
STBY
is the minimum controllable current, corresponding to the minimum on time that the
device is able to provide in normal operation. This current can be computed as :
I
STBY
t
+ td is the sum of the blanking time and of the propagation time of the internal current sense
b
and comparator, and represents roughly the minimum on time of the device. Note: that P may be affected by the efficiency of the converter at low load, and must include the power drawn on the primary auxiliary voltage.
-- -
L
2
tbtd+()V
-----------------------------=
given by :
STBY
I2STBYFSW=
P
IN
L
p
STBY
11/34
Loading...
+ 23 hidden pages