ST TSH330 User Manual

TSH330
1.1 GHz Low-Noise Operational Amplifier
Bandwidth: 1.1GHz (Gain=+2)
Quiescent current: 16.6 mA
Slew rate: 1800V/µs
Input noise: 1.3nV/Hz
Distortion: SFDR = -78dBc (10MHz, 2Vp-p)
Output stage optimized for driving 100
loads
Description
The TSH330 is a current feedback operational amplifier using a very high-speed complementary technology to provide a large bandwidth of
1.1GHz in gain of 2 while drawing only 16.6mA of quiescent current. In addition, the TSH330 offers
0.1dB gain flatness up to 160MHz with a gain of 2. With a slew rate of 1800V/µs and an output stage optimized for driving a standard 100 load, this device is highly suitable for applications where speed and low-distortion are the main requirements.
The TSH330 is a single operator available in the SO8 plastic package, saving board space as well as providing excellent thermal and dynamic performances.
Pin Connections (top view)
D
SO-8
(Plastic Micropackage)
1
NC
-IN
+IN
-VCC
2
3
4
_
+
SO8
NC
8
7
+VCC
6NCOutput
5
Applications
Communication & video test equipment
Medical instrumentation
ADC drivers
Order Codes
Part Number Temperature Range Package Conditioning Marking
TSH330ID
TSH330IDT SO8 Tape&Reel TSH330I
June 2005 Revision 3 1/19
-40°C to +85°C
SO8 Tube TSH330I
TSH330 Absolute Maximum Ratings

1 Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings
Symbol Parameter Value Unit
V
T
T
R R P
Supply Voltage
CC
V
Differential Input Voltage
id
V
Input Voltage Range
in
Operating Free Air Temperature Range
oper
Storage Temperature
stg
Maximum Junction Temperature
T
j
SO8 Thermal Resistance Junction to Ambient 60 °C/W
thja
SO8 Thermal Resistance Junction to Case 28 °C/W
thjc
SO8 Maximum Power Dissipation4 (@Ta=25°C) for Tj=150°C
max
HBM: Human Body Model HBM: Human Body Model (pins 2 and 3) 0.6 kV
ESD
MM: Machine Model MM: Machine Model (pins 2 and 3) 80 V CDM: Charged Device Model (pins 1, 4, 5, 6, 7 and 8) 1.5 kV CDM: Charged Device Model (pins 2 and 3) 1 kV Latch-up Immunity 200 mA
1) All voltages values are measured with respect to the ground pin.
2) Differential voltage are non-inverting input terminal with respect to the inverting input terminal.
3) The magnitude of input and output voltage must never exceed VCC +0.3V.
4) Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.
5) Human body model, 100pF discharged through a 1.5kresistor into pMin of device.
6) This is a minimum Value. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with
no external series resistor (internal resistor < 5), into pin to pin of device.
1
2
3
5
(pins 1, 4, 5, 6, 7 and 8)
6
(pins 1, 4, 5, 6, 7 and 8)
6V +/-0.5 V +/-2.5 V
-40 to + 85 °C
-65 to +150 °C 150 °C
830 mW
2kV
200 V
Table 2. Operating conditions
Symbol Parameter Value Unit
V V
1) Tested in full production at 5V (±2.5V) supply voltage.
Supply Voltage
CC
Common Mode Input Voltage
icm
2/19
1
4.5 to 5.5 V
-Vcc+1.5V, +Vcc-1.5V V
Electrical Characteristics TSH330

2 Electrical Characteristics

Table 3. Electrical characteristics for VCC= ±2.5Volts, T
=+25°C (unless otherwise specified)
amb
Symbol Parameter Test Condition Min. Typ. Max. Unit
DC performance
V
io
V
I
ib+
I
ib-
CMR
SVR
PSR
ICC
Input Offset Voltage
Offset Voltage between both inputs
Vio drift vs. Temperature T
io
Non Inverting Input Bias Current
DC current necessary to bias the input +
Inverting Input Bias Current
DC current necessary to bias the input -
Common Mode Rejection Ratio
20 log
(∆Vic/∆Vio)
Supply Voltage Rejection Ratio
20 log
(∆Vcc/∆V
out
)
Power Supply Rejection Ratio
20 log
(∆Vcc/∆V
out
)
Supply Current
DC consumption with no input signal
T
amb
T
< T < T
< T
< T
amb
amb
amb
amb
< T < T
< T
< T
max.
max.
max.
max.
min.
min.
T
amb
T
min.
T
amb
T
min.
Vic = ±1V T
< T
amb
< T
max.
min.
Vcc= 3.5V to 5V
< T
T
min.
amb
< T
max.
Vcc=200mVp-p@1kHz
< T
T
min.
amb
< T
max.
-3.1 0.18 +3.1
0.8
1.6 µV/°C
26 55 21
722
13
50 54
54
63 74
67 56
52 No load 16.6 20.2 mA T
< T
min.
amb
< T
max.
16.6 mA
Dynamic performance and output characteristics
R
Bw
SR
V
V
Transimpedance
Output Voltage/Input Current Gain in open loop of a CFA.
OL
For a VFA, the analog of this feature is the Open Loop Gain (A
VD
)
-3dB Bandwidth
Frequency where the gain is 3dB below the DC gain A
Note: Gain Bandwidth Product criterion is
V
not applicable for Current-Feedback­Amplifiers
Gain Flatness @ 0.1dB
Band of frequency where the gain varia­tion does not exceed 0.1dB
Slew Rate
Maximum output speed of sweep in large signal
High Level Output Voltage RL = 100
OH
Low Level Output Voltage RL = 100
OL
= ±1V, RL = 100
V
out
< T
T
min.
out=20mVp-p, RL = 100
V
= +1
A
V
= +2
A
V
amb
< T
max.
AV = -4
= -4, T
A
V
Small Signal V
= +2, RL = 100
A
V
= 2Vp-p, AV = +2,
V
out
min.
< T
amb
=20mVp-p
out
< T
RL = 100
< T
< T
amb
amb
< T
< T
max.
max.
T
min.
T
min.
104 153 k
152 k
1500 1100
550
max.
630 600
160
1800 V/µs
1.5 1.64 V
1.54
-1.55 -1.5 V
-1.5
mV
µA
µA
dB
dB
dB
MHz
3/19
TSH330 Electrical Characteristics
Table 3. Electrical characteristics for VCC= ±2.5Volts, T
=+25°C (unless otherwise specified)
amb
Symbol Parameter Test Condition Min. Typ. Max. Unit
I
Isink
out
Short-circuit Output current coming in the op-amp.
Output to GND 360 453
< T
T
min.
amb
< T
max.
427
See fig-17 for more details
Isource
Output current coming out from the op­amp.
Output to GND -340 -400
< T
T
min.
amb
< T
max.
-350
See fig-18 for more details
Noise and distortion
eN
iN
SFDR
Equivalent Input Noise Voltage
see application note on page 13
Equivalent Input Noise Current (+)
see application note on page 13
Equivalent Input Noise Current (-)
see application note on page 13
Spurious Free Dynamic Range
The highest harmonic of the output spectrum when injecting a filtered sine wave
F = 100kHz
F = 100kHz
F = 100kHz
= +2, Vout = 2Vp-p,
A
V
= 100
R
L
F = 10MHz F = 20MHz F = 100MHz F = 150MHz
1.3 nV/Hz
22 pA/Hz
16 pA/Hz
-78
-73
-48
-37
Table 4. Closed-loop gain and feedback components
mA
dBc
V
CC
(V)
Gain
Rfb (Ω)
-3dB Bw (MHz) 0.1dB Bw (MHz)
+10 200 280 50
-10 200 270 45
+2 300 1000 160
±2.5
-2 270 530 180
+1 300 1500 38
-1 260 600 280
4/19
Electrical Characteristics TSH330
Figure 1. Frequency response, positive gain
24 22 20 18 16 14 12 10
8 6 4
Gain (dB)
2 0
-2
-4
Small Signal
-6
Vcc=5V
-8
Load=100
-10 1M 10M 100M 1G
Gain=+10
Gain=+4
Gain=+2
Gain=+1
Frequency (Hz)
Figure 2. Gain flatness, gain=+4
12,2
12,0
11,8
11,6
Gain Flatness (dB)
11,4
Vin
Vin
8k2
8k2
22pF
22pF
Gain=+4, Vcc=5V,
Gain=+4, Vcc=5V, Small Signal
Small Signal
1M 10M 100M
+
+
-
-
100R
100R
300R
300R
Vout
Vout
Frequency (Hz)
Figure 4. Frequency response, negative gain
24 22 20 18 16 14 12 10
8 6 4
Gain (dB)
2 0
-2
-4
Small Signal
-6
Vcc=5V
-8
Load=100
-10 1M 10M 100M 1G
Gain=-10
Gain=-4
Gain=-2
Gain=-1
Frequency (Hz)
Figure 5. Gain flatness, gain=+2
6,2
6,0
Vin
Vin
+
+
Vout
5,8
8k2
8k2 1pF
Gain Flatness (dB)
1pF
5,6
Gain=+2, Vcc=5V,
Gain=+2, Vcc=5V, Small Signal
Small Signal
5,4
1M 10M 100M 1G
-
-
300R
300R
300R
300R
Vout
Frequency (Hz)
Figure 3. Compensation, gain=+2
10
8 6 4 2 0
-2
-4
-6
Vin
Vin
-8
Gain (dB)
-10
8k2
8k2
-12
1pF
1pF
-14
-16
-18
Gain=+ 2, Vcc=5V,
Gain=+ 2, Vcc=5V, Small Signal
Small Signal
-20
-22 1M 10M 100M 1G
+
+
-
-
300R
300R
300R
300R
Frequency (Hz)
Vout
Vout
Figure 6. Compensation, gain=+4
16 14 12 10
8 6 4 2
Vin
Vin
0
-2
Gain (dB)
-4
8k2
8k2
-6
22pF
22pF
-8
-10
-12
Gain=+4, Vcc=5V,
Gain=+4, Vcc=5V,
-14
Small Signal
Small Signal
-16 1M 10M 100M 1G
+
+
-
-
100R
100R
300R
300R
Vout
Vout
Frequency (Hz)
5/19
TSH330 Electrical Characteristics
Figure 7. Compensation, gain=+10
24 22 20 18 16 14 12 10
Vin
Vin
8 6
Gain (dB)
4
15pF
15pF
2 0
-2
Gain=+10, Vcc=5V,
Gain=+10, Vcc=5V,
-4
Small Signal
Small Signal
-6
-8 1M 10M 100M 1G
22R
22R
+
+
-
-
200R
200R
Vout
Vout
Frequency (Hz)
Figure 8. Input current noise vs. frequency
150 140 130 120 110 100
90 80 70
(pA/VHz)
60
n
i
50 40 30 20 10
Neg. Current Noise
Pos. Current Nois e
1k 10k 100k 1M 10M
Frequency (Hz)
Figure 10. Quiescent current vs. Vcc
20
15
10
5
0
-5
-10
Icc (mA)
-15
-20
Gain=+2 Vcc=5V
-25
Input to ground, no load
-30 1,25 1,50 1,75 2,00 2,25 2,50
Icc(+)
Icc(-)
+/-Vcc (V)
Figure 11. Input voltage noise vs. frequency
4.0
3.5
3.0
2.5
(nV/VHz)
n
e
2.0
1.5
1.0 1k 10k 100k 1M 10M
Frequency (Hz)
Figure 9. Output amplitude vs. load
4,0
3,5
3,0
Vout max. (Vp-p)
2,5
2,0
10 100 1k 10k 100k
6/19
Load (ohms)
Freq=? Gain=+2 Vcc=5V
Figure 12. Noise figure
40
35
30
25
20
NF (dB)
15
10
5
0
1 10 100 1k 10k 100k
Rsource (ohms)
Vcc=5V
Loading...
+ 13 hidden pages