ST TSC102 User Manual

High-side current sense amplifier plus signal conditioning amplifier
p
Features
Independent supply and input common-mode
voltages
2.8 to 30 V
Wide common-mode surviving range:
-16 to 60 V (reversed battery and load-dump conditions)
Low current consumption: I
Output amplifier for tailor-made signal
conditioning
-40 to 125° C operating temperature range
4 kV ESD protection
Applications
Battery chargers
Automotive current monitoring
Notebook computers
DC motor control
Photovoltaic systems
Precision current sources
Uninterruptible power supplies
High-end power supplies
Description
The TSC102 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage.
The device’s wide input common-mode voltage range, low quiescent current and tiny TSSOP8 packaging enable use in a wide variety of applications (also available in SO-8 package).
The input common-mode and power supply voltages are independent. The common-mode voltage can range from 2.8 to 30 V in operating conditions.
max = 420 µA
CC
TSC102
P
TSSOP8
(Plastic package)
D
SO-8
(Plastic package)
V
1
Vm
2
Gnd
3A1
4A2
Pin connections
(top view)
The TSC102 is rugged against abnormal conditions on the input pins: Vp and Vm can withstand up to 60 V in case of voltage spikes, as little as -16 V in case of reversed battery, and up to 4 kV in case of electrostatic discharge.
In addition to the current sensing amplifier, the TSC102 offers a fully accessible amplifier for output signal conditioning.
The device’s overall current consumption is lower than 420 µA.
8
7 A3
Vcc
6
Out
5
March 2011 Doc ID 16754 Rev 2 1/24
www.st.com
24
Contents TSC102
Contents
1 Application schematic and pin description . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristics curves: current sense amplifier . . . . . . . . . . 8
5 Electrical characteristics curves: signal conditioning amplifier . . . . 11
6 Parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1 Common-mode rejection ratio (CMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Supply voltage rejection ratio (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Gain (Av) and input offset voltage (V
) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
os
6.4 Output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.2 TSSOP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24 Doc ID 16754 Rev 2
TSC102 Application schematic and pin description

1 Application schematic and pin description

The TSC102 high-side current sense amplifier features a 2.8 to 30 V input common-mode range that is independent of the supply voltage. The main advantage of this feature is that it allows high-side current sensing at voltages much greater than the supply voltage (V

Figure 1. Application schematics

Signal
conditioning
amplifier
6
Vcc
5 V
Out
5
Vout
Vsense
Iload
Rsense
Current
sense
amplifier
TSC102
Vp
8
Av=20 V/V
Vm
1
Gnd
A1 A2 A3
2
3 74
CC
).
AM04508
Ta bl e 1 describes the function of each pin. Their position is shown in the illustration on the
cover page and in Figure 1 above.
A1

Table 1. Pin description

Symbol Type Function
Out Analog output
Gnd Power supply Ground line.
V
CC
V
p
V
m
Power supply Positive power supply line.
Analog input
Analog input
A1 Analog input Connection to current sensing amplifier output.
A2 Analog input Connection to signal conditioning amplifier non-inverting input.
A3 Analog input Connection to signal conditioning amplifier inverting input.
Out voltage is proportional to the magnitude of the sense voltage
.
V
p-Vm
Connection for the external sense resistor. The measured current enters the shunt on the V
side.
p
Connection for the external sense resistor. The measured current exits the shunt on the V
side.
m
Doc ID 16754 Rev 2 3/24
Absolute maximum ratings and operating conditions TSC102

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
id
V
V
1
T
stg
T
Input pins differential voltage (Vp-Vm)±20V
Current sensing input pin voltages (Vp and Vm)
i
Voltage for pins A1, A2, A3, Out, Vcc
(1)
(1)
-16 to 60 V
-0.3 to 7 V
Storage temperature -55 to 150 °C
Maximum junction temperature 150 °C
j
TSSOP8 thermal resistance junction to ambient 120 °C/W
R
thja
ESD
1. These voltage values are measured with respect to the GND pin.
2. Human body model for Vm and Vp: a 100 pF capacitor is charged to the specified voltage, then discharged
through a 1.5 kΩ resistor between the Vp or Vm pin and Gnd while the other pins are floating.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

SO-8 thermal resistance junction to ambient 125 °C/W
HBM: human body model for V
HBM: human body model
MM: machine model
CDM: charged device model
(3)
(4)
(5)
and Vp pins
m
(2)
4kV
2.5 kV
200 V
1.5 kV
Symbol Parameter Value Unit
V
CC
T
oper
V
icm
DC supply voltage from T
Operational temperature range (T
Common mode voltage range (Vm pin voltage) 2.8 to 30 V
4/24 Doc ID 16754 Rev 2
min
to T
max
min
to T
3.5 to 5.5 V
) -40 to 125 °C
max
TSC102 Electrical characteristics

3 Electrical characteristics

Unless otherwise specified, the electrical characteristics given in the following tables have been measured under the following test conditions.
T
No load on Out pin.
Signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1

Table 4. Supply

Symbol Parameter Test conditions Min. Typ. Max. Unit
I
I
CC1

Table 5. Current sensing amplifier input stage

Total supply current
CC
Total supply current
=25°C, VCC=5V, V
amb
connected to pin A2).
sense=Vp-Vm
V
= 0 V, pin A1 open, pin
sense
=50mV, Vm=12V.
A2 shorted to Gnd
< T
T
V
min
sense
< T
amb
max
= 50 mV, pin A1
connected to pin A2
< T
T
min
amb
< T
max
240 420 µA
420 700 µA
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC
CMR1
AC CMR1
SVR1
V
dV
os
1. See Chapter 6: Parameter definitions on page 12 for the definition of CMR.
2. See Chapter 6 for the definition of SVR.
3. See Chapter 6 for the definition of V
DC common mode rejection Variation of V
versus V
a1
referred to input
AC common mode rejection Variation of Va1 versus V
referred to input (peak-to-peak voltage variation)
Supply voltage rejection Variation of V
Input offset voltage
os
versus V
a1
(1)
(3)
icm
icm
CC
(2)
2.8 V < Vm < 30 V
-40° C < T
2.8 V< V 1kHz sine wave
2.8 V < V 10 kHz sine wave
3.5 V< VCC < 5.5 V
-40° C < T
T
amb
-40° C < T
/dT Input offset drift versus T -40° C < T
=0V
V
I
Input leakage current
lk
I
Input bias current
ib
.
os
T
V T
CC
min
sense
min
< T
< T
=25° C
=0V
amb
< 30 V
m
< 30 V
m
amb
< 150° C
< 125° C
90 100 dB
75 dB
60 dB
85 90 dB
±1.5
< 125° C
amb
< 125° C ±3 ±8 µV/°C
amb
< T
amb
max
< T
amb
max
±2.3
A
57 µA
mV
Doc ID 16754 Rev 2 5/24
Electrical characteristics TSC102

Table 6. Current sensing amplifier output stage

Symbol Parameter Test conditions Min. Typ. Max. Unit
Av
V
oh1
V
I
sc1
ΔV
a1
ΔVa1/ΔIa1Output stage load regulation
ΔV
ΔV
ΔV
ΔV
1. See Chapter 6: Parameter definitions on page 12 for the definition of output voltage drift versus temperature.
2. Output voltage accuracy is the difference with the expected theoretical output voltage V a more detailed definition.

Table 7. Current sensing amplifier frequency response

Gain (variation of V
A1 node high-level saturation voltage V
oh1=Vcc-Va1
A1 node low-level saturation
ol1
voltage
versus V
a1
sense
)
V
= 1 V
sense
=1mA
I
a1
-40° C< T
=-1 V
V
sense
Ia1=1mA
-40° C< T
< 125° C
amb
< 125° C
amb
20 V/V
85 185 mV
75 165 mV
Short-circuit current A1 connected to VCC or Gnd 10 30 mA
/ΔT Output voltage drift versus T
Total output voltage accuracy
a1
Total output voltage accuracy
a1
Total output voltage accuracy
a1
Total output voltage accuracy
a1
(1)
(2)
(2)
(2)
(2)
T
< T
amb
a1
= 50 mV
= 25° C
< T
amb
= 100 mV
= 25° C
< T
amb
= 20 mV
= 25° C
< T
amb
= 10 mV
= 25° C
< T
amb
< T
max
< +5 mA
< T
max
< T
max
< T
max
< T
max
min
-5 mA < I sink or source current
I
a1
V
sense
T
amb
T
min
V
sense
T
amb
T
min
V
sense
T
amb
T
min
V
sense
T
amb
T
min
a1-th
0.4 ±2 mV/mA
=Av * V
sense
±400 ppm/°C
±2.5
±4
±2.5
±4
±8
±10
±13 ±16
. See Chapter 6 for
%
%
%
%
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
ts V
settling to 1% final value
a1
SR Slew rate V
BW 3 dB bandwidth C

Table 8. Current sensing amplifier noise

C
sense
load
sense
load
Symbol Parameter Test conditions Min. Typ. Max. Unit
e
Equivalent input noise voltage f = 1 kHz 50 nV/√ Hz
N
6/24 Doc ID 16754 Rev 2
=10mV to 100mV,
=47pF
s
=10mV to 100mV 0.2 0.4 V/µs
= 47 pF 800 kHz
TSC102 Electrical characteristics

Table 9. Signal conditioning amplifier

Symbol Parameter Test conditions Min. Typ. Max. Unit
V
Common mode voltage range T
icm
min
< T
amb
< T
max
0Vcc
Va2=1V
V
ΔV
Input offset voltage
IO
Input offset voltage drift T
IO
Iib Input bias current V
Output high-level saturation voltage (V
Output low-level saturation voltage
ol2
oh2=VCC-Vout
)
Short-circuit current Out connected to VCC or Gnd 12 30 mA
/ΔI
Output stage load regulation
out
DC common mode rejection Variation of V
versus V
IO
icm
Supply voltage rejection Variation of V
versus V
IO
CC
ΔV
CMR2
SVR2
V
out
V
I
oh2
sc2
GBP Gain bandwidth product
PM Phase margin R
T
=25° C
amb
-40° C < T
< T
min
a2=Va3=VCC
amb
< 150° C
amb
< T
max
/2 10 pA
Va2=1V Va3=0V I
-40° C< T
V
=0V Va3=1V
a2
=1mA
I
out
-40° C< T
-10 mA < I =1V
V
a2
I
sink or source current
out
< T
T
min
amb
amb
out
amb
< 125° C
< 125° C
< +10 mA
< T
max
0V<Va2<3 V 0V<Va2<5 V
3.5 V<VCC<5.5 V =1V
V
a2
-40° C < T
R
=10kΩ, C
L
< 125° C
amb
load
=100pF,
f=100kHz
=10kΩ, C
L
=10kΩ, C
R
L
= 100 pF 65 deg
load
=100pF
load
=1mA
out
70 60
85 105 dB
±3.5 ±4.5
V/°C
85 185 mV
75 165 mV
300 µV/mA
95 80
1MHz
Va2= 0.5 V to 4.5 V
SR Slew rate
A3 connected to OUT (follower configuration)
0.2 0.4 V/µs
Slew rate measured from 10% to 90% of V
out
step
mV
dB
Doc ID 16754 Rev 2 7/24

Electrical characteristics curves: current sense amplifier TSC102

-20%
-15%
-10%
-5%
0%
5%
10%
15%
20%
0 50 100 150 200
0
100
200
300
400
500
600
700
-250 -150 -50 50 150 250
T=-40°C
4 Electrical characteristics curves: current sense
amplifier
Unless otherwise specified, the test conditions for the following curves are:
T
no load on Out pin.
signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1
Figure 2. Output voltage vs. Vsense Figure 3. A1 pin voltage accuracy vs. Vsense
6
5
4
3
Vout (V)
2
1
=25°C, VCC=5V, V
amb
connected to pin A2).
sense=Vp-Vm
=50mV, Vm=12V.
typical accuracy
guaranteed
accuracy vs. T
guaranteed
accuracy @25°C
0
-50 50 150 250 Vsense (mV)
Vsense (mV)
Figure 4. Supply current vs. supply voltage Figure 5. Supply current vs. Vsense
500
450
400
350
T=125°C
300
250
200
Icc (µA)
150
100
50
T=-40°C
T=25°C
0
0246
Vcc (V)
Icc (µA)
Vsense (mV)
T=25°C
T=125°C
8/24 Doc ID 16754 Rev 2
TSC102 Electrical characteristics curves: current sense amplifier
0
1
2
3
4
5
6
7
8
9
-250 -150 -50 50 150 250
T=125°C
T=-40°C
T=25°C
0
200
400
600
800
1000
1200
1400
-10-8-6-4-2 0
T=125°C
Figure 6. Vp pin input bias current vs.
Vsense
80
70
60
T=-40°C
50
T=25°C
40
Iib (µA)
30
20
10
T=125°C
0
-250 -150 -50 50 150 250 Vsense (mV)
Figure 8. Output stage low-state saturation
voltage versus output current
(Vsense = -1 V)
1200
1000
800
output stage
sinking current
T=125°C
T=25°C
Figure 7. Vm pin input bias current vs.
Vsense
Iib (µA)
Vsense (mV)
Figure 9. Output stage high-state saturation
voltage versus output current (Vsense = +1 V)
output stage
T=25°C
sourcing current
600
Vol1 (mV)
400
200
0
0246810
ia1 (mA)

Figure 10. Output stage load regulation Figure 11. Step response

output stage
sourcing current
Va1-Va1@ia1=0 (mV)
-10 -5 0 5 10
7
6
5
4
3
2
1
0
-1
-2 ia1(mA)
sinking current
T=125°C
T=25°C
T=-40°C
output stage
T=-40°C
Voh1 (mV)
T=-40°C
ia1 (mA)
Doc ID 16754 Rev 2 9/24
Electrical characteristics curves: current sense amplifier TSC102
0
10
20
30
40
50
60
70
80
90
100
10 Hz
100 Hz
1,000 Hz
10,000 Hz
100,000 Hz

Figure 12. Bode diagram Figure 13. Power supply rejection ratio

30
20
10
0
Gain (dB)
-10
-20
PSRR(dB)
-30
10 Hz
100 Hz
1,000 Hz
10,000 Hz
100,000 Hz
1,000,000 Hz
10,000,000 Hz
10/24 Doc ID 16754 Rev 2

TSC102 Electrical characteristics curves: signal conditioning amplifier

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
3.50
3.70
3.90
4.10
4.30
4.50
4.70
4.90
5.10
5.30
5.50
Vcc (V)
-30
0
30
60
90
120
150
180
210
-30
-20
-10
0
10
20
30
40
50
1 kHz
10 kHz
100 kHz
1,000 kHz
10,000 kHz
5 Electrical characteristics curves: signal conditioning
amplifier
Unless otherwise specified, the test conditions for the following curves are:
T
no load on Out.
signal conditioning amplifier tested as standalone amplifier.
Figure 14. Input offset voltage versus input
common-mode voltage
0.4
0.2
0.0
-0.2
-0.4
-0.6
Vio (mV)
-0.8
-1.0
-1.2
-1.4
0.0
T=25°C
T=125°C
0.5
=25°C, VCC=5V
amb
T=-40°C
1.0
1.5
2.0
2.5
Vicm (V)
3.0
3.5
4.0
Figure 15. Input offset voltage versus supply
voltage (Vicm = Vcc/2)
T=25°C
T=-40°C
4.5
Vio (mV)
5.0
T=125°C
Figure 16. Output current versus output
voltage
50
40
30
20
10
-10
-20
Output current (mA)
-30
-40
-50
0
0.0
sink
0.5
T=-40°C
1.0
1.5
T=25°C
2.0 Vout (V)
2.5
3.0
Figure 17. Bode diagram (Vout = Vcc/2,
R
=10kΩ, C
L
=
°
Gain (dB)
source
3.5
4.0
4.5
5.0
Doc ID 16754 Rev 2 11/24
load
= 100 pF)
Phase (deg)
Parameter definitions TSC102

6 Parameter definitions

6.1 Common-mode rejection ratio (CMR)

The common-mode rejection ratio (CMR) measures the ability of the current sensing amplifier to reject any DC voltage applied on both inputs V back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula:
ΔV
CMR 20
------------------------------log= ΔV
icm
a1
Av

6.2 Supply voltage rejection ratio (SVR)

The supply voltage rejection ratio (SVR) measures the ability of the current sensing amplifier to reject any variation of the supply voltage V that its effect can be compared with the applied differential signal. The SVR is defined by the formula:
. The SVR is referred back to the input so
CC
and Vm. The CMR is referred
p
ΔV
a1
SVR 20
---------------------------log= ΔVccAv

6.3 Gain (Av) and input offset voltage (Vos)

The input offset voltage is defined as the intersection between the linear regression of the V
versus V
a1
V
sense=Vsense1
V
can be calculated with the formula:
os
The amplification gain Av is defined as the ratio between the output voltage and the input differential voltage.
curve with the X-axis (see Figure 18). If V
sense
= 50 mV and V
V
osVsense1
is the output voltage with V
a12
V
⎛⎞
----------------------------------------------- -
=
⎝⎠
Av
sense1Vsense2
V
a11Va12
V
out
----------------- -= V
sense
V
is the output voltage with
a11
sense=Vsense2
out1
= 5 mV, then
12/24 Doc ID 16754 Rev 2
TSC102 Parameter definitions
Figure 18. V
versus V
a1
Va1_1
Va1_2
characteristics: detail for low V
sense
Va1
Vos Vsense2
Vsense1
sense
Vsense
values
AM04509

6.4 Output voltage drift versus temperature

The output voltage drift versus temperature is defined as the maximum variation of Va1 with respect to its value at 25° C, over the temperature range. It is calculated as follows:
ΔV
a1
-------------- -max
ΔT
with T
min
< T
amb
< T
max
.
Figure 19 on page 14 provides a graphical definition of the output voltage drift versus
temperature. On this chart V minimum variation of V
a1
versus T, and T = 25° C is considered to be the reference.
a1
Va1T
()Va125° C()
amb
--------------------------------------------------------------------- -= T
amb
is always within the area defined by the maximum and
25° C
Doc ID 16754 Rev 2 13/24
Parameter definitions TSC102

Figure 19. Output voltage drift versus temperature

50
40
30
20
10
0
-10
-20
-30
Va1-Va1@25°C (mV)
-40
-50
-60 -40 -20 0 20 40 60 80 100 120 140
T (°C)

6.5 Output voltage accuracy

The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula.
V
=Av. V
a1-th
sense
The actual value is very slightly different, mainly due to the effects of the input offset voltage V
and the non-linearity.
os
14/24 Doc ID 16754 Rev 2
TSC102 Parameter definitions
Figure 20. Va1 vs. V
theoretical and actual characteristics
sense
Va1
Va1
5 mV
5 mV
Actual
Actual
Va1 accuracy for V
Va1 accuracy for V
Ideal
Ideal
sense
sense
= 5 mV
= 5 mV
Vsense
Vsense
AM04510
AM04510
The output voltage accuracy, expressed as a percentage, can be calculated with the following formula:
ΔV
a1
abs V
------------------------------------------------------------------------ -=
a1
Av V
Av V
()()
sense
sense
with Av = 20 V/V.
Doc ID 16754 Rev 2 15/24
Application information TSC102

7 Application information

The TSC102 can be used to measure current and feed back the information to a microcontroller, as shown in Figure 21.

Figure 21. Typical application schematic

Vsense
load
Iload
Rsense
5 V
6
Vp
TSC102
8
Vm
1
Gnd
A1 A2 A3
2
3 7
Vcc
V
Out
5
CC
ADC
GND
4
Vout
V
reg
Microcontroller
AM04511
This fully-accessible output amplifier offers wide schematic possibilities, as shown in the following examples.

Figure 22. Gain higher than 20

5 V
6
Vcc
Out
5
R1
R2
Vout = Av.(1+R1/R2).Vsense
AM04512
Vsense
Vp
TSC102
8
Vm
1
Gnd
A1 A2 A3
2
3 74
16/24 Doc ID 16754 Rev 2
TSC102 Application information

Figure 23. Gain lower than 20

5 V
6
TSC102
Vcc
Vp
8
Vm
Out
5
1
Vsense
Gnd
A1 A2 A3
2
3
4
7
R1
R2
Vout = Av.R2.Vsense/(R1+R2)
AM04513

Figure 24. Overcurrent protection

5 V
6
Vcc
Out
5
Vsense
Vp
TSC102
8
Vm
1
Gnd
A1 A2 A3
2
3 74
R1
R2
R3 R4
AM04514
Doc ID 16754 Rev 2 17/24
Application information TSC102
R1
R2
C1
C2
R4
R3
1
8
5
Vp
Vm
Vcc
2
Out
Gnd
374
A1A2A3
6
5 V
Vsense

Figure 25. First-order low-pass filter

5 V
6
TSC102
Vcc
Vp
Out
5
Vsense
8
Vm
1
Gnd
A1 A2 A3
2
3 74
R1
C1
AM04515

Figure 26. Second-order low-pass filter

18/24 Doc ID 16754 Rev 2
AM04516
TSC102 Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 16754 Rev 2 19/24
Package information TSC102

8.1 SO-8 package information

Figure 27. SO-8 package mechanical drawing

Table 10. SO-8 package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0
ccc 0.10 0.004
Millimeters Inches
20/24 Doc ID 16754 Rev 2
TSC102 Package information

8.2 TSSOP-8 package information

Figure 28. TSSOP8 package mechanical drawing

Table 11. TSSOP8 package mechanical data

Dimensions
Ref.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.200.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.10 0.004
Doc ID 16754 Rev 2 21/24
Ordering information TSC102

9 Ordering information

Table 12. Order codes

Part number Temperature range Package Packing Marking
TSC102IPT
TSSOP8 Tape & reel 102I
-40° C, +125° C
TSC102IDT SO-8 Tape & reel TSC102I
(2)
(1)
Tape & reel 102Y
Tape & reel TSC102IY
TSC102IYPT
TSC102IYDT SO-8
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.
-40° C, +125° C
Automotive grade
TSSOP8
22/24 Doc ID 16754 Rev 2
TSC102 Revision history

10 Revision history

Table 13. Document revision history

Date Revision Changes
09-Nov-2009 1 Initial release.
03-Mar-2011 2
Added automotive grade qualification for SO-8 package (note 2. under Ta b le 1 2 ).
Doc ID 16754 Rev 2 23/24
TSC102
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
24/24 Doc ID 16754 Rev 2
Loading...