High-side current sense amplifier plus signal conditioning amplifier
p
Features
■ Independent supply and input common-mode
voltages
■ Wide common-mode operating range:
2.8 to 30 V
■ Wide common-mode surviving range:
-16 to 60 V (reversed battery and load-dump
conditions)
■ Low current consumption: I
■ Output amplifier for tailor-made signal
conditioning
■ -40 to 125° C operating temperature range
■ 4 kV ESD protection
Applications
■ Battery chargers
■ Automotive current monitoring
■ Notebook computers
■ DC motor control
■ Photovoltaic systems
■ Precision current sources
■ Uninterruptible power supplies
■ High-end power supplies
Description
The TSC102 measures a small differential voltage
on a high-side shunt resistor and translates it into
a ground-referenced output voltage.
The device’s wide input common-mode voltage
range, low quiescent current and tiny TSSOP8
packaging enable use in a wide variety of
applications (also available in SO-8 package).
The input common-mode and power supply
voltages are independent. The common-mode
voltage can range from 2.8 to 30 V in operating
conditions.
max = 420 µA
CC
TSC102
P
TSSOP8
(Plastic package)
D
SO-8
(Plastic package)
V
1
Vm
2
Gnd
3A1
4A2
Pin connections
(top view)
The TSC102 is rugged against abnormal
conditions on the input pins: Vp and Vm can
withstand up to 60 V in case of voltage spikes, as
little as -16 V in case of reversed battery, and up
to 4 kV in case of electrostatic discharge.
In addition to the current sensing amplifier, the
TSC102 offers a fully accessible amplifier for
output signal conditioning.
The device’s overall current consumption is lower
than 420 µA.
The TSC102 high-side current sense amplifier features a 2.8 to 30 V input common-mode
range that is independent of the supply voltage. The main advantage of this feature is that it
allows high-side current sensing at voltages much greater than the supply voltage (V
Figure 1.Application schematics
Signal
conditioning
amplifier
6
Vcc
5 V
Out
5
Vout
Vsense
Iload
Rsense
Current
sense
amplifier
TSC102
Vp
8
Av=20 V/V
Vm
1
Gnd
A1A2A3
2
374
CC
).
AM04508
Ta bl e 1 describes the function of each pin. Their position is shown in the illustration on the
cover page and in Figure 1 above.
A1
Table 1.Pin description
SymbolTypeFunction
OutAnalog output
GndPower supplyGround line.
V
CC
V
p
V
m
Power supplyPositive power supply line.
Analog input
Analog input
A1Analog inputConnection to current sensing amplifier output.
A2Analog inputConnection to signal conditioning amplifier non-inverting input.
A3Analog inputConnection to signal conditioning amplifier inverting input.
Out voltage is proportional to the magnitude of the sense voltage
.
V
p-Vm
Connection for the external sense resistor. The measured current
enters the shunt on the V
side.
p
Connection for the external sense resistor. The measured current
exits the shunt on the V
side.
m
Doc ID 16754 Rev 23/24
Absolute maximum ratings and operating conditionsTSC102
2 Absolute maximum ratings and operating conditions
Table 2.Absolute maximum ratings
SymbolParameterValueUnit
V
id
V
V
1
T
stg
T
Input pins differential voltage (Vp-Vm)±20V
Current sensing input pin voltages (Vp and Vm)
i
Voltage for pins A1, A2, A3, Out, Vcc
(1)
(1)
-16 to 60V
-0.3 to 7V
Storage temperature-55 to 150°C
Maximum junction temperature150°C
j
TSSOP8 thermal resistance junction to ambient 120°C/W
R
thja
ESD
1. These voltage values are measured with respect to the GND pin.
2. Human body model for Vm and Vp: a 100 pF capacitor is charged to the specified voltage, then discharged
through a 1.5 kΩ resistor between the Vp or Vm pin and Gnd while the other pins are floating.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
Table 3.Operating conditions
SO-8 thermal resistance junction to ambient125°C/W
HBM: human body model for V
HBM: human body model
MM: machine model
CDM: charged device model
(3)
(4)
(5)
and Vp pins
m
(2)
4kV
2.5kV
200V
1.5kV
SymbolParameterValueUnit
V
CC
T
oper
V
icm
DC supply voltage from T
Operational temperature range (T
Common mode voltage range (Vm pin voltage)2.8 to 30V
4/24 Doc ID 16754 Rev 2
min
to T
max
min
to T
3.5 to 5.5V
)-40 to 125°C
max
TSC102Electrical characteristics
3 Electrical characteristics
Unless otherwise specified, the electrical characteristics given in the following tables have
been measured under the following test conditions.
●T
●No load on Out pin.
●Signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1
Table 4.Supply
SymbolParameterTest conditionsMin.Typ.Max.Unit
I
I
CC1
Table 5.Current sensing amplifier input stage
Total supply current
CC
Total supply current
=25°C, VCC=5V, V
amb
connected to pin A2).
sense=Vp-Vm
V
= 0 V, pin A1 open, pin
sense
=50mV, Vm=12V.
A2 shorted to Gnd
< T
T
V
min
sense
< T
amb
max
= 50 mV, pin A1
connected to pin A2
< T
T
min
amb
< T
max
240420µA
420700µA
SymbolParameterTest conditionsMin.Typ.Max.Unit
DC
CMR1
AC CMR1
SVR1
V
dV
os
1. See Chapter 6: Parameter definitions on page 12 for the definition of CMR.
2. See Chapter 6 for the definition of SVR.
3. See Chapter 6 for the definition of V
DC common mode rejection
Variation of V
versus V
a1
referred to input
AC common mode rejection
Variation of Va1 versus V
referred to input (peak-to-peak
voltage variation)
Supply voltage rejection
Variation of V
Input offset voltage
os
versus V
a1
(1)
(3)
icm
icm
CC
(2)
2.8 V < Vm < 30 V
-40° C < T
2.8 V< V
1kHz sine wave
2.8 V < V
10 kHz sine wave
3.5 V< VCC < 5.5 V
-40° C < T
T
amb
-40° C < T
/dTInput offset drift versus T-40° C < T
=0V
V
I
Input leakage current
lk
I
Input bias current
ib
.
os
T
V
T
CC
min
sense
min
< T
< T
=25° C
=0V
amb
< 30 V
m
< 30 V
m
amb
< 150° C
< 125° C
90100dB
75dB
60dB
8590dB
±1.5
< 125° C
amb
< 125° C±3±8µV/°C
amb
< T
amb
max
< T
amb
max
±2.3
1µA
57 µA
mV
Doc ID 16754 Rev 25/24
Electrical characteristicsTSC102
Table 6.Current sensing amplifier output stage
SymbolParameterTest conditionsMin.Typ.Max.Unit
Av
V
oh1
V
I
sc1
ΔV
a1
ΔVa1/ΔIa1Output stage load regulation
ΔV
ΔV
ΔV
ΔV
1. See Chapter 6: Parameter definitions on page 12 for the definition of output voltage drift versus temperature.
2. Output voltage accuracy is the difference with the expected theoretical output voltage V
a more detailed definition.
Table 7.Current sensing amplifier frequency response
Gain
(variation of V
A1 node high-level saturation
voltage
V
oh1=Vcc-Va1
A1 node low-level saturation
ol1
voltage
versus V
a1
sense
)
V
= 1 V
sense
=1mA
I
a1
-40° C< T
=-1 V
V
sense
Ia1=1mA
-40° C< T
< 125° C
amb
< 125° C
amb
20V/V
85185mV
75165mV
Short-circuit currentA1 connected to VCC or Gnd1030mA
/ΔTOutput voltage drift versus T
Total output voltage accuracy
a1
Total output voltage accuracy
a1
Total output voltage accuracy
a1
Total output voltage accuracy
a1
(1)
(2)
(2)
(2)
(2)
T
< T
amb
a1
= 50 mV
= 25° C
< T
amb
= 100 mV
= 25° C
< T
amb
= 20 mV
= 25° C
< T
amb
= 10 mV
= 25° C
< T
amb
< T
max
< +5 mA
< T
max
< T
max
< T
max
< T
max
min
-5 mA < I
sink or source current
I
a1
V
sense
T
amb
T
min
V
sense
T
amb
T
min
V
sense
T
amb
T
min
V
sense
T
amb
T
min
a1-th
0.4±2mV/mA
=Av * V
sense
±400ppm/°C
±2.5
±4
±2.5
±4
±8
±10
±13
±16
. See Chapter 6 for
%
%
%
%
SymbolParameterTest conditionsMin.Typ.Max.Unit
V
tsV
settling to 1% final value
a1
SRSlew rateV
BW3 dB bandwidthC
Table 8.Current sensing amplifier noise
C
sense
load
sense
load
SymbolParameterTest conditionsMin.Typ.Max.Unit
e
Equivalent input noise voltagef = 1 kHz50nV/√ Hz
N
6/24 Doc ID 16754 Rev 2
=10mV to 100mV,
=47pF
7µs
=10mV to 100mV0.20.4V/µs
= 47 pF800kHz
TSC102Electrical characteristics
Table 9.Signal conditioning amplifier
SymbolParameterTest conditionsMin.Typ.Max.Unit
V
Common mode voltage rangeT
icm
min
< T
amb
< T
max
0Vcc
Va2=1V
V
ΔV
Input offset voltage
IO
Input offset voltage driftT
IO
IibInput bias currentV
Output high-level saturation
voltage (V
Output low-level saturation voltage
ol2
oh2=VCC-Vout
)
Short-circuit currentOut connected to VCC or Gnd1230mA
/ΔI
Output stage load regulation
out
DC common mode rejection
Variation of V
versus V
IO
icm
Supply voltage rejection
Variation of V
versus V
IO
CC
ΔV
CMR2
SVR2
V
out
V
I
oh2
sc2
GBPGain bandwidth product
PMPhase marginR
T
=25° C
amb
-40° C < T
< T
min
a2=Va3=VCC
amb
< 150° C
amb
< T
max
/210pA
Va2=1V Va3=0V I
-40° C< T
V
=0V Va3=1V
a2
=1mA
I
out
-40° C< T
-10 mA < I
=1V
V
a2
I
sink or source current
out
< T
T
min
amb
amb
out
amb
< 125° C
< 125° C
< +10 mA
< T
max
0V<Va2<3 V
0V<Va2<5 V
3.5 V<VCC<5.5 V
=1V
V
a2
-40° C < T
R
=10kΩ, C
L
< 125° C
amb
load
=100pF,
f=100kHz
=10kΩ, C
L
=10kΩ, C
R
L
= 100 pF65deg
load
=100pF
load
=1mA
out
70
60
85105dB
±3.5
±4.5
5µV/°C
85185mV
75165mV
300µV/mA
95
80
1MHz
Va2= 0.5 V to 4.5 V
SRSlew rate
A3 connected to OUT (follower
configuration)
0.20.4V/µs
Slew rate measured from 10%
to 90% of V
out
step
mV
dB
Doc ID 16754 Rev 27/24
Electrical characteristics curves: current sense amplifierTSC102
-20%
-15%
-10%
-5%
0%
5%
10%
15%
20%
050100150200
0
100
200
300
400
500
600
700
-250-150-5050150250
T=-40°C
4 Electrical characteristics curves: current sense
amplifier
Unless otherwise specified, the test conditions for the following curves are:
●T
●no load on Out pin.
●signal conditioning amplifier used as a buffer (pin A3 connected to pin Out and pin A1
Figure 2.Output voltage vs. VsenseFigure 3.A1 pin voltage accuracy vs. Vsense
6
5
4
3
Vout (V)
2
1
=25°C, VCC=5V, V
amb
connected to pin A2).
sense=Vp-Vm
=50mV, Vm=12V.
typical accuracy
guaranteed
accuracy vs. T
guaranteed
accuracy @25°C
0
-5050150250
Vsense (mV)
Vsense (mV)
Figure 4.Supply current vs. supply voltageFigure 5.Supply current vs. Vsense
500
450
400
350
T=125°C
300
250
200
Icc (µA)
150
100
50
T=-40°C
T=25°C
0
0246
Vcc (V)
Icc (µA)
Vsense (mV)
T=25°C
T=125°C
8/24 Doc ID 16754 Rev 2
TSC102Electrical characteristics curves: current sense amplifier
Electrical characteristics curves: current sense amplifierTSC102
0
10
20
30
40
50
60
70
80
90
100
10 Hz
100 Hz
1,000 Hz
10,000 Hz
100,000 Hz
Figure 12. Bode diagramFigure 13. Power supply rejection ratio
30
20
10
0
Gain (dB)
-10
-20
PSRR(dB)
-30
10 Hz
100 Hz
1,000 Hz
10,000 Hz
100,000 Hz
1,000,000 Hz
10,000,000 Hz
10/24 Doc ID 16754 Rev 2
TSC102Electrical characteristics curves: signal conditioning amplifier
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
3.50
3.70
3.90
4.10
4.30
4.50
4.70
4.90
5.10
5.30
5.50
Vcc (V)
-30
0
30
60
90
120
150
180
210
-30
-20
-10
0
10
20
30
40
50
1 kHz
10 kHz
100 kHz
1,000 kHz
10,000 kHz
5 Electrical characteristics curves: signal conditioning
amplifier
Unless otherwise specified, the test conditions for the following curves are:
●T
●no load on Out.
●signal conditioning amplifier tested as standalone amplifier.
Figure 14. Input offset voltage versus input
common-mode voltage
0.4
0.2
0.0
-0.2
-0.4
-0.6
Vio (mV)
-0.8
-1.0
-1.2
-1.4
0.0
T=25°C
T=125°C
0.5
=25°C, VCC=5V
amb
T=-40°C
1.0
1.5
2.0
2.5
Vicm (V)
3.0
3.5
4.0
Figure 15. Input offset voltage versus supply
voltage (Vicm = Vcc/2)
T=25°C
T=-40°C
4.5
Vio (mV)
5.0
T=125°C
Figure 16. Output current versus output
voltage
50
40
30
20
10
-10
-20
Output current (mA)
-30
-40
-50
0
0.0
sink
0.5
T=-40°C
1.0
1.5
T=25°C
2.0
Vout (V)
2.5
3.0
Figure 17. Bode diagram (Vout = Vcc/2,
R
=10kΩ, C
L
=
°
Gain (dB)
source
3.5
4.0
4.5
5.0
Doc ID 16754 Rev 211/24
load
= 100 pF)
Phase (deg)
Parameter definitionsTSC102
6 Parameter definitions
6.1 Common-mode rejection ratio (CMR)
The common-mode rejection ratio (CMR) measures the ability of the current sensing
amplifier to reject any DC voltage applied on both inputs V
back to the input so that its effect can be compared with the applied differential signal. The
CMR is defined by the formula:
ΔV
CMR20–
------------------------------log⋅=ΔV
icm
a1
Av⋅
6.2 Supply voltage rejection ratio (SVR)
The supply voltage rejection ratio (SVR) measures the ability of the current sensing amplifier
to reject any variation of the supply voltage V
that its effect can be compared with the applied differential signal. The SVR is defined by the
formula:
. The SVR is referred back to the input so
CC
and Vm. The CMR is referred
p
ΔV
a1
SVR20–
---------------------------log⋅=ΔVccAv⋅
6.3 Gain (Av) and input offset voltage (Vos)
The input offset voltage is defined as the intersection between the linear regression of the
V
versus V
a1
V
sense=Vsense1
V
can be calculated with the formula:
os
The amplification gain Av is defined as the ratio between the output voltage and the input
differential voltage.
curve with the X-axis (see Figure 18). If V
sense
= 50 mV and V
V
osVsense1
is the output voltage with V
a12
V
⎛⎞
----------------------------------------------- -
–=
⎝⎠
Av
–
sense1Vsense2
V
–
a11Va12
V
out
----------------- -=
V
sense
V
⋅
is the output voltage with
a11
sense=Vsense2
out1
= 5 mV, then
12/24 Doc ID 16754 Rev 2
TSC102Parameter definitions
Figure 18. V
versus V
a1
Va1_1
Va1_2
characteristics: detail for low V
sense
Va1
VosVsense2
Vsense1
sense
Vsense
values
AM04509
6.4 Output voltage drift versus temperature
The output voltage drift versus temperature is defined as the maximum variation of Va1 with
respect to its value at 25° C, over the temperature range. It is calculated as follows:
ΔV
a1
-------------- -max
ΔT
with T
min
< T
amb
< T
max
.
Figure 19 on page 14 provides a graphical definition of the output voltage drift versus
temperature. On this chart V
minimum variation of V
a1
versus T, and T = 25° C is considered to be the reference.
a1
Va1T
()Va125° C()–
amb
--------------------------------------------------------------------- -=
T
amb
is always within the area defined by the maximum and
25° C–
Doc ID 16754 Rev 213/24
Parameter definitionsTSC102
Figure 19. Output voltage drift versus temperature
50
40
30
20
10
0
-10
-20
-30
Va1-Va1@25°C (mV)
-40
-50
-60 -40 -20020406080 100 120 140
T (°C)
6.5 Output voltage accuracy
The output voltage accuracy is the difference between the actual output voltage and the
theoretical output voltage. Ideally, the current sensing output voltage should be equal to the
input differential voltage multiplied by the theoretical gain, as in the following formula.
V
=Av. V
a1-th
sense
The actual value is very slightly different, mainly due to the effects of the input offset voltage
V
and the non-linearity.
os
14/24 Doc ID 16754 Rev 2
TSC102Parameter definitions
Figure 20. Va1 vs. V
theoretical and actual characteristics
sense
Va1
Va1
5 mV
5 mV
Actual
Actual
Va1 accuracy for V
Va1 accuracy for V
Ideal
Ideal
sense
sense
= 5 mV
= 5 mV
Vsense
Vsense
AM04510
AM04510
The output voltage accuracy, expressed as a percentage, can be calculated with the
following formula:
The TSC102 can be used to measure current and feed back the information to a
microcontroller, as shown in Figure 21.
Figure 21. Typical application schematic
Vsense
load
Iload
Rsense
5 V
6
Vp
TSC102
8
Vm
1
Gnd
A1A2A3
2
37
Vcc
V
Out
5
CC
ADC
GND
4
Vout
V
reg
Microcontroller
AM04511
This fully-accessible output amplifier offers wide schematic possibilities, as shown in the
following examples.
Figure 22. Gain higher than 20
5 V
6
Vcc
Out
5
R1
R2
Vout = Av.(1+R1/R2).Vsense
AM04512
Vsense
Vp
TSC102
8
Vm
1
Gnd
A1A2A3
2
374
16/24 Doc ID 16754 Rev 2
TSC102Application information
Figure 23. Gain lower than 20
5 V
6
TSC102
Vcc
Vp
8
Vm
Out
5
1
Vsense
Gnd
A1A2A3
2
3
4
7
R1
R2
Vout = Av.R2.Vsense/(R1+R2)
AM04513
Figure 24. Overcurrent protection
5 V
6
Vcc
Out
5
Vsense
Vp
TSC102
8
Vm
1
Gnd
A1A2A3
2
374
R1
R2
R3R4
AM04514
Doc ID 16754 Rev 217/24
Application informationTSC102
R1
R2
C1
C2
R4
R3
1
8
5
Vp
Vm
Vcc
2
Out
Gnd
374
A1A2A3
6
5 V
Vsense
Figure 25. First-order low-pass filter
5 V
6
TSC102
Vcc
Vp
Out
5
Vsense
8
Vm
1
Gnd
A1A2A3
2
374
R1
C1
AM04515
Figure 26. Second-order low-pass filter
18/24 Doc ID 16754 Rev 2
AM04516
TSC102Package information
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 16754 Rev 219/24
Package informationTSC102
8.1 SO-8 package information
Figure 27. SO-8 package mechanical drawing
Table 10.SO-8 package mechanical data
Dimensions
Ref.
Min.Typ.Max.Min.Typ.Max.
A1.750.069
A10.100.250.0040.010
A21.250.049
b0.280.480.0110.019
c0.170.230.0070.010
D4.804.905.000.1890.1930.197
E5.806.006.200.2280.2360.244
E13.803.904.000.1500.1540.157
e1.270.050
h0.250.500.0100.020
L0.401.270.0160.050
L11.040.040
k08°1°8°
ccc0.100.004
MillimetersInches
20/24 Doc ID 16754 Rev 2
TSC102Package information
8.2 TSSOP-8 package information
Figure 28. TSSOP8 package mechanical drawing
Table 11.TSSOP8 package mechanical data
Dimensions
Ref.
MillimetersInches
Min.Typ.Max.Min.Typ.Max.
A1.200.047
A10.050.150.0020.006
A20.801.001.050.0310.0390.041
b0.190.300.0070.012
c0.090.200.0040.008
D2.903.003.100.1140.1180.122
E6.206.406.600.2440.2520.260
E14.304.404.500.1690.1730.177
e0.650.0256
k0°8°0°8°
L0.450.600.750.0180.0240.030
L110.039
aaa0.100.004
Doc ID 16754 Rev 221/24
Ordering informationTSC102
9 Ordering information
Table 12.Order codes
Part numberTemperature rangePackagePackingMarking
TSC102IPT
TSSOP8Tape & reel102I
-40° C, +125° C
TSC102IDTSO-8Tape & reelTSC102I
(2)
(1)
Tape & reel102Y
Tape & reelTSC102IY
TSC102IYPT
TSC102IYDTSO-8
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
-40° C, +125° C
Automotive grade
TSSOP8
22/24 Doc ID 16754 Rev 2
TSC102Revision history
10 Revision history
Table 13.Document revision history
DateRevisionChanges
09-Nov-20091Initial release.
03-Mar-20112
Added automotive grade qualification for SO-8 package
(note 2. under Ta b le 1 2 ).
Doc ID 16754 Rev 223/24
TSC102
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.