The TL062, TL062A and TL062B are high-speed
JFET input single operational amplifiers. Each of
these JFET input operational amplifiers
incorporates well matched, high-voltage JFET
and bipolar transistors in a monolithic integrated
circuit.
The devices feature high slew rates, low input
bias and offset currents, and a low offset voltage
temperature coefficient.
TL062, TL062A, TL062BAbsolute maximum ratings and operating conditions
2 Absolute maximum ratings and operating conditions
Table 1.Absolute maximum ratings
SymbolParameter
(5) (6)
(1)
(2)
±15V
(3)
(4)
V
V
P
Supply voltage
CC
V
Input voltage
i
Differential input voltage
id
Power dissipation680mW
tot
Output short-circuit duration
T
Storage temperature range-65 to +150-65 to +150-65 to +150°C
stg
Thermal resistance junction to
thja
ambient
SO-8
R
DIP8
Thermal resistance junction to
(5) (6)
thjc
case
SO-8
R
DIP8
(7)
(8)
(9)
ESD
HBM: human body model
MM: machine model
CDM: charged device model
Val ue
TL062M, AM, BM TL062I, AI, BITL062C, AC, BC
±18V
±30V
Infinite
125
85
40
41
900V
150V
1.5kV
Unit
°C/W
°C/W
1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages
where the zero reference level is the midpoint between V
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure
that the dissipation rating is not exceeded.
5. Short-circuits can cause excessive heating and destructive dissipation.
6. Rth are typical values.
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin
combinations with other pins floating.
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins
floating.
9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to
the ground.
Operating free-air temperature range-55 to +125-40 to +1050 to +70°C
Doc ID 2294 Rev 33/16
Electrical characteristicsTL062, TL062A, TL062B
3 Electrical characteristics
Table 3.VCC = ±15 V, T
amb
SymbolParameter
Input offset voltage (RS = 50Ω)
V
DV
V
I
I
io
io
io
ib
icm
= +25°C
T
amb
T
≤ T
amb
≤ T
max
min
Temperature coefficient of input
offset voltage (RS = 50Ω)
≤ T
≤ T
(1)
max
(1)
max
Input offset current
T
= +25°C
amb
T
≤ T
min
amb
Input bias current
T
= +25°C
amb
T
≤ T
min
amb
Input common mode voltage range
Output voltage swing (RL = 10kΩ)
V
opp
T
T
amb
min
= +25°C
≤ T
amb
≤ T
max
Large signal voltage gain
= 10kΩ, Vo = ±10V,
R
A
GBP
R
CMR
SVR
I
CC
V
o1/Vo2
P
SR
vd
L
T
= +25°C
amb
≤ T
T
min
amb
≤ T
max
Gain bandwidth product
T
= +25°C, RL =10kΩ, CL = 100pF
amb
Input resistance10
i
Common mode rejection ratio
R
= 50Ω
S
Supply voltage rejection ratio
R
= 50Ω
S
Supply current, no load
= +25°C, no load, no signal
T
amb
Channel separation
= 100, T
A
v
amb
= 25°C
Total power consumption
D
= +25°C, no load, no signal
T
amb
Slew rate
V
=10V, RL = 10kΩ, CL= 100pF, Av=1
i
= +25°C (unless otherwise specified)
TL062MTL062ITL062C
MinTyp Max Min Typ Max MinTyp Max
36
15
1010
5100
20
30200
50
+15
±11.5
-12
202027202027202027
4
64
4
111MHz
12
808680867076 dB
809580957095dB
200250200250200250μA
120120120dB
67.567.567.5mW
1.53.51.53.51.53.5V/μs
±11.5
4
10
36
315
9
10
5100
52005pA
10
30200
3040010pA
20
+15
-12
63
±11
+15
-12
6
3
12
10
12
Unit
mV
20
μV/°C
nA
nA
V
V
V/mV
Ω
4/16Doc ID 2294 Rev 3
TL062, TL062A, TL062BElectrical characteristics
Table 3.VCC = ±15 V, T
= +25°C (unless otherwise specified) (continued)
amb
TL062MTL062ITL062C
SymbolParameter
MinTyp Max Min Typ Max MinTyp Max
Rise time
t
r
= 20mV, RL = 10kΩ,
V
i
0.20.20.2μs
CL = 100pF, Av = 1
Overshoot factor (see Figure 15)
K
ov
e
n
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature
sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature
as possible.
Table 4.VCC = ±15 V, T
Vi = 20mV, RL = 10kΩ, CL = 100pF,
= 1
A
v
Equivalent input noise voltage
= 100Ω, f = 1kHz
R
S
= +25°C (unless otherwise specified)
amb
101010%
424242
TL062AC, AI, AMTL062BC, BI, BM
SymbolParameter
Min.Typ.Max.Min.Typ.Max.
Input offset voltage (RS = 50Ω)
DV
V
V
I
I
icm
io
io
io
ib
= +25°C
T
amb
T
≤ T
amb
≤ T
max
min
Temperature coefficient of input offset voltage
= 50Ω)
(R
S
≤ T
≤ T
(1)
max
(1)
max
Input offset current
T
= +25°C
amb
T
≤ T
min
amb
Input bias current
T
= +25°C
amb
T
≤ T
min
amb
Input common mode voltage range
36
1010µV/°C
5100
30200
±11.5+15
-12
7.5
3
7
23
5
51003pA
30200
7
±11.5+15
-12
Output voltage swing (RL = 10kΩ)
V
opp
T
T
amb
min
= +25°C
≤ T
amb
≤ T
max
20
20
2720
20
27
Large signal voltage gain
= 10kΩ, Vo = ±10V,
R
A
vd
GBP
R
CMR
i
L
T
T
amb
min
= +25°C
≤ T
amb
≤ T
max
4
4
Gain bandwidth product
T
= +25°C, RL =10kΩ, CL = 100pF
amb
Input resistance10
Common mode rejection ratio
= 50Ω
R
S
80868086dB
64
6
4
11MHz
12
10
12
Unit
nV
-----------Hz
Unit
mV
nA
nA
V
V/mV
Ω
Doc ID 2294 Rev 35/16
Electrical characteristicsTL062, TL062A, TL062B
Table 4.VCC = ±15 V, T
= +25°C (unless otherwise specified) (continued)
amb
TL062AC, AI, AMTL062BC, BI, BM
SymbolParameter
Min.Typ.Max.Min.Typ.Max.
SVR
I
V
o1/Vo2
SR
K
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature
Supply voltage rejection ratio
RS = 50Ω
Supply current, no load
CC
= +25°C, no load, no signal
T
amb
Channel separation
= 100, T
A
v
Total power consumption
P
D
= +25°C, no load, no signal
T
amb
= +25°C
amb
Slew rate
V
= 10V, RL = 10kΩ, CL = 100pF, Av = 1
i
Rise time
t
r
= 20mV, RL = 10kΩ, CL = 100pF, Av = 1
V
i
Overshoot factor (see Figure 15)
ov
e
n
sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature
as possible.
Vi = 20mV, RL = 10kΩ, CL = 100pF, Av = 1
Equivalent input noise voltage
RS = 100Ω, f = 1kHz
80958095dB
200250200250µA
120120
67.567.5mW
1.53.51.53.5V/μs
0.20.2μs
1010%
4242
Unit
nV
-----------Hz
6/16Doc ID 2294 Rev 3
TL062, TL062A, TL062BElectrical characteristics
Figure 2.Maximum peak-to-peak output
voltage versus supply voltage
RL = 10 kΩ
= + 25°C
T
amb
voltage (V)
Maximum peak-to-peak output
Supply voltage (V)
Figure 4.Maximum peak-to-peak output
voltage versus load resistance
Figure 3.Maximum peak-to-peak output
voltage (V)
Maximum peak-to-peak output
voltage versus free air temperature
VCC = +/- 15 V
= 10 kΩ
R
L
Free air temperature (°C)
Figure 5.Maximum peak-to-peak output
voltage versus frequency
VCC = +/- 15 V
R
= 10 kΩ
L
T
amb
= + 25°C
voltage (V)
= +/- 15 V
V
CC
T
amb
= + 25°C
Maximum peak-to-peak output
Load resistance (kΩ)
Figure 6.Differential voltage amplification
versus free air temperature
10
7
4
2
1
-75
VCC = +/- 15 V
R
= 10 kΩ
L
-25
-50
025
5075
Free air temperature (°C)
100125
Differential voltage
amplification (V/mV)
V
= +/- 12 V
CC
= +/- 5 V
V
voltage (V)
CC
V
CC
= +/- 2 V
Maximum peak-to-peak output
Frequency (Hz)
Figure 7.Large signal differential voltage
amplification and phase shift
amplification (V/V)
Differential voltage
versus frequency
6
10
5
10
4
10
3
10
2
10
Phase shift
1
10
(right scale)
101001k10k
1
VCC = +/- 5 V to +/- 15 V
R
= 2 kΩ
L
T
= + 25°C
amb
Frequency (Hz)
Differential
voltage
amplification
(left scale)
100k
1M
10M
0
45
90
135
180
Doc ID 2294 Rev 37/16
Electrical characteristicsTL062, TL062A, TL062B
Figure 8.Supply current per amplifier versus
supply voltage
250
200
150
100
T
= + 25°C
amb
Supply current (μA)
50
No signal
no load
0
02
648
101214
16
Supply voltage (+/- V)
Figure 10. Total power dissipated versus free
air temperature
30
VCC = +/- 15 V
25
20
No signal
no load
Figure 9.Supply current per amplifier versus
Supply current (μA)
free air temperature
250
200
150
100
VCC = +/- 15 V
50
0
-75
No signal
no load
-50
-25
Free air temperature (°C)
0
5075 100
25
125
Figure 11. Common-mode rejection ratio
versus free air temperature
87
86
85
15
(mW)
10
5
To tal power dissipated
0
-75
-50-250255075100 125
Free air temperature (°C)
Figure 12. Normalized unity gain bandwidth
slew rate and phase shift versus
temperature
1.03
1.02
1.01
1
0.99
0.98
0.97
125-75
and slew rate
Normalized unity-gain bandwidth
1.3
1.2
1.1
1
0.9
0.8
0.7
Unity-gain bandwidth
(left scale)
VCC = +/- 15 V
RL = 10 kΩ
f = B1 for phase shift
-50-25
0255075100
Free air temperature (°C)
Phase shift
(right scale)
Slew rate
(left scale)
84
(dB)
83
VCC = +/- 15 V
RL = 10 kΩ
Common mode rejection ratio
82
81
-50-250255075100 125
-75
Free air temperature (°C)
Figure 13. Input bias current versus free air
temperature
100
VCC = +/- 15 V
10
1
0.1
Normalized phase shift
Input bias current (nA)
0.01
-50-25
0255075100125
Free air temperature (°C)
8/16Doc ID 2294 Rev 3
TL062, TL062A, TL062BElectrical characteristics
k
Figure 14. Voltage follower large signal pulse
response
6
Input
Output
VCC = +/- 15 V
RL = 10 kΩ
C
= 100 pF
L
T
= + 25°C
amb
0246810
Input and output voltages (V)
4
2
0
-2
-4
-6
Time (μs)
Figure 16. Equivalent input noise voltage
versus frequency
100
90
80
70
60
50
40
30
voltage (nV/VHz)
20
Equivalent input noise
10
0
10
40100
400
1k4k 10k
VCC = +/- 15 V
R
= 100 Ω
S
= + 25°C
T
amb
40k 100
Figure 15. Output voltage versus elapsed time
28
24
Overshoot
20
16
12
Output voltage (mV)
-4
8
4
10%
0
0
90%
t
r
0.2 0.4
0.6
0.8
Time (μs)
VCC = +/- 15 V
RL = 10 kΩ
= + 25°C
T
amb
1
12
14
Frequency (Hz)
3.1 Parameter measurement information
1/2
TL062
C
= 100 pF
L
10 kΩ
1 kΩ
e
I
e
o
-
1/2
TL062
R
= 10 kΩ
L
R
L
Doc ID 2294 Rev 39/16
C
L
Figure 17. Voltage followerFigure 18. Gain of 10 inverting amplifier
-
e
I
e
o
= 100 pF
Typical applicationsTL062, TL062A, TL062B
4 Typical applications
Figure 19. 100 kHz quadrature oscillator
Ω
*
1N 4148
18 k
-15 V
18 pF
-
88.4 k
1/2
Ω
TL062
88.4 k
Ω
18 pF
1. These resistor values may be adjusted for a symmetrical output.
6 sin
88.4 k
ω
t
Ω
-
1/2
TL062
1N 4148
18 pF
Ω
1 k
1 k
Ω
18 k Ω *
+15 V
6 cos
ω
t
10/16Doc ID 2294 Rev 3
TL062, TL062A, TL062BPackage information
5 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 2294 Rev 311/16
Package informationTL062, TL062A, TL062B
5.1 DIP8 package information
Figure 20. DIP8 package mechanical drawing
Table 5.DIP8 package mechanical data
Dimensions
Ref.
Min.Typ.Max.Min.Typ.Max.
A5.330.210
A10.380.015
A22.923.304.950.1150.1300.195
b0.360.460.560.0140.0180.022
b21.141.521.780.0450.0600.070
c0.200.250.360.0080.0100.014
D9.029.2710.160.3550.3650.400
E7.627.878.260.3000.3100.325
E16.106.357.110.2400.2500.280
e2.540.100
eA7.620.300
eB10.920.430
L2.923.303.810.1150.1300.150
MillimetersInches
Note:Dimensions "D" and "E1" do not include mold flash, protrusions or gate burrs. Mold flash,
protrusions or gate burrs shall not exceed 0.25 mm in total (both sides). Datum plane "H"
coincides with the bottom of the lead, where the lead exits the body.
Updated document format.
Added TL062A and TL062B in title on cover page.
Updated package information in Chapter 5.
Doc ID 2294 Rev 315/16
TL062, TL062A, TL062B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.