ST TDA7563A User Manual

4 x 50W multifunction quad power amplifier
Features
Multipower BCD technology
MOSFET output power stage
New high efficiency (class SB)
High output power capability 4x28W/4Ω @
14.4V, 1kHz, 10% THD, 4x50W max power
Max. output power 4x72W/2Ω
Full I
Full fault protection
DC offset detection
Four independent short circuit protection
Clipping detector pin with selectable threshold
Standby/mute pin
Linear thermal shutdown with multiple thermal
ESD protection

Table 1. Device summary

2
C bus driving: – Standby – Independent front/rear soft play/mute – Selectable gain 26dB /12dB (for low noise
line output function)
– High efficiency enable/disable
2
–I
C bus digital diagnostics (including DC
and AC load detection)
(2%/10%)
warning
TDA7563A
with built-in diagnostics feature
PowerSO36
(Slug up)
Flexiwatt27 (Vertical)
Description
The TDA7563A is a new BCD technology Quad Bridge type of car radio amplifier in Flexiwatt27 & PowerSO36 packages specially intended for car radio applications.
Thanks to the DMOS output stage the TDA7563A has a very low distortion allowing a clear powerful sound. Among the features, its superior efficiency performance coming from the internal exclusive structure, makes it the most suitable device to simplify the thermal management in high power sets.
The dissipated output power under average listening condition is in fact reduced up to 50% when compared to the level provided by conventional class AB solutions.
This device is equipped with a full diagnostics array that communicates the status of each speaker through the I
Flexiwatt27 (Horizontal)
Flexiwatt27 (SMD)
2
C bus.
Order code Package Packing
TDA7563A Flexiwatt27 (vertical) Tube
TDA7563AH Flexiwatt27 (horizontal) Tube
TDA7563ASM Flexiwatt27 (SMD) Tube
TDA7563ASMTR Flexiwatt27 (SMD) Tape and reel
TDA7563APD PowerSO36 (slug up) Tube
February 2008 Rev 1 1/35
www.st.com
1
Contents TDA7563A
Contents
1 Block, pins connection and application diagrams . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/35
TDA7563A List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5. Chip address: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 6. IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 10. DB3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. DB4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3/35
List of figures TDA7563A
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Pin connections - Flexiwatt27 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. Pin connections - PowerSO36 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Output power vs. supply voltage (4W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. Output power vs. supply voltage (2W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Distortion vs. output power (4W, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. Distortion vs. output power (4Ω, HI-EFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10. Distortion vs. output power (2Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11. Distortion vs. frequency (4W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 12. Distortion vs. frequency (2W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 13. Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 14. Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 15. Power dissipation and efficiency vs. output power (4W, STD, SINE) . . . . . . . . . . . . . . . . . 12
Figure 16. Power dissipation and efficiency vs. output power (4Ω, HI-EFF, SINE) . . . . . . . . . . . . . . . 12
Figure 17. Power dissipation vs. average output power (audio program simulation, 4W) . . . . . . . . . . 12
Figure 18. Power dissipation vs. average output power (audio program simulation, 2W) . . . . . . . . . . 12
Figure 19. Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . . 14
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 14
Figure 22. Thresholds for short to GND/V
Figure 23. Thresholds for short across the speaker/open speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 24. Thresholds for line-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 25. Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 27. Current detection: Load impedance |Z| vs. output peak voltage. . . . . . . . . . . . . . . . . . . . . 18
Figure 28. Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 29. Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 30. Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 31. Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 32. PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 30
Figure 33. Flexiwatt27 (SMD) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 31
Figure 34. Flexiwatt27 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 32
Figure 35. Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
S
4/35
TDA7563A Block, pins connection and application diagrams

1 Block, pins connection and application diagrams

Figure 1. Block diagram

CLK
DATA
VCC1
VCC2
ST-BY/MUTE
IN RF
I2CBUS
Mute1
Mute2
Thermal Protection & Dump
Reference
Clip Detector
F
CD_OUT
OUT RF+
IN RR
IN LF
IN LR
SVR
R
F
R
AC_GND

Figure 2. Application circuit

C8
0.1μF
V(4V .. V
I2C BUS
IN RF
IN RR
IN LF
IN LR
)
CC
DATA
CLK
C1 0.22μF
C2 0.22μF
C3 0.22μF
C4 0.22μF
S-GND
RR
RF
PW_GND
C7
2200μF
2
26
23
16
15
12
13
14
C5
1μF
Vcc1
17 11 5
C6
10μF
Short Circuit Protection & Diagnostic
Short Circuit Protection & Diagnostic
Short Circuit Protection & Diagnostic
Short Circuit Protection & Diagnostic
LF LR
Vcc2
721
18
19
20
22
25
24
10
1, 27
47K
CD OUT
OUT RF-
OUT RR+
OUT RR-
OUT LF+
OUT LF-
OUT LR+
OUT LR-
TAB
+
­+
­+
9
8
­+
6
3
4
-
TAB
S_GND
OUT RF
OUT RR
OUT LF
OUT LR
V
D00AU1231A
5/35
Block, pins connection and application diagrams TDA7563A
6
0

Figure 3. Pin connections - Flexiwatt27 (Top view)

27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
TAB
DATA
PW_GND RR
OUT RR-
CK
OUT RR+
V
OUT RF-
PW_GND RF
OUT RF+
AC GND
IN RF
IN RR
S_GND
IN LR
IN LF
SVR
OUT LF+
PW_GND LF
OUT LF-
V
OUT LR+
CD-OUT
OUT LR-
PW_GND LR
STBY
TAB
Flexiwatt 27 (horizontal/SMD)
CC2
CC1
D00AU141
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Flexiwatt 27 (vertical)
TAB
DATA
PW_GND RR
OUT RR-
CK
OUT RR+
V
CC2
OUT RF-
PW_GND RF
OUT RF+
AC GND
IN RF
IN RR
S_GND
IN LR
IN LF
SVR
OUT LF+
PW_GND LF
OUT LF-
V
CC1
OUT LR+
CD-OUT
OUT LR-
PW_GND LR
STBY
TAB
D00AU123

Figure 4. Pin connections - PowerSO36 (Top view)

VCC
OUT3-
N.C.
N.C.
PWGND
OUT3+
ACGND
IN3
IN4
SGND 1027
IN2
IN1
SVR 1324
OUT1+
PWGND
N.C.
OUT1-
VCC
36
35
34
33
32
31
30
29
28
26
25
23
22
21
20
19
D04AU1547A
1
2
3
4
5
6
7
8
9
TAB
CK
N.C.
OUT4+
N.C.
PWGND
VCC
DATA
OUT4-
OUT2-
11
12
STBY
VCC
PWGND
14
15
16
17
18
N.C.
OUT2+
N.C.
N.C.
CD
6/35
TDA7563A Electrical specifications

2 Electrical specifications

2.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
T
V
V
V
V
peak
V
CK
DATA
I
O
I
O
P
stg
op
tot
Operating supply voltage 18 V
DC supply voltage 28 V
S
Peak supply voltage (for t = 50ms) 50 V
CK pin voltage 6 V
Data pin voltage 6 V
Output peak current (not repetitive t = 100ms) 8 A
Output peak current (repetitive f > 10Hz) 6 A
Power dissipation T
= 70°C 85 W
case
, TjStorage and junction temperature -55 to 150 °C

2.2 Thermal data

Table 2. Thermal data

Symbol Parameter PowerSO36 Flexiwatt 27 Unit
R
th j-case
Thermal resistance junction to case Max 1 1 °C/W

2.3 Electrical characteristics

Table 3. Electrical characteristics

Symbol Parameter Test condition Min. Typ. Max. Unit
Power amplifier
V
S
I
d
P
O
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; T
= 25°C unless otherwise specified)
amb
Supply voltage range 8 18 V
Total quiescent drain current 170 300 mA
Output power
Max. power (V wave input (2Vrms))
THD = 10% THD = 1%
= 2Ω; EIAJ (VS = 13.7V)
R
L
RL = 2Ω; THD 10%
= 2Ω; THD 1%
R
L
= 2Ω; max power
R
L
= 15.2V, square
S
25 20
55 40 32 60
50 W
28 22
68 50 40 75
7/35
W W
W W W W
Electrical specifications TDA7563A
Table 3. Electrical characteristics (continued)
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; T
Symbol Parameter Test condition Min. Typ. Max. Unit
= 25°C unless otherwise specified)
amb
THD Total harmonic distortion
= 1 to 10W; STD MODE
P
O
HE MODE; PO = 1.5W HE MODE; P
= 1-10W, f = 10kHz; STD mode 0.15 0.5 %
P
O
= 8W
O
0.015
0.01
0.1
0.1
0.1
0.5
RL = 2Ω; HE MODE; Po = 3W 0.02 0.5 %
= 12dB; STD mode
G
Cross talk f = 1kHz to 10kHz, Rg = 600Ω 50 60 dB
C
T
R
G
ΔG
G
ΔG
E
E
Input impedance 60 100 130 KΩ
IN
Voltage gain 1 (default) 25 26 27 dB
V1
Voltage gain match 1 -1 1 dB
V1
Voltage gain 2 11 12 13 dB
V2
Voltage gain match 2 -1 1 dB
V2
Output noise voltage 1
IN1
Output noise voltage 2
IN2
SVR Supply voltage rejection
V
= 0.1 to 5 V
V
O
RMS
Rg = 600Ω; filter 20 Hz to 22 kHz
Rg = 600Ω; GV = 12dB filter 20 Hz to 22 kHz
f = 100Hz to 10kHz; V
= 600Ω
R
g
= 1Vpk;
r
0.015 0.1 %
35 µV
11 µV
50 70 dB
BW Power bandwidth 100 kHz
A
I
A
V
V
T
T
V
V
CMRR Input CMRR V
V
I
CD
CD
Standby attenuation 90 110 dB
SB
Standby current V
SB
Mute attenuation 80 100 dB
M
Offset voltage Mute & Play -60 0 60 mV
OS
Min. supply mute threshold 7 7.5 8 V
AM
Turn on delay D2/D1 (IB1) 0 to 1 5 20 ms
ON
Turn off delay D2/D1 (IB1) 1 to 0 5 20 ms
OFF
Standby/mute pin for standby 0 1.5 V
SBY
Standby/mute pin for mute 3.5 5 V
MU
Standby/mute pin for operating 7 V
OP
V
Standby/mute pin current
MU
Clip det. high leakage current CD off / VCD = 6V 0 5 μA
LK
Clip det. saturation voltage CD on; ICD = 1mA 300 mV
SAT
V
= 0 1 10 µA
standby
= 1Vpk-pk; Rg = 0 Ω 55 dB
CM
standby/mute
standby/mute
= 8.5V 20 40 μA
< 1.5V 0 5 μA
S
% % %
V
8/35
TDA7563A Electrical specifications
Table 3. Electrical characteristics (continued)
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; T
Symbol Parameter Test condition Min. Typ. Max. Unit
= 25°C unless otherwise specified)
amb
CD
Clip det. THD level
THD
D0 (IB1) = 0 1 2 3 %
Turn on diagnostics 1 (Power amplifier mode)
Short to GND det. (below this
D0 (IB1) = 1 5 10 15 %
Pgnd
limit, the output is considered in
1.2 V
short circuit to GND)
Short to Vs det. (above this
Pvs
limit, the output is considered in
Vs -1.2 V
short circuit to VS)
Power amplifier in standby
1.8 Vs -1.8 V
Pnop
Normal operation thresholds. (within these limits, the output is considered without faults).
Lsc Shorted load det. 0.5 Ω
Lop Open load det. 130 Ω
Lnop Normal load det. 1.5 70 Ω
Turn on diagnosticS 2 (Line driver mode)
Short to GND det. (below this
Pgnd
limit, the output is considered in
Power amplifier in standby 1.2 V
short circuit to GND)
Short to Vs det. (above this
Pvs
limit, the output is considered in
Vs -1.2 V
short circuit to VS)
Normal operation thresholds.
Pnop
(within these limits, the output
1.8 Vs -1.8 V
is considered without faults).
Lsc Shorted load det. 1.5 Ω
Lop Open load det. 400 Ω
Lnop Normal load det. 4.5 200 Ω
Permanent diagnostics 2 (Power amplifier mode or line driver mode)
Short to GND det. (below this
Pgnd
limit, the output is considered in short circuit to GND)
Power amplifier in mute or play, one or more short circuits protection activated
Pvs
Short to Vs det. (above this limit, the output is considered in short circuit to Vs)
Normal operation thresholds.
Pnop
(within these limits, the output is considered without faults).
Power amplifier mode 0.5 Ω
L
Shorted load det.
SC
Line driver mode 1.5 Ω
9/35
1.2 V
Vs -1.2 V
1.8 Vs -1.8 V
Electrical specifications TDA7563A
)
(V)
Po (W)
THD (%)
Table 3. Electrical characteristics (continued)
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; T
Symbol Parameter Test condition Min. Typ. Max. Unit
= 25°C unless otherwise specified)
amb
V
I
2
C bus interface
I
S
V
V
Offset detection
O
Normal load current detection
I
NL
Open load current detection 250 mA
OL
Clock frequency 400 kHz
CL
Input low voltage 1.5 V
IL
Input high voltage 2.3 V
IH
Power amplifier in play, STD mode AC input signals = 0
VO < (VS-5)pk
±1.5 ±2 ±2.5 V
500 mA

2.4 Electrical characteristics curves

Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage (4Ω)
Id (mA)
250
230
210
190
170
150
130
110
Vin = 0 NO LOADS
90
70
8 1012141618
Vs (V)
Po (W)
70
65
60
55
50
45
40
35
30
25
20
15
10
RL = 4 Ohm f = 1 KHz
5
8 9 10 11 12 13 14 15 16 17 18
Vs (V
Po-max
THD = 10 %
THD = 1 %
Figure 7. Output power vs. supply voltage (2Ω) Figure 8. Distortion vs. output power (4Ω, STD)
Po (W)
100
90
80
70
60
50
40
30
20
10
RL = 2 Ohm f = 1 KHz
8 9 10 11 12 13 14 15 16
Vs
Po-max
THD = 10 %
THD = 1 %
10/35
10
STANDARD M ODE
= 14.4 V
V
S
R
= 4Ω
L
1
f = 10 KHz
0.1
0.01
0.001
0.1 1 10 100
f = 1 KHz
AC00251
TDA7563A Electrical specifications
Po (W)
THD (%)
f = 10 KHz
Po (W)
THD (%)
STANDARD MODE V
S
= 14.4 V
R
L
= 2
Ω
f = 10 KHz
f (Hz)
THD (%)
f (Hz)
THD (%)
f (Hz)
CROSSTALK (dB)
f (Hz)
SVR (dB)
Figure 9. Distortion vs. output power (4Ω, HI-
EFF)
10
HI - EFF MODE
= 14.4 V
V
S
= 4
R
Ω
L
1
0.1
0.01
0.001
0.1 1 10 100
f = 1 KHz
Figure 10. Distortion vs. output power (2Ω,
STD)
AC00252
10
1
0.1
0.01
0.001
0.1 1 10 100
f = 1 KHz
Figure 11. Distortion vs. frequency (4Ω) Figure 12. Distortion vs. frequency (2Ω)
10
STANDARD M ODE V R
1
Po = 4 W
= 14.4 V
S
Ω
= 4
L
AC00254
10
STANDARD M ODE V R
1
Po = 8 W
= 14.4 V
S
Ω
= 2
L
AC00253
AC00255
0.1
0.01
0.001 10 100 1000 10000 100000
0.1
0.01
0.001 10 100 1000 10000 100000

Figure 13. Crosstalk vs. frequency Figure 14. Supply voltage rejection vs.

frequency
AC00256
-20
-30
STANDARD M ODE
Ω
= 4
R
L
P
= 4 W
o
-40 Rg = 600
Ω
-50
-60
-70
-80
-90
-100 10 100 1000 10000 100000
-20
STD & HE MODE
-30
-40
Ω
R
= 600
g
Vrip ple = 1 Vrm s
-50
-60
-70
-80
-90
-100 10 100 1000 10000 100000
AC00257
11/35
Electrical specifications TDA7563A
(W)
)
(W)
(W)
Figure 15. Power dissipation and efficiency vs.
output power (4Ω, STD, SINE)
Ptot (W)
90
STANDARD MODE
80
Vs = 14.4 V RL = 4 x 4 Ohm
70
f = 1 KHz SINE
60
50
40
30
20
10
0
0 2 4 6 8 1012141618202224262830
Po
n
Ptot
n (%)
90
80
70
60
50
40
30
20
10
0
Figure 17. Power dissipation vs. average
output power (audio program simulation, 4Ω)
Ptot (W)
45
40
Vs = 14 V RL = 4 x 4 Ohm
35
GAUSSIAN NOISE
30
25
20
15
10
5
0
012345
Po
CLIP
START
STD MODE
AC00258
HI-EFF MODE
Figure 16. Power dissipation and efficiency vs.
output power (4Ω, HI-EFF, SINE)
Ptot (W)
90
80
70
60
50
40
30
20
10
0
0.1 1 10
HI-EFF MODE Vs = 14.4 V RL = 4 x 4 Ohm f = 1 KHz SINE
Po (W
Ptot
n
n (%)
90
80
70
60
50
40
30
20
10
0
Figure 18. Power dissipation vs. average
output power (audio program simulation, 2Ω)
Ptot (W)
90
80
Vs = 14 V RL = 4 x 2 Ohm
70
GAUSSIAN NOISE
60
50
40
30
20
10
0
0123456789
Po
CLIP
START
STD MODE
HI-EFF MODE
AC00259
12/35
TDA7563A Diagnostics functional description

3 Diagnostics functional description

3.1 Turn-on diagnostic

It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults are:
SHORT TO GND –SHORT TO Vs – SHORT ACROSS THE SPEAKER – OPEN SPEAKER
To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back.The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I
If the "standby out" and "diagnostic enable" commands are both given through a single programming step, the pulse takes place first (power stage still in standby mode, low, outputs = high impedance).
Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The previous Turn On state is kept until a short appears at the outputs.
2
C reading).

Figure 19. Turn-on diagnostic: working principle

Vs~5V
Isource
CH+
CH-
Isink
I (mA)
Isource
Isink
~100mS
Measure time
t (ms)
Figure 20 and 21 show SVR and OUTPUT waveforms at the turn-on (standby out) with and
without TURN-ON DIAGNOSTIC.
13/35
Diagnostics functional description TDA7563A

Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)

Vsvr
Out
Permanent diagnostic
acquisition time (100mS Typ)
Bias (power amp turn-on)
I2CB DATA
Diagnostic Enable
(Permanent)
FAULT
event
Permanent Diagnostics data (output)
permitted time
Read Data

Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic)

Vsvr
Out
Diagnostic Enable
Turn-on diagnostic
acquisition time (100mS Typ)
(Turn-on)
Bias (power amp turn-on)
permitted time
Turn-on Diagnostics data (output)
permitted time
Read Data
Diagnostic Enable
(Permanent)
Permanent diagnostic acquisition time (100mS Typ)
FAULT
event
Permanent Diagnostics d ata (output)
permitted time
t
t
I2CB DATA
The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / V
the fault-detection thresholds remain unchanged from
S
26 dB to 12 dB gain setting. They are as follows:TDA7563A
Figure 22. Thresholds for short to GND/V
S.C. to GND x S.C. to Vs
0V 1.8V VS-1.8V V
14/35
1.2V VS-1.2V
S
xNormal Operation
D01AU1253
S
TDA7563A Diagnostics functional description
Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows:

Figure 23. Thresholds for short across the speaker/open speaker

S.C. across Load x Open Load
0V 1.5Ω
0.5Ω
If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows:

Figure 24. Thresholds for line-drivers

S.C. across Load x Open Load
0Ω 4.5Ω 200Ω infinite
1.5Ω 400Ω

3.2 Permanent diagnostics

Detectable conventional faults are:
Short to GND –Short to Vs – Short across the speaker
The following additional features are provided:
Output offset detection
70Ω
xNormal Operation
130Ω
D01AU1254
xNormal Operation
D01AU1252
Infinite
The TDA7563A has 2 operating statuses:
1. RESTART mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 25). Restart takes place when the overload is removed.
2. DIAGNOSTIC mode. It is enabled via I
2
C bus and self activates if an output overload (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (Figure 26):
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active.
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
After a diagnostic cycle, the audio channel interested by the fault is switched to
RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated
15/35
Diagnostics functional description TDA7563A
by an I2C reading. This is to ensure continuous diagnostics throughout the car­radio operating time.
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
Figure 25. Restart timing without diagnostic enable (permanent) - Each 1ms time, a
sampling of the fault is done
Out
1-2mS
1mS 1mS 1mS
1mS
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed

Figure 26. Restart timing with diagnostic enable (permanent)

1-2mS 100/200mS 1mS1mS
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
t
t
Short circuit removed
16/35
TDA7563A Output DC offset detection

4 Output DC offset detection

Any DC output offset exceeding +/- 2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):
START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1 – STOP = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

4.1 AC diagnostic

It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads. This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, as follows:
Iout > 500mApk = NORMAL STATUS Iout < 250mApk = OPEN TWEETER
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such to determine an output current higher than 500mApk with in normal conditions and lower than 250mApk should the parallel tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2<D2>) up to the I confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500mA over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off.
Figure 27 shows the Load Impedance as a function of the peak output voltage and the
relevant diagnostic fields. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.
2
C reading of the results (measuring period). To
17/35
Output DC offset detection TDA7563A

Figure 27. Current detection: Load impedance |Z| vs. output peak voltage

Load |z| (Ohm)
50
Low current detection area
30
20
10
D5 = 1 of the DBx byres
(Open load)
Iout (peak) <250mA
Iout (peak) >500mA
5
3
2
1
12345678

4.2 Multiple faults

When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I This is true for both kinds of diagnostic (Turn on and Permanent).
The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault.

Table 4. Double fault table for turn on diagnostic

S. GND (so) S. GND (sk) S. Vs S. Across L. Open L.
S. GND (so) S. GND S. GND S. Vs + S. GND S. GND S. GND
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
Vout (Peak)
2
C reading and faults removal, provided that the diagnostic is enabled.
S. GND (sk) / S. GND S. Vs S. GND Open L. (*)
S. Vs / / S. Vs S. Vs S. Vs
S. Across L. / / / S. Across L. N.A.
Open L. / / / / Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk = CH+.
In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on).
18/35
TDA7563A Output DC offset detection

4.3 Faults availability

All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out.
To guarantee always resident functions, every kind of diagnostic cycles (Turn on, Permanent, Offset) will be reactivate after any I reads the I
2
C, a new cycle will be able to start, but the read data will come from the previous
2
C reading operation. So, when the micro
diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is removed and micro reads I result of the previous cycle. If another I the short). In general to observe a change in Diagnostic bytes, two I
2
C. The short to Gnd is still present in bytes, because it is the
2
C reading operation occurs, the bytes do not show
2
C reading operations
are necessary.
19/35
Thermal protection TDA7563A

5 Thermal protection

Thermal protection is implemented through thermal foldback (Figure 28).
Thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating range. This effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device.
The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. Should the device cool, the audio level will increase until a new thermal equilibrium is reached or the amplifier reaches full power. Thermal foldback will reduce the audio output level in a linear manner.
Three Thermal warning are available through the I

Figure 28. Thermal foldback diagram

TH. WARN.
Vout
TH. WARN.
ON
TH. WARN.
ON
ON
2
C bus data.
Vout
CD out
125°
155°
TH. SH. START
(with same input
> T
SD
140°
< T
SD
signal)
TH. SH.
END
°C)
Tj (
Tj ( °C)
Tj ( °C)
20/35
TDA7563A Fast muting

6 Fast muting

The muting time can be shortened to less than 1.5ms by setting (IB2) D5 = 1. This option can be useful in transient battery situations (i.e. during car engine cranking) to quickly turnoff the amplifier for avoiding any audible effects caused by noise/transients being injected by preamp stages. The bit must be set back to “0” shortly after the mute transition.
21/35
I2C bus TDA7563A

7 I2C bus

7.1 I2C programming/reading sequences

A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection):
TURN-ON: PIN2 > 7V --- 10ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms (min) --­MUTING OUT
TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10ms --- PIN2 = 0
Car Radio Installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I2C read (repeat until All faults disappear).
OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30ms - I
2
I
C reading until high-offset message disappears).

7.2 I2C bus interface

2
C reading (repeat
Data transmission from microprocessor to the TDA7563A and vice versa takes place through the 2 wires I resistors to positive supply voltage must be connected).
2
C BUS interface, consisting of the two lines SDA and SCL (pull-up

7.3 Data validity

As shown by Figure 29, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

7.4 Start and stop conditions

As shown by Figure 30 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

7.5 Byte format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.
22/35
TDA7563A I2C bus

7.6 Acknowledge

The transmitter pulse (see Figure 31). The receiver line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.
(*) Transmitter
master (µP) when it writes an address to the TDA7563A – slave (TDA7563A) when the µP reads a data byte from TDA7563A
(**) Receiver
slave (TDA7563A) when the µP writes an address to the TDA7563A – master (µP) when it reads a data byte from TDA7563A
(*)
puts a resistive HIGH level on the SDA line during the acknowledge clock
(**)
the acknowledges has to pull-down (LOW) the SDA
Figure 29. Data validity on the I
SDA
SCL
STABLE, DATA
Figure 30. Timing diagram on the I
SCL
SDA
START
2
DATA LINE
VALID
C bus
2
C bus
CHANGE
DATA
ALLOWED
D99AU1032

Figure 31. Timing acknowledge clock pulse

SCL
SDA
START
1
MSB
23789
D99AU1033
D99AU1031
2
I
STOP
ACKNOWLEDGMENT
FROM RECEIVER
CBUS
23/35
Software specifications TDA7563A

8 Software specifications

All the functions of the TDA7563A are activated by I2C interface.
The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to TDA7563A) or read instruction (from TDA7563A to µP).

Table 5. Chip address:

D7 D0
1101100XD8 Hex
X = 0 Write to device X = 1 Read from device
If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2.

Table 6. IB1

D7 0
D6
D5
D4
D3
D2
D1
D0
Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0)
Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0)
Front Channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1)
Rear Channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1)
Mute front channels (D2 = 0) Unmute front channels (D2 = 1)
Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1)
CD 2% (D0 = 0) CD 10% (D0 = 1)
24/35
TDA7563A Software specifications

Table 7. IB2

D7 0
D6 0
D5
D4
D3
D2
D1
D0
Normal muting time (D5 = 0) Fast muting time (D5 = 1)
Standby on - Amplifier not working - (D4 = 0) Standby off - Amplifier working - (D4 = 1)
Power amplifier mode diagnostic (D3 = 0) Line driver mode diagnostic (D3 = 1)
Current Detection Diagnostic Enabled (D2 =1) Current Detection Diagnostic Defeat (D2 =0)
Right Channel Power amplifier working in standard mode (D1 = 0) Power amplifier working in high efficiency mode (D1 = 1)
Left Channel Power amplifier working in standard mode (D0 = 0) Power amplifier working in high efficiency mode (D0 = 1)
If R/W = 1, the TDA7563A sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4.

Table 8. DB1

D7 Thermal warning active (D7 = 1), TJ = 155°C
D6
D5
Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1)
Channel LF Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)
D4
D3
D2
D1
D0
Channel LF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel LF Normal load (D3 = 0) Short load (D3 = 1)
Channel LF Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
Channel LF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel LF No short to GND (D1 = 0) Short to GND (D1 = 1)
25/35
Software specifications TDA7563A

Table 9. DB2

D7
D6 0
D5
D4
D3
D2
Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1)
Channel LR Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)
Channel LR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel LR Normal load (D3 = 0) Short load (D3 = 1)
Channel LR Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
D0
Channel LR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel LR No short to GND (D1 = 0) Short to GND (D1 = 1)
26/35
TDA7563A Software specifications

Table 10. DB3

D7 Standby status (= IB2 - D4)
D6 Diagnostic status (= IB1 - D6)
Channel RF
D5
D4
D3
D2
D1
D0
Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)
Channel RF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel RF Normal load (D3 = 0) Short load (D3 = 1)
Channel RF Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
Channel RF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel RF No short to GND (D1 = 0) Short to GND (D1 = 1)
27/35
Software specifications TDA7563A

Table 11. DB4

D7 Thermal warning 2 active (D7 = 1), TJ = 140°C
D6 Thermal warning 3 active (D6 = 1), T
Channel RR
D5
Current Detection Output peak current <250mA - Output load (D5 = 1) Output peak current >500mA - Output load (D5 = 0)
Channel RR
D4
Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel R
D3
R Normal load (D3 = 0) Short load (D3 = 1)
Channel RR Turn-on diag.: No open load (D2 = 0)
D2
Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)
Channel RR
D1
No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel RR
D0
No short to GND (D1 = 0) Short to GND (D1 = 1)
= 120°C
J
28/35
TDA7563A Examples of bytes sequence

9 Examples of bytes sequence

1 - Turn-On diagnostic - Write operation
Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP
2 - Turn-On diagnostic - Read operation
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
The delay from 1 to 2 can be selected by software, starting from 1ms
3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat, CD = 2%.
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0000000 XXX1XX11
3b - Turn-Off of the power amplifier
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0XXXXXX XXX0XXXX
4 - Offset detection procedure enable
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
XX1XX11X XXX1XXXX
5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by
input capacitor with anomalous leakage current or humidity between pins.
The delay from 4 to 5 can be selected by software, starting from 1ms
29/35
Package information TDA7563A

10 Package information

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK® packages. ECOPACK
®
packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 32. PowerSO36 (slug up) mechanical data and package dimensions

M.
DI
A 3.25 3.43 0.128 0.135 A2 3.1 3.2 0.122 0.126 A4 0.8 1 0.031 0.039 A5 0.2 0.008 a1 0.030
b 0.22 0.38 0.008 0.015
c 0. 23 0.32 0.009 0 .012
D 15.8 16 0.622 0.630 D1 9.4 9.8 0.37 0.38 D2 1 0.039
E 13.9 14.5 0.547 0.57 E1 10.9 11.1 0.429 0.437 E2 2.9 0.114 E3 5.8 6.2 0.228 0.244 E4 2.9 3.2 0.114 1.259
e0.65 0.026 e3 11.05 0.435
G 0 0.075 0 0.003
H 15.5 15.9 0.61 0.625
h 1.1 0.043
L 0.8 1.1 0.031 0.043
N 10˚ 10˚
s8˚8˚
(1) “D and E1” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”)
(2) No intrusion allowed inwards the leads.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
-0.040
0.0011
-0.0015
OUTLINE AND
MECHANICAL DATA
PowerSO36 (SLUG UP)
30/35
7183931 D
TDA7563A Package information

Figure 33. Flexiwatt27 (SMD) mechanical data and package dimensions

DIM.
A 4.45 4.50 4.65 0.1752 0.1772 0.1831
B 2.12 2.22 2.32 0.0835 0.0874 0.0913
C 1.40 0.0551
D 2.00 0.0787
E 0.36 0.40 0.44 0.0142 0.0157 0.0173 F** 0.47 0.51 0. 57 0.0185 0.0201 0.0224
G(*) 0.75 1.00 1. 25 0.0295 0.0394 0.0492
G1 25.70 26.00 26.30 1.0118 1.0236 1.0354 G2(*) 1.75 2.00 2.25 0.0689 0.0787 0.0886 H(**) 28.85 29.23 29.40 1.1358 1.1508 1.1575
H1 17.00 0.6693
H2 12.80 0.5039
H3 0.80 0.0315 L(**) 15.50 15.70 15.90 0.6102 0.6181 0.6260
L1 7.70 7.85 7.95 0.3031 0.3091 0.3130
L2 14.00 14.20 14.40 0.5512 0.5591 0.5669
L3 11.80 12.00 12.20 0.4646 0.4724 0.4803
L4 1.30 1.48 1.66 0.0512 0.0583 0.0654
L5 2.42 2.50 2.58 0.0953 0.0984 0.1016
L6 0.42 0.50 0.58 0.0165 0.0197 0.0228
M 1.50 0.0591
N 2.20 0.0866
N1 1.30 1.48 1.66 0.0512 0.0583 0.0654 N2(*) 2.73 2.83 2.93 0.1075 0.1114 0.1154
P(*) 4.73 4.83 4.93 0.1862 0.1902 0.1941
R 1.70 0.0669 R1 0.30 0.0118 R2 0.35 0.40 0.45 0.0138 0.0157 0.0177 R3 0.35 0.40 0.45 0.0138 0.0157 0.0177
R4 0.50 0.0197
T(*) -0.08 0.10 -0.0031 0.0039
aaa(*) 0.1 0.0039
V 45˚ 45˚ V1 V2 V3 12˚ 15˚ 18˚ 12˚ 15˚ 18˚ V4
V5 20˚ 20˚
(*) Golden parameters (**) – Dimension “F” doesn’t include dam-bar protrusion.
– Dimensions "H” and “L" incl ude mold flash or protrusions.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
OUTLINE AND
MECHANICAL DATA
Flexiwatt27
(SMD)
7993733 B
31/35
Package information TDA7563A

Figure 34. Flexiwatt27 (vertical) mechanical data and package dimensions

DIM.
A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C 1.40 0.055 D 0.75 0.90 1.05 0.029 0.035 0.041 E 0.37 0.39 0.42 0.014 0.015 0.016
F (1) 0.57 0.022
G 0.80 1.00 1.20 0.031 0.040 0.047
G1 25.75 26. 00 26.25 1.014 1.023 1.033
H (2) 28.90 29. 23 29.30 1.139 1.150 1.153
H1 17.00 0.669 H2 12.80 0.503 H3 0.80 0.031
L (2) 22.07 22.47 22.8 7 0.869 0.884 0.904
L1 18.57 18.97 19.37 0.731 0.747 0.762
L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626
L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 3.5 0.138
M 3.70 4.00 4.30 0.145 0.157 0.169
M1 3.60 4.00 4.40 0.142 0.157 0.173
N 2.20 0.086 O 2 0.079
R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 0.019
V5˚ (Typ.) V1 3˚ (Typ.) V2 20˚ (Typ.) V3 45˚ (Typ.)
(1): dam-bar pro tusion not inc luded (2): molding protusion included
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
OUTLINE AND
MECHANICAL DATA
Flexiwatt27 (vertical)
V
C
B
H
V3
OL3 L4
L2
Pin 1
G
H1
H3
G1
H2
R3
N
F
V
A
R4
R2
R
L
L1
V2
R2
V1
R1
L5
FLEX27ME
R1 R1
M1
M
V1
D
E
7139011
32/35
TDA7563A Package information

Figure 35. Flexiwatt27 (horizontal) mechanical data and package dimensions

DIM.
A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C 1.4 0 0 .055 D 2.0 0 0 .079 E 0.37 0.39 0.42 0.014 0.015 0.016
F (1) 0.57 0.022
G 0.80 1.00 1.20 0.031 0.040 0.047
G1 25.75 26.00 26.25 1.014 1.023 1.033
H (2) 28.90 29.23 29.3 0 1.139 1.150 1.153
H1 17.00 0.669
H2 12.80 0.503
H3 0.80 0.031
L (2) 21.64 22.04 22.44 0.852 0 .868 0.883
L1 10.15 10.5 10.85 0.40 0.413 0.427
L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626
L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 5.15 5.45 5.85 0.203 0.214 0.23 L6 1.80 1.95 2.10 0.070 0.077 0.083
M 2.75 3.00 3.50 0.108 0.118 0.1 38 M1 4.73 0.186 M2 5.61 0.220
N 2.2 0 0 .086
P 3.20 3.50 3.80 0.126 0.138 0.15
R 1.7 0 0 .067 R1 0.50 0.02 R2 0.30 0.12 R3 1.25 0.049 R4 0.50 0.02
V5˚ (Typ.) V1 3˚ (Typ.) V2 20˚ (Typ.) V3 45˚ (Typ.)
(1): dam-bar protusion not included; (2): molding protus ion included
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
OUTLINE AND
MECHANICAL DATA
Flexiwatt27 (Horizontal)
7399738 A
33/35
Revision history TDA7563A

11 Revision history

Table 12. Document revision history

Date Revision Changes
07-Feb-2008 1 Initial release.
34/35
TDA7563A
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
35/35
Loading...