ST TDA7439DS User Manual

Three-band digitally-controlled audio processor

Features

! Input multiplexer
– four stereo inputs – selectable input gain for optimal adaptation
! Single stereo output
! Treble, mid-range and bass control in 2-dB
steps
! Volume control in 1-dB steps
! Two speaker attenuators:
– two independent speaker controls in 1-dB
steps for balance facility
– independent mute function
! All functions are programmable via serial bus.
TDA7439DS
SO28
processor for quality audio applications in car-radio and Hi-Fi systems. Selectable input gain is provided. All the functions are controlled by serial bus.
The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.

Description

The TDA7439DS is a volume, tone (bass, mid-range and treble) and balance (left/right)
Table 1. Device summary
Order codes Package Packaging
TDA7439DS SO28 Tube
TDA7439DS
13TR SO28 Tape and Reel
The TDA7439DS employs BIPOLAR/CMOS technology to provide low distortion, low noise and DC stepping.
November 2007 Rev 4 1/23
www.st.com
23
Contents TDA7439DS

Contents

1 Block diagram and pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Application suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 Bass, mid-range stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Treble stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Pin CREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4I
5I
6I
2
C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Transmission without acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.6 Interface protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2
C bus transmission examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 No address incrementing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Address incrementing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
C bus addresses and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.1 Chip address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Sub-address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 Chip input/output circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/23
TDA7439DS Block diagram and pin out
)
)
)
)

1 Block diagram and pin out

Figure 1. Block diagram

4
L-IN1
L-IN2
L-IN3
L-IN4
R-IN1
R-IN2
R-IN3
R-IN4
100K
5
100K
+ GAIN
G
0/30dB
2dB STEP
G
6
100K
7
100K
3
100K
2
100K
1
100K
28
100K
INPUT MULTIPLEXER

Figure 2. Pin connections

MUXOUTL
8 1817161415
VOLUME
VOLUME
9 191011121323
MUXOUTR
TREBLE(L)
TREBLE
TREBLE
TREBLE(R
MOUT(L)
MIN(L)
R
M
MIDDLE
I2CBUS DECODER + LATCHES
MIDDLE
R
M
MIN(R)MOUT(R
BIN(L)
BASS
BASS
BIN(R
R
B
R
B
BOUT(L)
SPKR ATT
SPKR ATT
BOUT(R
LEFT
RIGHT
V
REF
SUPPLY
CREF
27
21
22
20
26
24
25
LOUT
SCL
SDA
DIG_GND
ROUT
V
S
AGND
D97AU621
R_IN3
R_IN2
R_IN1
L_IN1
L_IN2 V
L_IN3
L_IN4
MUXOUTL
MUXOUTR
MIN(R)
MOUT(R)
BIN(R)
BOUT(R)
BIN(L)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
D97AU622
28
27
26
25
24
22
21
20
19
18
17
16
15
R_IN4
LOUT
ROUT
AGND
S
CREF23
SDA
SCL
DIG-GND
TREBLE(R)
TREBLE(L)
MIN(L)
MOUT(L)
BOUT(L)
3/23
Electrical specifications TDA7439DS

2 Electrical specifications

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
Operating supply voltage 10.5 V
V
S
T
T

Table 3. Thermal data

Symbol Parameter Value Unit
Operating ambient temperature 0 to 70 °C
amb
Storage temperature range -55 to 150 °C
stg
R
th j-pin

Table 4. Quick reference data

Thermal resistance junction-pins 85 °C/W
Symbol Parameter Min. Typ Max Unit
V
Supply voltage 7 9 10.2 V
S
V
Max. input signal handling 2
CL
RMS
THD Total harmonic distortion V = 1 V RMS, f = 1 kHz 0.01 0.1 %
S/N Signal to noise ratio V
S
Channel separation f = 1 kHz 90 dB
C
= 1 V RMS (mode = OFF) 106 dB
out
Input gain (in 2 dB steps) 0 30 dB
Volume control (in 1 dB steps) -47 0 dB
Treble control (in 2 dB steps) -14 +14 dB
Middle control (in 2 dB steps) -14 +14 dB
Bass control (in 2 dB steps) -14 +14 dB
Balance control (in 1 dB steps) -79 0 dB
Mute attenuation 100 dB
Table 5. shows the electrical characteristics. Refer to the test circuit in Figure 3, T
25° C, V
= 9 V, RL= 10 kΩ, generator resistance Rg = 600 Ω, all controls flat (G = 0 dB),
S
amb
=
unless otherwise specified.

Table 5. Electrical characteristics

V
Symbol Parameter Test condition Min. Typ Max Unit
Supply
V
Supply voltage 7 9 10.2 V
S
I
Supply current 4 7 10 mA
S
SVR Ripple rejection 60 90 dB
4/23
TDA7439DS Electrical specifications
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ Max Unit
Input stage
V
G
in_min
G
in_max
G
R
S
Input resistance 70 100 130 k
IN
Clipping level THD = 0.3% 2 2.5
CL
Input separation
IN
Minimum input gain -1 0 1 dB
Maximum input gain 29 30 31 dB
Step resolution 1.5 2 2.5 dB
step
Volu m e con t r o l
R
Volume control input resistance 20 33 50 k
i
C
A
v_max
A
Volume control range 45 47 49 dB
range
Max. attenuation 45 47 49 dB
Step resolution 0.5 1 1.5 dB
step
E
Attenuation set error
A
EΤ Tracking error
V
A
Bass control
DC step
DC
Mute attenuation 80 100 dB
mute
(1)
V
RMS
The selected input is grounded through a 2.2 µF
80 100 dB
capacitor
AV = 0 to -24 dB -1.0 0 1.0 dB
= -24 to -47 dB -1.5 0 1.5 dB
A
V
A
= 0 to -24 dB 0 1 dB
V
A
= -24 to -47 dB 0 2 dB
V
adjacent attenuation steps from 0 dB to A
v_max
0
0.5
3mV
mV
Gb Control range Max. boost/cut ±12.0 ±14.0 ±16.0 dB
B
Treble control
Step resolution 1 2 3 dB
step
Internal feedback resistance 33 44 55 k
R
B
(1)
Gt Control range Max. boost/cut ±13.0 ±14.0 ±15.0 dB
T
Mid-range control
Step resolution 1 2 3 dB
step
(1)
Gm Control range Max. boost/cut ±12.0 ±14.0 ±16.0 dB
M
R
Step resolution 1 2 3 dB
step
Internal feedback resistance 18.75 25 31.25 k
M
5/23
Electrical specifications TDA7439DS
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ Max Unit
Speaker attenuators
C
S
V
A
Control range 70 76 82 dB
range
Step resolution 0.5 1 1.5 dB
step
E
A Attenuation set error
DC step Adjacent attenuation steps 0 3 mV
DC
Mute attenuation 80 100 dB
mute
Audio outputs
V
V
OUTDC
Clipping level d = 0.3% 2.1 2.6 Vrms
CLIP
Output load resistance 2 k
R
L
R
Output impedance 10 40 70
O
DC voltage level 3.5 3.8 4.1 V
General
E
Output noise
NO
E
Total tracking error
t
S/N Signal to noise ratio
Channel separation, left/right 80 100 dB
S
C
dDistortion A
Bus input
V
Input low voltage 1 V
IL
V
Input high voltage 3 V
IH
I
Input current VIN = 0.4 V -5 0 5 µA
IN
Output voltage SDA
V
O
acknowledge
A
= 0 to -20 dB -1.5 0 1.5 dB
V
A
= -20 to -56 dB -2 0 2 dB
V
All gains = 0 dB; BW = 20 Hz to 20 kHz flat
515µV
AV = 0 to -24 dB 0 1 dB
= -24 to -47 dB 0 2 dB
A
V
All gains 0 dB,
= 1 V RMS
V
O
= 0, VI = 1 V RMS 0.01 0.08 %
V
I
= 1.6 mA 0.4 0.8 V
O
95 106 dB
1. For bass, mid-range and treble response: the center frequency and the response quality can be set by the external circuitry.
6/23
TDA7439DS Electrical specifications

Figure 3. Test circuit

2.7K 5.6K
5.6nF 18nF 22nF 100nF 100nF
0.47µF
0.47µF
0.47µF
0.47µF
0.47µF
0.47µF
0.47µF
0.47µF
L-IN1
L-IN2
L-IN3
L-IN4
R-IN1
R-IN2
R-IN3
R-IN4
4
100K
5
100K
6
100K
7
100K
3
100K
2
100K
1
100K
28
100K
MUXOUTL
G
0/30dB
2dB STEP
G
INPUT MULTIPLEXER
+ GAIN
MUXOUTR
TREBLE(L)
81817161415
VOLUME
VOLUME
9
TREBLE(R)
MIN(L)
MOUT(L)
BIN(L)
R
M
TREBLE
MIDDLE
BASS
I2CBUS DECODER + LATCHES
TREBLE
MIDDLE
BASS
R
M
19 10 11 12 13 23
MOUT(R) BOUT(R)BIN(R)
MIN(R)
18nF 22nF 100nF 100nF
5.6nF
2.7K 5.6K
BOUT(L)
R
B
SPKR ATT
LEFT
SPKR ATT
RIGHT
V
REF
SUPPLY
R
B
CREF
10µF
LOUT
27
21
SCL
22
SDA
20
DIGGND
26
ROUT
24
V
S
25
AGND
D98AU886
7/23
Application suggestions TDA7439DS

3 Application suggestions

The first and the last stages are volume control blocks. The control range is 0 to -47 dB and mute for the first stage and 0 to -79 dB and mute for the last one. Both control blocks have a step resolution of 1 dB.
This very high resolution allows the implementation of systems free from any noisy acoustical effect.
The TDA7439DS audio processor provides 3 bands of tone control (bass, mid-range and treble).

3.1 Tone control

3.1.1 Bass, mid-range stages

The bass and the mid-range cells have the same structure.
However, the bass cell has an internal resistor R has an internal resistor R
of typically 25 kΩ.
M
of typically 44 k whilst the mid-range cell
B
Several filter types can be implemented by connecting external components to the bass/mid IN and OUT pins.
Typical responses are shown in Figure 8, Figure 9 and Figure 11.
Figure 4. Bass/mid-range filter implementation
Ri internal
OUTIN
R
2
D95AU313
C
2
C
1
Figure 4. refers to the basic T-type band-pass filter. Starting from the filter component values
(R1 (internal) and R2, C1, C2 (external)) then the centre frequency f
, the gain Av at
C
maximum boost and the filter Q factor are computed as follows:
f
---------------------------------------------------------------- -=
C
2 π R1 R2 C1 C2⋅⋅⋅⋅⋅
1
R2C2 R2C1 RiC1++
A
----------------------------------------------------------- -=
V
Q
8/23
R2C1 R2C2+
R1 R2 C1 C2⋅⋅⋅
-------------------------------------------------= R2C1 R2C2+
TDA7439DS Application suggestions
Transposing and solving for the external components we get:
A
1
C1
C2
R2
V
----------------------------------------- -=
2 π Fc Ri Q⋅⋅ ⋅ ⋅
2
C1
Q
----------------------------- -=
1 Q2–
A
V
A
1 Q2–
--------------------------------------------------------------------- -=
2 π C1 Fc A
V
1()Q⋅⋅⋅⋅ ⋅
V

3.1.2 Treble stage

The treble stage is a high-pass filter whose time constant is fixed by an internal resistor (25 k typically) and an external capacitor connected between treble pins and ground.
Typical responses are shown in Figure 10 and Figure 11.

3.2 Pin CREF

The suggested value of 10 µF for the reference capacitor (C can be reduced to 4.7 µF if the application requires faster power-on.

3.3 Electrical characteristics

Figure 5. THD vs frequency Figure 6. THD vs R
), connected to pin CREF,
REF
LOAD
9/23
Application suggestions TDA7439DS
Figure 7. Channel separation vs

Figure 9. Mid-range filter response Figure 10. Treble filter response

frequency

Figure 8. Bass filter response

Figure 11. Typical tone response

10/23
TDA7439DS I2C bus interface

4 I2C bus interface

Data transmission from the microprocessor to the TDA7439DS and vice versa takes place through the 2-wire I Pull-up resistors to the positive supply voltage must be used (there are no internal pull-ups).
2
C bus interface. This consists of the data and clock lines, SDA and SCL.

4.1 Data validity

The data on the SDA line must be stable during the high period of the clock as shown in
Figure 12. SDA is allowed to change only when SCL is low.

4.2 Start and stop conditions

As shown in Figure 13 a start condition is a high to low transition of SDA while SCL is high. The stop condition is a low to high transition of SDA while SCL is high.

4.3 Byte format

Every byte transferred on the SDA line must contain 8 bits. The MSB is transferred first. There is also provision for an acknowledge bit to follow each byte to indicate that the data has been received.

4.4 Acknowledge

The master (µP) puts a resistive high level on SDA during the acknowledge clock pulse (see
Figure 14). The peripheral (audio processor) that acknowledges has to pull down (low) the
SDA line during this clock pulse.
The audio processor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

4.5 Transmission without acknowledge

Suppressing the audio processor acknowledge detection enables the µP to use a simpler transmission: it simply waits for one clock, without checking the slave acknowledging, and then sends the new data.
This approach has, of course, less protection from transmission errors.
11/23
I2C bus interface TDA7439DS

Figure 12. Timing diagram of the data on the I2C bus

SCL
SDA
Data can changeData stable
when clock high when clock low

Figure 13. Timing diagram of the start/stop

SCL
SDA
Start

Figure 14. Timing diagram of the acknowledge

SCL
SDA
MSB
Start

4.6 Interface protocol

The interface protocol comprises:
" a start condition (S)
" a chip-address byte, containing the TDA7439DS address
" a sub-address byte including an auto address-increment bit
" a sequence of data bytes (N bytes + acknowledge)
" a stop condition (P).
Stop
1
2
6
7
8
9
Acknowledge from receiver

Figure 15. SDA addressing and data

CHIP ADDRESS
MSB
S 1 0 0 0 1 0 0 0 ACK ACK DATA ACK P
D96AU420
S = Start, ACK = Acknowledge, B = Auto increment, P = Stop
LSB MSB LSB MSB LSB
12/23
SUBADDRESS DATA 1 to DATA n
XXB
X
DATA
TDA7439DS I2C bus transmission examples

5 I2C bus transmission examples

5.1 No address incrementing

The TDA7439DS receives a start condition followed by the correct chip address, then a sub address with the bit B = 0 (for no address increment), then the data bytes to be sent to the sub address and finally a stop condition.

Figure 16. SDA addressing and data for B = 0

CHIP ADDRESS
MSB
S 1 0 0 0 1 0 0 0 ACK ACK DATA ACK P
D96AU421
LSB MSB LSB MSB LSB

5.2 Address incrementing

The TDA7439DS receives a start condition followed by the correct chip address, then a sub address with the B = 1 for address incrementing; now it is in a loop condition with an automatic increase of the sub address up to D[3:0] = 0x7. That is, the data for sub addresses from D[3:0] = 1000 (binary) to 1111 are ignored.
In Figure 17 below, DATA1 is directed to the sub address sent (that is, D[3:0]), DATA2 is directed to the sub address incremented by 1 (that is, 1 + D[3:0]) and so forth until a stop condition is received to terminate the transmission.

Figure 17. SDA addressing and data for B = 1

CHIP ADDRESS
MSB
S 1 0 0 0 1 0 0 0 ACK ACK DATA ACK P
D96AU422
LSB MSB LSB MSB LSB
SUBADDRESS DATA
0
X
D3
1
D3
D2 D1 D0
D2 D1 D0
X
X
SUBADDRESS DATA 1 to DATA n
X
X
X

Table 6. Power-on-reset conditions

Parameter POR value
Input selection IN2
Input gain 28 dB
Volume MUTE
Bass 0 dB
Mid-range 2 dB
Tr e bl e 2 d B
Speaker MUTE
13/23
I2C bus addresses and data TDA7439DS

6 I2C bus addresses and data

6.1 Chip address byte

The TDA7439DS chip address is 0x88.

6.2 Sub-address byte

The function is selected by the 4-bit sub address as given in Ta bl e 7 . The three MSBs are not used and bit D4 selects address incrementing (B = 1) or single data byte (B = 0).

Table 7. Function selection: sub-address byte

MSB LSB
Function
D7 D6 D5 D4 D3 D2 D1 D0
X X X B 0 0 0 0 Input selector
X X X B 0 0 0 1 Input gain
XXXB0 0 1 0Volume
XXXB0 0 1 1Bass gain
X X X B 0 1 0 0 Mid-range gain
XXXB0 1 0 1Treble gain
X X X B 0 1 1 0 Speaker attenuation, R
X X X B 0 1 1 1 Speaker attenuation, L

6.3 Data bytes

The function value is changed by the data byte as given in the following tables, Ta bl e 8 to
Ta bl e 1 4.
In the tables of input gain, volume and attenuation, not all values are shown. A desired intermediate value is obtained by setting the three LSBs to the appropriate value.

Table 8. Input selector value (sub address 0x0)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
XXXXXX0 0 IN4
XXXXXX0 1 IN3
XXXXXX1 0 IN2
XXXXXX1 1 IN1
Input multiplexer
14/23
TDA7439DS I2C bus addresses and data

Table 9. Input gain value (sub address 0x1)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Input gain
2-dB steps
XXXX0 0 0 0 0dB
XXXX0 0 0 1 2dB
XXXX0 0 1 0 4dB
XXXX0 0 1 1 6 dB
XXXX0 1 0 0 8dB
XXXX0 1 0 1 10dB
XXXX0 1 1 0 12dB
XXXX0 1 1 1 14dB
XXXX1 0 0 0 16dB
XXXX1 0 0 1 18dB
XXXX1 0 1 0 20dB
XXXX1 0 1 1 22dB
XXXX1 1 0 0 24dB
XXXX1 1 0 1 26dB
XXXX1 1 1 0 28dB
XXXX1 1 1 1 30dB

Table 10. Volume value (sub address 0x2)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Volume
1-dB steps
X0000000 0dB
X0000001 -1dB
X0000010 -2dB
X0000011 -3dB
X0000100 -4dB
X0000101 -5dB
X0000110 -6dB
X0000111 -7dB
X0001000 -8dB
X0010000 -16dB
X0011000 -24dB
X0100000 -32dB
X0101000 -40dB
XX1 1 1XXX MUTE
15/23
I2C bus addresses and data TDA7439DS

Table 11. Bass gain value (sub address 0x3)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Bass gain
2-dB steps
XXXX0 0 0 0 -14dB
XXXX0 0 0 1 -12dB
XXXX0 0 1 0 -10dB
XXXX0 0 1 1 -8dB
XXXX0 1 0 0 -6dB
XXXX0 1 0 1 -4dB
XXXX0 1 1 0 -2dB
XXXXX1 1 1 0dB
XXXX1 1 1 0 2dB
XXXX1 1 0 1 4dB
XXXX1 1 0 0 6dB
XXXX1 0 1 1 8dB
XXXX1 0 1 0 10dB
XXXX1 0 0 1 12dB
XXXX1 0 0 0 14dB

Table 12. Mid-range gain value (sub address 0x4)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Mid-range gain
2-dB steps
XXXX0 0 0 0 -14dB
XXXX0 0 0 1 -12dB
XXXX0 0 1 0 -10dB
XXXX0 0 1 1 -8dB
XXXX0 1 0 0 -6dB
XXXX0 1 0 1 -4dB
XXXX0 1 1 0 -2dB
XXXXX1 1 1 0dB
XXXX1 1 1 0 2dB
XXXX1 1 0 1 4dB
XXXX1 1 0 0 6dB
XXXX1 0 1 1 8dB
XXXX1 0 1 0 10dB
XXXX1 0 0 1 12dB
XXXX1 0 0 0 14dB
16/23
TDA7439DS I2C bus addresses and data

Table 13. Treble gain value (sub address 0x5)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Treble gain
2-dB steps
XXXX0 0 0 0 -14dB
XXXX0 0 0 1 -12dB
XXXX0 0 1 0 -10dB
XXXX0 0 1 1 -8dB
XXXX0 1 0 0 -6dB
XXXX0 1 0 1 -4dB
XXXX0 1 1 0 -2dB
XXXXX1 1 1 0dB
XXXX1 1 1 0 2dB
XXXX1 1 0 1 4dB
XXXX1 1 0 0 6dB
XXXX1 0 1 1 8dB
XXXX1 0 1 0 10dB
XXXX1 0 0 1 12dB
XXXX1 0 0 0 14dB

Table 14. Speaker attenuation value (sub address 0x6, 0x7)

MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
Speaker attenuation
1-dB steps
X0000000 0dB
X0000001 1dB
X0000010 2dB
X0000011 3dB
X0000100 4dB
X0000101 5dB
X0000110 6dB
X0000111 7dB
X0001000 8dB
X0010000 16dB
X0011000 24dB
X0100000 32dB
X0101000 40dB
X0110000 48dB
X0111000 56dB
17/23
I2C bus addresses and data TDA7439DS
Table 14. Speaker attenuation value (sub address 0x6, 0x7) (continued)
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
X1000000 64dB
X1001000 72dB
X1111XXX MUTE
Speaker attenuation
1-dB steps
18/23
TDA7439DS Chip input/output circuits
)
)

7 Chip input/output circuits

Figure 18. Pin 23 Figure 19. Pins 26, 27

V
S
V
V
S
S
24
CREF
20K
ROUT
LOUT
D96AU434
V
S
20µA
V
20K
D96AU430

Figure 20. Pins 1, 2, 3, 4, 5, 6, 7, 28 Figure 21. Pins 8, 9

V
S
20µA
IN
MIXOUT
100K
V
REF

Figure 22. Pins 11, 16 Figure 23. Pins 10, 17

V
S
D96AU425
V
S
S
20µA
GND
D96AU426
MOUT(L)
MOUT(R
25K
20µA
D96AU431
20µA
25K
MIN(L)
MIN(R
D96AU431
19/23
Chip input/output circuits TDA7439DS
)

Figure 24. Pins 12, 14 Figure 25. Pins 13, 15

V
S
20µA
V
S
20µA
44K
BIN(L)
BIN(R) D96AU428

Figure 26. Pins 18, 19 Figure 27. Pin 21

V
S
BOUT(L)
BOUT(R
20µA
TREBLE(L)
SCL
TREBLE(R)
50K
D96AU433

Figure 28. Pin 22

20µA
44K
D96AU429
20µA
D96AU424
SDA
D96AU423
20/23
TDA7439DS Package information

8 Package information

DIM.
A 2.65 0.104
a1 0.1 0.3 0.004 0.012
b 0.35 0.49 0.014 0.019
b1 0.23 0.32 0.009 0.013
C 0.5 0.020
c1 45° (typ.)
D 17.7 18.1 0.697 0.713
E 10 10.65 0.394 0.419
e 1.27 0.050
e3 16.51 0.65
F 7.4 7.6 0.291 0.299
L 0.4 1.27 0.016 0.050
S8
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
(max.)
°
OUTLINE AND
Outline and mechanical data
MECHANICAL DATA
SO28
SO-28
21/23
Revision history TDA7439DS

9 Revision history

Table 15. Document revision history

Date Revision Changes
Jan-2004 1 Initial release
Jun-2004 2 Modified presentation
14-Nov-2007 3
20-Nov-2007 4 Updated Figure 23 and Figure 27
Updated titles to Figure 9 and Figure 10 Minor updates to presentation
22/23
TDA7439DS
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
23/23
Loading...