ST STPS30M60DJF User Manual

STPS30M60DJF
High efficiency power Schottky diode
Datasheet production data
Features
Very low conduction losses
Low thermal resistance
High specified avalanche capability
High integration
ECOPACK
®
2 compliant component
Description
The STPS30M60DJF is a power Schottky rectifier, suited for high frequency switch mode power supply and DC to DC converters.
Packaged in PowerFLAT™, this device is intended to be used in notebook, game station and desktop adapters, providing in these applications a good efficiency at both low and high load. Its low profile was especially designed to be used in applications with space-saving constraints.
A
A
K
A
PowerFLAT 5x6
STPS30M60DJF

Table 1. Device summary

Symbol Value
I
F(AV)
V
RRM
(typ) 0.46 V
V
F
(max) 150 °C
T
j
K
K
A
30 A 60 V
TM: PowerFLAT is a trademark of STMicroelectronics
April 2012 Doc ID 023120 Rev 1 1/8
This is information on a product in full production.
www.st.com
8
Characteristics STPS30M60DJF

1 Characteristics

Table 2. Absolute ratings (limiting values, anode terminals 1 and 3 short circuited)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
ARM
V
T
1. More details regarding the avalanche energy measurements and diode validation in the avalanche are
2. condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance

Repetitive peak reverse voltage 60 V
RRM
Forward rms current 45 A Average forward current δ = 0.5 Tc = 100 °C 30 A
Surge non repetitive forward current tp = 10 ms sinusoidal 250 A
FSM
(1)
Repetitive peak avalanche power 3500 W
Maximum repetitive peak avalanche
ARM
voltage
Storage temperature range -65 to +175 °C
stg
Maximum operating junction temperature
T
j
provided in the STMicroelectronics’ application notes AN1768 and AN2025.
dPtot
dTj
<
Rth(j-a)
1
tp < 1 µs, Tj < 150 °C IAR < 13 A
(2)
80 V
150 °C
Symbol Parameter Value Unit
R

Table 4. Static electrical characteristics (anode terminals short circuited)

Junction to case 2.0 °C/W
th(j-c)
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 25 °C
T
Reverse leakage
(1)
I
R
current
(2)
V
1. Pulse test: tp = 5 ms, δ < 2%
2. Pulse test: tp = 380 µs, δ < 2%
Forward voltage drop
F
j
= 125 °C - 20 50 mA
T
j
= 25 °C
T
j
T
= 125 °C - 0.46 0.52
j
= 25 °C
T
j
T
= 125 °C - 0.57 0.67
j
VR = V
= 15 A
I
F
= 30 A
I
F
To evaluate the conduction losses use the following equation: P = 0.55 x I
2/8 Doc ID 023120 Rev 1
+ 0.004 x I
F(AV)
F2(RMS)
- - 90 µA
RRM
- - 0.59
V
- - 0.72
STPS30M60DJF Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P (W)
F(AV)
30
25
20
15
10
5
0
δ = 0.05
0 5 10 15 20 25 30 35 40
δ = 0.2
δ = 0.1
δ = 0.5
δ = t / T
p
I (A)
F(AV)
δ = 1
T
t
p
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I (A)
F(AV)
35
30
25
20
15
10
5
0
T
δ = t / T
0 25 50 75 100 125 150
t
p
p
R= R
th(j-a) th(j-c)
T (°C)
amb
Figure 4. Normalized avalanche power
derating versus junction temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values)
I (A)
M
280
240
200
160
T = 25 °C
120
80
I
M
40
0
1.E-03 1.E-02 1.E-01 1.E+00
δ = 0.5
t
c
T = 75 °C
c
T = 125 °C
c
t(s)
Doc ID 023120 Rev 1 3/8
Figure 6. Relative variation of thermal
impedance junction to case versus pulse duration
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Single pulse
0.1
0.0
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
t (s)
p
Loading...
+ 5 hidden pages