®
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCTS CHARACTERISTICS
STPS30L40CG/CT/CW
I
F(AV)
V
RRM
2x15A
40 V
Tj (max) 150 °C
V
(max) 0.50 V
F
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
n
NEGLIGIBLE SWITCHING LOSSES
n
LOW FORWARD VOLTAGE DROP
n
LOW THERMAL RESISTANCE
n
AVALANCHE CAPABILITY SPECIFIED
n
DESCRIPTION
Dual center tap schottky rectifiers suited for
Switched Mode Power Supplies and high
frequency DC to DC converters.
2
Packaged in TO-247, TO-220AB and D
PAK
these devices are intended for use in low voltage,
high frequency inverters, free-wheeling and
polarity protection applications.
ABSOLUTE RATINGS (limiting values, per diode)
A1
A2
A1
TO-220AB
STPS30L40CT
K
K
A2
A1
2
PAK
D
STPS30L40CG
A2
K
A2
K
A1
TO-247
STPS30L40CW
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward current Tc = 135°C
Surge non repetitive forward current tp = 10 ms Sinusoidal
Repetitive peak reverse current tp=2µs square F=1kHz
Non repetitive peak reverse current tp = 100 µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTj Rth j a
July 2003 - Ed: 4A
Per diode
δ = 0.5
Per device
thermal runaway condition for a diode on its own heatsink
−1()
40 V
30 A
15
30
220 A
1A
3A
6000 W
- 65 to + 150 °C
150 °C
10000 V/µs
A
1/6
STPS30L40CG/CT/CW
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
R
th (c)
Junction to case
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
Per diode
Total
1.60
0.85
Coupling 0.10 °C/W
th(c)
°C/W
*
I
R
V
F
Reverse leakage current
*
Forward voltage drop Tj = 25°C I
Tj = 25°C V
Tj = 100°C
Tj = 125°C I
Tj = 25°C I
Tj = 125°C I
R=VRRM
=15A
F
=15A
F
=30A
F
=30A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P = 0.330 x I
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
12
10
8
6
4
2
0
0 2 4 6 8 101214161820
δ = 0.05
F(AV)
+ 0.011 I
δ = 0.1
δ = 0.2
IF(av)A
F2(RMS)
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2: Average current versus ambient
temperature (δ=0.5) (per diode).
IF(av)(A)
18
16
14
12
10
8
6
4
tp
2
δ
0
0 25 50 75 100 125 150
Rth(j-a)=15°C/W
T
=tp/T
360 µA
20 50 mA
0.55 V
0.42 0.50
0.74
0.59 0.67
Rth(j-a)=Rth(j-c)
tp
Tamb(°C)
2/6