Features
STPS30L30DJF
High efficiency power Schottky diode
Datasheet − production data
■ Low forward voltage drop
■ Very small conduction losses
■ Negligible switching losses
■ Avalanche rated
■ Extremely fast switching
■ Low thermal resistance
■ 1 mm package thickness
■ ECOPACK
®
2 compliant component
Description
Single Schottky rectifier suited for switch mode
power supply and high frequency DC to DC
converters.
Packaged in PowerFLAT™ 5x6, this device is
intended for use in low voltage high frequency
inverters.
A
A
K
A
PowerFLAT 5x6
STPS30L30DJF
Table 1. Device summary
K
K
A
Symbol Value
I
F(AV)
V
RRM
(max) 150 °C
T
j
V
(typ) 0.30 V
F
TM: PowerFLAT is a trademark of STMicroelectronics
March 2012 Doc ID 022946 Rev 1 1/7
This is information on a product in full production.
30 A
30 V
www.st.com
7
Characteristics STPS30L30DJF
1 Characteristics
Table 2. Absolute ratings (limiting values with anode terminals short-circuited)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
FSM
P
V
T
1. condition to avoid thermal runaway for a diode on its own heatsink
Table 3. Thermal resistance
Repetitive peak reverse voltage 30 V
RRM
Forward rms current 45 A
Average forward current δ = 0.5 Tc = 110 °C 30 A
Surge non repetitive forward current tp = 10 ms sinusoidal 250 A
Repetitive peak avalanche power tp = 1 µs, Tj = 25 °C 1300 W
ARM
Maximum repetitive peak avalanche
ARM
voltage
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature
T
j
<
Rth(j-a)
1
dPtot
dTj
tp <1 µs, Tj < 150 °C,
IAR < 11 A
(1)
35 V
150 °C
Symbol Parameter Value Unit
R
th(j-c)
Table 4. Static electrical characteristics (anode terminals short-circuited)
Junction to case 2 °C/W
Symbol Parameter Test conditions Min. Typ. Max. Unit
R
V
1. Pulse test: tp = 380 µs, δ < 2%
current
(1)
Forward voltage drop
F
Reverse leakage
(1)
I
= 25 °C
T
j
= 125 °C - 100 230 mA
T
j
= 25 °C IF = 15 A - - 0.44
T
j
T
= 125 °C IF = 15 A - 0.30 0.35
j
= 25 °C IF = 30 A - - 0.51
T
j
= 125 °C IF = 30 A - 0.38 0.45
T
j
VR = 30 V
- - 0.75 mA
V
To evaluate the conduction losses use the following equation:
P = 0.27 x I
2/7 Doc ID 022946 Rev 1
+ 0.006 x I
F(AV)
F2(RMS)
STPS30L30DJF Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P
(W)
F(AV)
25
δ
=tp/T
δ=1
T
tp
20
15
10
5
0
0 5 10 15 20 25 30 35 40
δ=0.05
δ=0.1
δ=0.2
I
F(AV)
(A)
δ=0.5
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I
(A)
F(AV)
35
R
T
amb
th(j-a)=Rth(j-c)
(°C)
30
25
20
15
10
5
0
T
tp
=tp/T
δ
0 25 50 75 100 125 150
Figure 4. Normalized avalanche power
derating versus junction
temperature
P
ARM (Tj)
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 5. Relative variation of thermal
impedance, junction to case,
versus pulse duration
Z
th(j-c)/Rth(j-c)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Single pulse
0.0
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
tp(s)
Doc ID 022946 Rev 1 3/7
Figure 6. Reverse leakage current versus
reverse voltage applied
(typical values)
IR(mA)
1.E+03
Tj=150°C
1.E+02
1.E+01
1.E+00
1.E-01
1.E-02
0 5 10 15 20 25 30
Tj=125°C
Tj=100°C
Tj=75°C
Tj=50°C
Tj=25°C
VR(V)