STPS30H100C
High voltage power Schottky rectifier
Datasheet − production data
Features
■ Negligible switching losses
■ Low leakage current
■ Good trade off between leakage current and
forward voltage drop
■ Low thermal resistance
■ Avalanche capability specified
Description
Dual center tap Schottky rectifier suited for switch
mode power supplies and high frequency DC to
DC converters.
Packaged in TO-200AB, TO-220AB narrow leads,
TO-247,and I
in high frequency inverters.
2
PAK this device is intended for use
A1
A2
A2
K
A1
TO-220AB
STPS30H100CT
A2
K
A1
TO-220AB narrow leads
STPS30H100CTN
K
K
A1
TO-247
STPS30H100CW
I2PAK
STPS30H100CR
A2
A2
K
A1
j
Table 1. Device summary
Symbol Value
I
F(AV)
V
RRM
(max) 175 °C
T
j
V
(max) 0.67 V
F
2 x 15 A
100 V
June 2012 Doc ID 6347 Rev 8 1/10
This is information on a product in full production.
www.st.com
10
Characteristics STPS30H100C
1 Characteristics
Table 2. Absolute ratings (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
T
Repetitive peak reverse voltage 100 V
Forward rms current 30 A
Average forward current
Tc = 155 °C
δ = 0.5
Per diode
Per device
Surge non repetitive forward current tp = 10 ms sinusoidal 250 A
Repetitive peak reverse current tp = 2 µs square, F= 1 kHz 1 A
Non repetitive peak reverse current tp = 100 µs square 3 A
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 10800 W
Storage temperature range -65 to + 175 °C
stg
Operating junction temperature range
j
(1)
-40 to +175 °C
15
30
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Ptot
--------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Table 3. Thermal resistance
1
------------------------- -
<
Rth j a–()
Symbol Parameter Value Unit
R
R
Junction to case
th(j-c)
Coupling 0.1
th(c)
Per diode
To t al
1.6
0.9
°C/W
When the diodes 1 and 2 are used simultaneously:
A
ΔT
(diode 1) = P(diode1) x R
j
Table 4. Static electrical characteristics (per diode)
(Per diode) + P(diode 2) x R
th(j-c)
Symbol Parameter Test conditions Min. Typ. Max. Unit
T
= 25 °C
(1)
I
V
Reverse leakage current
R
(2)
Forward voltage drop
F
j
T
= 125 °C 2 6 mA
j
= 25 °C
T
j
T
= 125 °C 0.64 0.67
j
= 25 °C
T
j
Tj = 125 °C 0.74 0.8
1. Pulse test: tp = 5 ms, δ < 2%
2. Pulse test: tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equation:
P = 0.54 x I
2/10 Doc ID 6347 Rev 8
F(AV)
+ 0.0086 I
F2(RMS)
= V
V
R
= 15 A
I
F
= 30 A
I
F
th(c)
5µA
RRM
0.80
V
0.93
STPS30H100C Characteristics
Figure 1. Average forward power dissipation
versus average forward current (per
diode)
P (W)
F(AV)
14
12
10
8
6
4
2
0
02468101214161820
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
δ = 1
=tp/T
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5, per
diode)
I (A)
F(AV)
18
16
14
12
10
8
6
4
2
0
R =15°C/W
th(j-a)
T
=tp/T
δ
0 25 50 75 100 125 150 175
tp
R=R
th(j-a) th(j-c)
T (°C)
amb
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values, per diode)
I (A)
M
240
220
200
180
160
140
120
100
80
60
IM
40
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
T =25°C
a
T =75°C
a
T =150°C
a
Doc ID 6347 Rev 8 3/10
Figure 6. Relative variation of thermal
impedance junction to case versus
pulse duration
Z/R
th(j-c) th(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ
T
=tp/T
δ = 0.1
0.2
Single pulse
0.0
1E-4 1E-3 1E-2 1E-1 1E+0
t (s)
p
tp