
®
STPS3060CW
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
V
RRM
2x15A
60 V
Tj (max) 150°C
(max) 0.75 V
V
F
FEATURES AND BENEFITS
Negligible switching losses
■
Low forward voltage drop
■
Low capacitance
■
High reverse avalanche surgecapability.
■
DESCRIPTION
High voltage dual Schottky rectifier suited for
switchmode power supplies and other power
converters.
Packaged in TO-247, this device is intended for
use in mediumvoltage operation, and particularly,
in high frequency circuitries where low switching
losses and low noiseare required.
ABSOLUTE RATINGS (limiting values, per diode)
A1
K
A2
A2
K
A1
TO-247
STPS3060CW
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
Repetitive peak reverse voltage
RMS forward current Per diode
Average forward current δ = 0.5 Tc = 130°C Per diode
Per device
Surge non repetitive forwardcurrent tp = 10 ms
Per diode
60 V
30 A
15
30
200 A
Sinusoidal
I
RRM
Repetitive peak reverse current tp=2µs
Per diode
1A
F=1kHz
I
RSM
T
Tj
dV/dt
dPtot
*:
Non repetitive peak reverse current tp = 100µs Per diode
stg
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTj Rth j a
October 2003 - Ed: 1A
thermal runaway condition for a diode on its own heatsink
−1()
1A
- 65 to + 150 °C
150 °C
1000 V/µs
A
1/4

STPS3060CW
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
R
th(c)
Junction to case
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
Per diode
Total
1.5
0.8
°C/W
Coupling 0.1 °C/W
th(c)
*
I
R
V
F
Reverse leakage
current
*
Forward voltage drop Tj = 25°CI
Tj = 25°C VR=V
Tj = 125°C
Tj = 125°C I
Tj=25°CI
Tj = 125°C I
=15A
F
=15A
F
=30A
F
=30A
F
RRM
Pulse test: * tp = 5ms, δ <2%
**tp = 380µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P=0.6xI
Fig. 1: Conduction losses versus average current
(per diode).
P (W)
F(AV)
16
14
12
10
8
6
4
2
0
02468101214161820
F(AV)
δ = 0.05
+ 0.01 I
δ = 0.1
F2(RMS)
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
δ = 1
=tp/T
Fig. 2: Average forward current versus ambient
temperature (δ=0.5, per diode).
I (A)
F(AV)
17
16
15
14
13
12
11
10
9
8
7
6
5
T
tp
4
3
2
=tp/T
1
δ
0
0 25 50 75 100 125 150
150 µA
100 mA
0.85 V
0.65 0.75
1.05
0.80 0.90
R=R
th(j-a) th(j-I)
R =15°C/W
th(j-a)
T
T (°C)
tp
amb
2/4