ST STPS3030, STPS3030CT, STPS3030CG, STPS3030CR User Manual

Main product characteristics
I
F(AV)
V
RRM
T
(max) 150° C
j
(max) 0.42 V
V
F
2 x 15 A
30 V
Features and benefits

STPS3030/CT/CG/CR

Low drop power Schottky rectifier

A1
K
A2
K
Very small conduction losses
Extremely fast switching
Low forward voltage drop for higher efficiency
Low thermal resistance
Avalanche capability specified
Description
Dual Schottky rectifier suited for switch mode power supply and high frequency DC to DC converters.
Packaged in TO-220AB, D device is intended for use in low voltage high frequency inverters, free-wheeling and polarity protection applications.
2
PAK and I2PAK, this
j
A2
A1
2
PAK
D
STPS3030CG
STPS3030CR
I2PAK
TO-220AB
STPS3030CT
A2
K
A1
A1
A2
K
October 2006 Rev 4 1/9
www.st.com
9
Characteristics STPS3030CT/CG/CR
d
-

1 Characteristics

Table 1. Absolute ratings (limiting values, per diode)

Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
T
dV/dt Critical rate of rise of reverse voltage (rated V
Ptot
--------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj

Table 2. Thermal resistance

Repetitive peak reverse voltage 30 V
RMS forward current 30 A
T
= 135° C Per diode 15
Average forward current
c
δ = 0.5 Per device 30
Surge non repetitive forward current tp = 10 ms sinusoidal 250 A
Peak repetitive reverse current tp = 2 µs square F= 1 kHz 1 A
Non repetitive peak reverse current tp = 100 µs square 3 A
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 4100 W
Storage temperature range -65 to + 150 °C
stg
Maximum operating junction temperature
j
1
--------------------------
<
Rth j a–()
(1)
, Tj = 25° C) 10000 V/µs
R
150 °C
Symbol Parameter Value Unit
Per diode 1.2
R
R

Table 3. Static electrical characteristics (per diode)

Junction to case TO-220AB - D2PAK - I2PA K
th(j-c)
th(c)
°C/WTo t al 0 . 8
Coupling 0.4
A
Symbol Parameter Test conditions Min. Typ. Max. Unit
T
= 25° C
(1)
I
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
R
(1)
Forward voltage drop
F
j
= 125° C 125 180
T
j
= 25° C IF = 15 A 0.44 0.49
T
j
T
= 125° C IF = 15 A 0.36 0.40
j
T
= 25° C IF = 30 A 0.53 0.58
j
= 125° C IF = 30 A 0.49 0.53
T
j
To evaluate the conduction losses use the following equation: P = 0.26 x I
2/9
F(AV)
+ 0.0107 I
F2(RMS)
= V
V
R
RRM
mA
V
0.23 1.0
STPS3030CT/CG/CR Characteristics
0
Figure 1. Conduction losses versus average
current
P(W)
10
9
8
7
6
5
4
3
2
1
0
0246810121416182
δ = 0.05
δ = 0.1
δ = 0.2
I (A)F(av)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values)
IM(A)
250
225
200
175
150
125
100
75
50
25
0
1.E-03 1.E-02 1.E-01 1.E+00
t(s)
TC=25°C
TC=75°C
TC=125°C
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
IF(av)(A)
18
16
14
12
10
8
6
4
2
0
0 25 50 75 100 125 150
Rth
(j-a)
=50°C/W
Rth
=Rth
(j-a)
Tamb(°C)
(j-c)
Figure 4. Normalized avalanche power
derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
T (°C)
0
j
0 25 50 75 100 125 150
Figure 6. Relative variation of thermal
impedance junction to case versus pulse duration
Zth(j-c)/Rth(j-c)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
0.4
δ = 0.2
δ = 0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
tp(s)
δ
=tp/T
T
tp
3/9
Loading...
+ 6 hidden pages