ST STPS30120DJF User Manual

Features
STPS30120DJF
Power Schottky rectifier
Very small conduction losses
Negligible switching losses
Low forward voltage drop
Low thermal resistance
High avalanche capability specified
ECOPACK
®
2 compliant component
Description
Schottky rectifier suited for switch mode power supply and high frequency DC to DC converters.
Packaged in PowerFLAT™, this device is intended for use in low voltage, high frequency inverters, free-wheeling and polarity protection applications.
A
A
K
A
PowerFLAT 5x6 STPS30120DJF

Table 1. Device summary

Symbol Value
K
K
A
TM: PowerFLAT is a trademark of STMicroelectronics
I
F(AV)
V
RRM
(max) 150 °C
T
j
V
(typ) 0.61 V
F
30 A
120 V
May 2011 Doc ID 15671 Rev 5 1/7
www.st.com
7
Characteristics STPS30120DJF

1 Characteristics

Table 2. Absolute Ratings (limiting values, anode terminals short circuited)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
1. condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance

Symbol Parameter Value Unit
Repetitive peak reverse voltage 120 V
RRM
Forward rms current 45 A
Average forward current Tc = 80 °C, δ = 0.5 30 A
Surge non repetitive forward current tp = 10 ms sinusoidal 200 A
FSM
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 12500 W
ARM
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature
T
j
dPtot
dTj
<
Rth(j-a)
1
(1)
150 °C
R

Table 4. Static electrical characteristics (anode terminals short circuited)

Junction to case 2.5 °C/W
th(j-c)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Reverse leakage
(1)
I
R
current
(1)
V
Forward voltage drop
F
1. Pulse test: tp = 380 µs, δ < 2%
= 25 °C
T
j
= 125 °C 5.5 16 mA
T
j
= 25 °C
T
j
T
= 125 °C 0.61 0.67
j
= 25 °C
T
j
T
= 125 °C 0.68 0.75
j
= V
V
R
RRM
IF = 15 A
= 30 A
I
F
35 µA
0.84
0.92
To evaluate the conduction losses use the following equation: P = 0.61 x I
F(AV)
+ 0.005 I
F2(RMS)
V
2/7 Doc ID 15671 Rev 5
STPS30120DJF Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P
(W)
F(AV)
30.0
25.0
20.0
δ=0.05
15.0
10.0
5.0
0.0
0 5 10 15 20 25 30 35 40
δ=0.1
I
F(AV)
δ=0.2
(A)
δ=0.5 δ=1
=tp/T
δ
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I
(A)
F(AV)
35
R
30
25
20
15
10
5
0
T
tp
=tp/T
δ
0 25 50 75 100 125 150
th(j-a)=Rth(j-c)
T
amb
(°C)
Figure 4. Normalized avalanche power
derating versus junction temperature
P
ARM (Tj)
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values)
IM(A)
200
180
160
140
120
100
80
60
40
I
M
20
0
1.E-03 1.E-02 1.E-01 1.E+00
t
=0.5
δ
t(s)
Figure 6. Relative variation of thermal
impedance, junction to case, versus pulse duration
Z
th(j-c)/Rth(j-c)
1.0
0.9
0.8
0.7
Tc=25°C
Tc=75°C
Tc=125°C
Doc ID 15671 Rev 5 3/7
0.6
0.5
0.4
0.3
0.2
Single pulse
0.1
0.0
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00
tp(s)
Loading...
+ 4 hidden pages