ST STPS2L60 User Manual

Features
Negligible switching losses
Low forward voltage drop
Surface mount miniature package
ECOPACK2
®
compliant component (SMB flat)
Description
STPS2L60
Power Schottky rectifier
A
K
DO-41
STPS2L60
Axial and surface mount power Schottky rectifiers suited to switched mode power supplies and high frequency DC to DC converters.
Packaged in SMA, DO-41 and SMB flat this device is especially intended for use in low voltage, high frequency inverters and small battery chargers.
A
K
SMA
(JEDEC DO-214AC)
STPS2L60A

Table 1. Device summary

Symbol Value
I
F(AV)
V
RRM
(max) 150 °C
T
j
V
(max) 0.55 V
F
(JEDEC DO221-AA)
A
K
SMB flat
STPS2L60UF
2 A
60 V
September 2011 Doc ID 9173 Rev 6 1/9
www.st.com
9
Characteristics STPS2L60

1 Characteristics

Table 2. Absolute ratings (limiting values)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
Repetitive peak reverse voltage 60 V
RRM
Forward rms voltage 10 A
SMB flat T
Average forward current
DO-41 T
Surge non repetitive forward current tp =10 ms sinusoidal 75 A
FSM
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 1600 W
ARM
Storage temperature range -65 to + 150 °C
stg
Maximum operating junction temperature
T
j
= 130 °C δ = 0.5
L
= 115 °C δ = 0.5
L
= 110 °C δ = 0.5
L
(1)
2ASMA T
150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
<
Rth(j-a)
1
dPtot
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj

Table 3. Thermal resistance

Symbol Test conditions Value Unit
SMB flat 15
R
th(j-l)
Junction-lead
°C/WSMA 25
Lead length = 10 mm DO-41 30

Table 4. Static electrical characteristics

Symbol Parameter Test conditions Min. Typ. Max. Unit
= 25 °C
T
Reverse leakage
(1)
I
R
current
(1)
V
1. Pulse test: tp = 380 µs, δ < 2%
Forward voltage drop
F
j
= 100 °C 2 10 mA
T
j
= 25 °C
T
j
T
= 125 °C 0.51 0.55
j
= 25 °C
T
j
T
= 125 °C 0.62 0.67
j
V
R
I
F
I
F
To evaluate the conduction losses use the following equation: P = 0.43 x I
2/9 Doc ID 9173 Rev 6
F(AV)
+ 0.06 I
F2(RMS)
= V
= 2 A
= 4 A
100 µA
RRM
0.60
V
0.77
STPS2L60 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P (W)
F(AV)
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Average forward current versus
ambient temperature (δ = 0.5) SMB flat
I (A)
F(AV)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
T
tp
=tp/T
δ
0 25 50 75 100 125 150
SMB FlatSMBflat
SMB Flat
SMBflat R
R
=40 °C/W
=40 °C/W
th(j-a)
th(j-a)
S
S
=2.5 cm²
=2.5 cm²
cu
cu
T (°C)
amb
R
th(j-a)=Rth(j-l)
Figure 5. Normalized avalanche power
derating versus junction temperature
P(Tj)
ARM
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 2. Average forward current versus
ambient temperature (δ = 0.5) DO-41, SMA
I (A)
F(AV)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
T
tp
=tp/T
δ
0 25 50 75 100 125 150
R =100°C/W
th(j-a)
T (°C)
R=R
th(j-a) th(j-I)
amb
DO-41
SMA
Figure 4. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 6. Non repetitive surge peak forward
current versus overload duration (maximum values) (SMA)
I (A)
M
10
9
8
7
6
5
4
3
2
IM
1
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
T =25°C
a
T =75°C
a
T =125°C
a
Doc ID 9173 Rev 6 3/9
Loading...
+ 6 hidden pages