
STPS2L30
Low drop power Schottky rectifier
Features
■ Low cost device with low drop forward voltage
for less power dissipation
■ Optimized conduction/reverse losses trade-off
which lead to the highest yield in the
applications
■ Surface mount miniature packages
■ Avalanche capability specified
Description
Single Schottky rectifier suited to switched mode
power supplies and high frequency DC to DC
converters, freewheel diode and integrated circuit
latch up protection.
Packaged in SMA and low profile SMA and SMB,
this device is especially intended for use in
parallel with MOSFETs in synchronous
rectification.
A
K
SMA
STPS2L30A
A
K
SMB flat
STPS2L30UF
Table 1. Device summary
I
F(AV)
V
RRM
(max) 150 °C
T
j
(max) 0.375 V
V
F
A
K
SMA flat
STPS2L30AF
2 A
30 V
April 2008 Rev 6 1/10
www.st.com
10

Characteristics STPS2L30
1 Characteristics
Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(AV)
I
FSM
P
ARM
T
stg
T
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Table 3. Thermal resistance
Repetitive peak reverse voltage 30 V
SMA flat T
Average forward current
SMB flat T
= 130 °C δ = 0.5
L
= 120 °C δ = 0.5
L
= 135 °C δ = 0.5
L
Surge non repetitive forward current tp =10 ms sinusoidal 75 A
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 1500 W
Storage temperature range -65 to + 150 °C
Operating junction temperature
j
1
--------------------------
<
Rth j a–()
(1)
150 °C
2ASMA T
Symbol Parameter Value Unit
SMA flat 20
R
th(j-l)
Junction to lead
SMB flat 15
Table 4. Static electrical characteristics
°C/WSMA 30
Symbol Parameter Test Conditions Min. Typ. Max. Unit
(1)
I
R
V
F
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
(1)
Forward voltage drop
Tj = 25 °C
VR = V
= 2 A
I
F
= 4 A
I
F
RRM
= 100 °C 6 15 mA
T
j
= 25 °C
T
j
T
= 125 °C 0.325 0.375
j
= 25 °C
T
j
T
= 125 °C 0.43 0.51
j
200 µA
0.45
0.53
To evaluate the conduction losses use the following equation:
P = 0.24 x I
F(AV)
+ 0.068 I
F2(RMS)
V
2/10

STPS2L30 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P (W)
F(AV)
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Average forward current
versus ambient temperature
(δ = 0.5) SMB flat
I (A)
F(AV)
2.2
2.0
1.8
δ
=tp/T
R =120°C/W
th(j-a)
T
tp
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0 25 50 75 100 125 150
R=R
th(j-a) th(j-l)
T (°C)
amb
SMB flat
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values) SMA
I (A)
M
10
9
8
7
6
5
4
3
2
IM
1
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMA
T =25°C
a
T =75°C
a
T =125°C
a
Figure 2. Average forward current versus
ambient temperature (δ = 0.5) SMA
I (A)
F(AV)
2.2
2.0
1.8
δ
=tp/T
R =120°C/W
th(j-a)
T
tp
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0 25 50 75 100 125 150
R=R
th(j-a) th(j-l)
T (°C)
amb
SMA
Figure 4. Average forward current
versus ambient temperature
(δ = 0.5) SMA flat
I (A)
F(AV)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0 25 50 75 100 125 150
δ
T
=tp/T
R
=200 °C/W
th(j-a)
tp
R
th(j-a)=Rth(j-l)
T (°C)
amb
SMA-Flat
Figure 6. Non repetitive surge peak forward
current versus overload duration
(maximum values) SMB flat
I (A)
M
30
25
20
15
10
IM
5
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMB flat
(non exposed pad)
T =25°C
L
T =75°C
L
T =125°C
L
3/10