ST STPS2L25 User Manual

Main product characteristics
d
-

STPS2L25

Low drop power Schottky rectifier

I
F(AV)
V
RRM
(max) 150° C
T
j
(max) 0.375 V
V
F
2 A
25 V
K
A
SMB
STPS2L25U
Features and benefits
Very low forward voltage drop for less power
Optimized conduction/reverse losses trade-off
which means the highest efficiency in the applications
Avalanche capability specified
K
Description
Single Schottky rectifier suited to switched mode power supplies and high frequency DC to DC converters.
Packaged in SMB, SMB flat for thermal resistance characteristic improvement, this device is especially intended for use in parallel with MOSFETs in synchronous rectification.

Table 1. Absolute ratings (limiting values)

Symbol Parameter Value Unit
V
RRM
I
F(AV)
I
FSM
P
ARM
T
stg
T
Ptot
--------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Repetitive peak reverse voltage 25 V
Average forward current
SMB T
SMB flat T
Surge non repetitive forward current tp = 10 ms sinusoidal 75 A
Repetitive peak avalanche power tp = 1 µs Tj = 25° C 1500 W
Storage temperature range -65 to + 150 °C
Operating junction temperature
j
1
--------------------------
<
Rth j a–()
(1)
= 125° C δ = 0.5
L
= 135° C δ = 0.5
L
SMB flat
STPS2L25UF
A
2A
150 °C
February 2007 Rev 5 1/9
www.st.com
9
Characteristics STPS2L25

1 Characteristics

Table 2. Thermal resistance

Symbol Parameter Value Unit
SMB 25
R
th(j-l)

Table 3. Static electrical characteristics

Junction to lead
SMB flat 15
Symbol Parameter Test Conditions Min. Typ. Max. Unit
(1)
I
R
V
F
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
(1)
Forward voltage drop
Tj = 25° C
Tj = 125° C
Tj = 25° C
Tj = 125° C
Tj = 25° C
Tj = 125° C
VR = V
IF = 2 A
IF = 4 A
RRM
15 30 mA
0.325 0.375
0.43 0.51
90 µA
0.45
0.53
To evaluate the maximum conduction losses, use the following equation:
P = 0.24 x I
F(AV)
+ 0.068 I
F2(RMS)
°C/W
V
2/9
STPS2L25 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P (W)
F(AV)
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Average forward current
versus ambient temperature (δ = 0.5) SMB flat
I (A)
F(AV)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
=tp/T
δ
0.0
0 25 50 75 100 125 150
T
R =100°C/W
th(j-a)
tp
R=R
th(j-a) th(j-l)
T (°C)
amb
SMB flat
Figure 2. Average forward current versus
ambient temperature (δ = 0.5) SMB
I (A)
F(AV)
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
=tp/T
δ
0.0
0 25 50 75 100 125 150
T
R =100°C/W
th(j-a)
tp
R=R
th(j-a) th(j-l)
T (°C)
amb
SMB
Figure 4. Non repetitive surge peak forward
current versus overload duration (maximum values) SMB
I (A)
M
10
9
8
7
6
5
4
3
2
IM
1
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMB
T =25°C
a
T =75°C
a
T =125°C
a
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values) SMB flat
I (A)
M
30
25
20
15
10
IM
5
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
SMB flat
T =25°C
L
T =75°C
L
T =125°C
L
Figure 6. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
3/9
p
10 100 1000
Loading...
+ 6 hidden pages