ST STPS2545C-Y User Manual

Features
STPS2545C-Y
Automotive power Schottky rectifier
Datasheet production data
Very small conduction losses
Extremely fast switching
Low thermal resistance
Avalanche capability specified
AEC-Q101 qualified
Description
Dual center tab Schottky rectifier suited for high frequency DC to DC converters.
This device is especially intended for use in low voltage, high frequency inverters, free-wheeling and polarity protection applications.
A1
A2
K
A2
A1
D2PAK
STPS2545CGY

Table 1. Device summary

I
F(AV)
V
RRM
T
j (max)
V
F(max)
K
2 x 12.5 A
45 V
175 °C
0.57 V
June 2012 Doc ID 17260 Rev 2 1/7
This is information on a product in full production.
www.st.com
7
Characteristics STPS2545C-Y

1 Characteristics

Table 2. Absolute ratings (limiting values, per diode)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
T
Repetitive peak reverse voltage 45 V
RRM
Forward rms current 30 A
Average forward current δ = 0.5 T
Surge non repetitive forward current t
Repetitive peak reverse current
Non repetitive peak reverse current
Repetitive peak avalanche power
ARM
Storage temperature range -65 to +175 °C
stg
T
Maximum operating junction temperature
j
=160 °C Per diode 12.5 A
c
= 10 ms sinusoidal 200 A
p
= 2 µs square F=1 kHz
t
p
t
= 100 µs square
p
= 1 µs Tj = 25 °C
t
p
(1)
-40 to +175 °C
1 A
2A
4800 W
dV/dt Critical rate of rise reverse voltage 10000 V/µs
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj

Table 3. Thermal resistances

1
--------------------------
<
Rth j a–()
Symbol Parameter Value Unit
Per diode 1.6 °C/W
R
Junction to case
th (j-c)
R
th (c)
Coupling 0.6 °C/W
Total 1.1 °C/W
When the diodes 1 and 2 are used simultaneously:
ΔT
(diode 1) = P(diode1) x R
j

Table 4. Static electrical characteristics (per diode)

(Per diode) + P(diode 2) x R
th(j-c)
th(c)
Symbol Parameter Tests conditions Min. Typ. Max. Unit
T
= 25 °C
(1)
IR
V
1. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
(1)
Forward voltage drop
F
j
= 125 °C - 9 25 mA
T
j
T
= 125 °C IF = 12.5 A - 0.50 0.57
j
= 25 °C IF = 25 A - - 0.84
j
= 125 °C IF = 25 A - 0.65 0.72
T
j
To evaluate the conduction losses use the following equation: P = 0.42 x I
2/7 Doc ID 17260 Rev 2
+ 0.012 x I
F(AV)
F2(RMS)
= V
V
R
RRM
V T
--12A
STPS2545C-Y Characteristics
Figure 1. Conduction losses versus average
current)
P (W)F(AV)
10
9
8
7
6
5
4
3
2
1
0
0.0 2.5 5.0 7.5 10.0 12.5 15.0
δ = 0.05
δ = 0.1
I (A)F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I (A)F(AV)
14
12
10
8
6
4
2
δ
0
0 25 50 75 100 125 150 175
=tp/T
Rth
=Rth
(j-a)
(j-c)
Rth
=50°C/W
(j-a)
T
tp
T (°C)amb
Figure 4. Normalized avalanche power
derating versus junction temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values)
I (A)M
200
180
160
140
120
100
80
60
40
IM
20
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
TC=25°C
TC=75°C
TC=125°C
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Relative variation of thermal
impedance junction to case versus pulse duration
Zth(j-c) / Rth(j-c)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
0.4
δ = 0.2
δ = 0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
t (s)
P
δ
T
=tp/T
tp
Doc ID 17260 Rev 2 3/7
Loading...
+ 4 hidden pages