
Features
■ Very small conduction losses
■ Negligible switching losses
■ Extremely fast switching
■ Low thermal resistance
■ Avalanche capability specified
■ AEC-Q101 qualified
Description
Dual center tab Schottky rectifier suited for switch
mode power supplies and high frequency DC to
DC converters.
This device is especially intended for use in low
voltage, high frequency inverters, free-wheeling
and polarity protection in automotive applications.
STPS2545CT-Y
Automotive power Schottky rectifier
Datasheet − production data
A1
K
A2
A2
K
A1
TO-220AB
Table 1. Device summary
Symbol Value
I
F(AV)
V
RRM
T
j (max)
V
F(max)
2 x 12.5 A
45 V
175 °C
0.57 V
June 2012 Doc ID 18183 Rev 2 1/7
This is information on a product in full production.
www.st.com
7

Characteristics STPS2545CT-Y
1 Characteristics
Table 2. Absolute ratings (limiting values, per diode)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
Repetitive peak reverse voltage 45 V
RRM
Forward rms current 30 A
= 160 °C
Average forward current δ = 0.5
Surge non repetitive forward current tp = 10 ms sinusoidal 200 A
FSM
Repetitive peak avalanche power
ARM
Storage temperature range -65 to + 175 °C
stg
Operating junction temperature range
T
j
T
c
= 1 µs, Tj = 25 °C
t
p
(1)
Per diode 12.5 A
-40 to + 175 °C
4800 W
dV/dt Critical rate of rise reverse voltage 10000 V/µs
<
Rth(j-a)
1
dPtot
1. condition to avoid thermal runaway for a diode on its own heatsink.
dTj
Table 3. Thermal resistances parameters
Symbol Parameter Value Unit
R
R
th (j-c)
Junction to case Per diode 1.6 °C/W
Coupling 0.6 °C/W
th (c)
When the diodes 1 and 2 are used simultaneously:
ΔT
(diode 1) = P(diode 1) x R
j
Table 4. Static electrical characteristics (per diode)
Symbol Parameter Tests conditions Min. Typ. Max. Unit
(per diode) + P(diode 2) x R
th(j-c)
th(c)
= 25 °C
T
R
V
1. Pulse test: tp = 380 µs, δ < 2%
current
(1)
Forward voltage drop
F
Reverse leakage
(1)
I
j
T
= 125 °C 9 25 mA
j
T
= 125 °C IF = 12.5 A 0.50 0.57
j
= 25 °C IF = 25 A 0.84
j
T
= 125 °C IF = 25 A 0.65 0.72
j
V
R
To evaluate the conduction losses use the following equation:
P = 0.42 x I
2/7 Doc ID 18183 Rev 2
+ 0.012 x I
F(AV)
F2(RMS)
= V
RRM
125 µA
V T

STPS2545CT-Y Characteristics
Figure 1. Conduction losses versus average
current
P (W)F(AV)
10
9
8
7
6
5
4
3
2
1
0
0.0 2.5 5.0 7.5 10.0 12.5 15.0
δ = 0.05
δ = 0.1
I (A)F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I (A)F(AV)
14
12
10
8
6
4
2
0
T
=tp/T
δ
0 25 50 75 100 125 150 175
Rth
=50°C/W
(j-a)
tp
T (°C)amb
Rth
=Rth
(j-a)
(j-c)
Figure 4. Normalized avalanche power
derating versus junction
temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values)
I (A)M
200
180
160
140
120
100
80
60
40
IM
20
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
TC=25°C
TC=75°C
TC=125°C
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Relative variation of thermal
impedance junction to case versus
pulse duration
Zth(j-c) / Rth(j-c)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
0.4
δ = 0.2
δ = 0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
t (s)
P
δ
T
=tp/T
tp
Doc ID 18183 Rev 2 3/7