ST STPS20L15D, STPS20L15G User Manual

®

STPS20L15D/G

LOW DROP OR-ing POWER SCHOTTKY DIODE

MAIN PRODUCT CHARACTERISTICS

IF(AV)

20 A

VRRM

15 V

Tj (max)

125°C

 

 

VF (max)

0.33 V

FEATURES AND BENEFITS

nVERY LOW FORWARD VOLTAGE DROP FOR LESS POWER DISSIPATION AND REDUCED HEATSINK SIZE

nREVERSE VOLTAGE SUITED TO OR-ing OF 3V, 5V and 12V RAILS

nAVALANCHE CAPABILITY SPECIFIED

DESCRIPTION

Packaged in TO-220AC or D2PAK, this device is especially intended for use as an OR-ing diode in fault tolerant power supply equipments.

ABSOLUTE RATINGS (limiting values)

K

K

 

A

A

NC

K

 

TO-220AC D2PAK

STPS20L15D STPS20L15G

Symbol

 

 

 

Parameter

 

 

 

 

Value

Unit

VRRM

 

Repetitive peak reverse voltage

 

 

 

 

15

 

V

IF(RMS)

 

RMS forward current

 

 

 

 

30

 

A

IF(AV)

 

Average forward current

Tc = 115°C

δ = 1

20

 

A

IFSM

 

Surge non repetitive forward current

tp = 10 ms

Sinusoidal

310

 

A

IRRM

 

Repetitive peak reverse current

tp = 2 µs

F = 1kHz

2

 

A

IRSM

 

Non repetitive peak reverse current

tp = 100 µs

 

 

3

 

A

PARM

 

Repetitive peak avalanche power

tp = 1µs

Tj = 25°C

13500

 

W

Tstg

 

Storage temperature range

 

 

 

 

- 65 to + 150

°C

 

Tj

 

Maximum operating junction temperature *

 

 

 

125

 

°C

dV/dt

 

Critical rate of rise of reverse voltage

 

 

 

 

10000

 

V/µs

 

 

 

 

 

 

 

 

 

 

 

 

* :

dPtot

 

<

 

1

thermal runaway condition for a diode on its own heatsink

 

dTj

Rth( j a)

 

 

 

 

 

 

 

 

 

 

 

THERMAL RESISTANCES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

 

 

Parameter

 

 

 

 

Value

 

Unit

Rth (j-c)

Junction to case

 

 

 

 

1.6

 

°C/W

July 2003 - Ed: 3B

1/5

 

ST STPS20L15D, STPS20L15G User Manual

STPS20L15D/G

STATIC ELECTRICAL CHARACTERISTICS

Symbol

Tests Conditions

Tests Conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

IR *

Reverse leakage

Tj = 25°C

VR = 15V

 

 

 

6

mA

 

current

Tj = 100°C

VR = 15V

 

 

200

500

 

VF *

Forward voltage drop

Tj = 25°C

IF = 19 A

 

 

 

0.41

V

 

 

Tj = 25°C

IF = 40 A

 

 

 

0.52

 

 

 

Tj = 125°C

IF = 19 A

 

 

0.28

0.33

 

 

 

Tj = 125°C

IF = 40 A

 

 

0.42

0.50

 

Pulse test : * tp = 380 μs, δ < 2%

 

 

 

 

 

 

 

To evaluate the maximum conduction losses use the following equation :

 

 

 

 

P = 0.18 x IF(AV) + 8.10-3 x IF2(RMS)

 

 

 

 

 

 

 

Fig. 1: Average forward power dissipation versus

Fig. 2: Average forward current versus ambient

average forward current.

 

temperature ( δ = 1).

 

 

 

PF(av)(W)

 

 

 

 

 

 

 

 

 

 

8

 

 

 

δ = 0.1

 

 

 

 

 

 

22

7

 

δ = 0.05

 

 

 

δ = 0.5

 

 

20

 

 

 

 

δ = 0.2

 

 

 

18

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

δ = 1

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

14

4

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

10

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

2

 

 

 

 

 

 

 

 

 

T

 

6

 

 

 

 

 

 

 

 

 

 

 

4

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IF(av) (A)

 

 

δ=tp/T

 

tp

2

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

 

0

 

22

IF(av)(A)

 

 

 

 

 

 

 

 

Rth(j-a)=Rth(j-c)

 

Rth(j-a)=35°C/W

 

Rth(j-a)=15°C/W

 

 

 

 

 

T

 

 

 

 

 

δ

tp

 

Tamb(°C)

 

 

=tp/T

 

 

 

 

0

25

50

75

100

125

Fig. 3: Normalized avalanche power derating versus pulse duration.

PARM(tp)

 

 

 

 

PARM(1µs)

 

 

 

 

1

 

 

 

 

 

0.1

 

 

 

 

 

0.01

 

 

 

 

 

0.001

 

 

tp(µs)

 

 

 

 

 

 

 

0.01

0.1

1

10

100

1000

Fig. 5: Non repetitive surge peak forward current versus overload duration (maximum values).

Fig. 4: Normalized avalanche power derating versus junction temperature.

 

PARM(tp)

 

 

 

 

 

PARM(25°C)

 

 

 

 

 

1.2

 

 

 

 

 

 

1

 

 

 

 

 

 

0.8

 

 

 

 

 

 

0.6

 

 

 

 

 

 

0.4

 

 

 

 

 

 

0.2

 

 

 

 

 

 

0

 

 

Tj(°C)

 

 

 

 

 

 

 

 

 

0

25

50

75

100

125

150

Fig. 6: Relative variation of thermal impedance junction to case versus pulse duration.

IM(A)

 

 

 

Zth(j-c)/Rth(j-c)

 

 

 

250

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

0.6

δ = 0.5

 

 

 

 

100

 

 

Tc=50°C

0.4

 

 

 

 

 

 

 

 

δ = 0.2

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

Tc=75°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

IM

 

 

0.2

δ = 0.1

 

tp (s)

 

 

 

t

t(s)

Tc=110°C

 

 

 

δ=tp/T

tp

0

δ=0.5

 

0.0

 

Single pulse

 

1E-2

1E-1

1E+0

 

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1E-3

1.0E-4

2/5

 

 

 

 

 

 

 

 

 

Loading...
+ 3 hidden pages