ST STPS2045C-Y User Manual

Features
STPS2045C-Y
Automotive power Schottky rectifier
Very small conduction losses
Negligible switching losses
Extremely fast switching
AEC-Q101 qualified
Description
Dual center tap Schottky rectifier suited for high frequency DC to DC converters.
Packaged in D intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications.
2
PAK, this device is especially
A1
A2
K
A2
A1
D2PAK
STPS2045CGY

Table 1. Device summary

I
2 x 10 A
F(AV)
45 V
V
RRM
T
j(max)
V
0.57 V
F(typ)
K
175 °C
May 2011 Doc ID 17262 Rev 1 1/7
www.st.com
7
Characteristics STPS2045C-Y

1 Characteristics

Table 2. Absolute ratings (limiting values, per diode)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
Repetitive peak reverse voltage 45 V
RRM
Forward rms current 30 A
Average forward current δ = 0.5 Tc = 155 °C Per diode 10 A
Surge non repetitive forward current tp = 10 ms sinusoidal 180 A
FSM
Repetitive peak avalanche power tp = 1 μs, Tj = 25 °C 4000 W
ARM
Storage temperature range -65 to +175 °C
stg
Maximum operating junction temperature
T
j
(1)
-40 to +175 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
<
Rth(j-a)
1
dPtot
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj

Table 3. Thermal resistances parameters

Symbol Parameter Value Unit
R
R
th(j-c)
th(c)
Junction to case
Per diode To t al
Coupling 0.3 °C/W
2.2
1.3
°C/W
When the diodes 1 and 2 are used simultaneously : T
(diode 1) = P(diode 1) x R
j

Table 4. Static electrical characteristics (per diode)

(per diode) + P(diode 2) x R
th(j-c)
th(c)
Symbol Test conditions Min. Typ. Max. Unit
(1)
I
R
V
1. Pulse test : tp = 380 μs, δ < 2%
Reverse leakage current
(1)
Forward voltage drop
F
Tj = 25 °C
= 125 °C - 7 15 mA
T
j
= 125 °C IF = 10 A - 0.5 0.57
T
j
= 25 °C
j
= 125 °C - 0.65 0.72
T
j
To evaluate the conduction losses use the following equation: P = 0.42 x I
2/7 Doc ID 17262 Rev 1
F(AV)
+ 0.015 I
F2(RMS)
VR = V
RRM
IF = 20 A
--100μA
- - 0.84
VT
STPS2045C-Y Characteristics
Figure 1. Average forward power dissipation
versus average forward current (per diode)
P (W)
F(AV)
8
7
6
5
4
3
2
1
0
0 1 2 3 4 5 6 7 8 9 10 11 12
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
Figure 2. Average forward current versus
ambient temperature (
δ = 0.5, per diode)
I (A)
F(AV)
12
10
8
6
4
2
0
0 25 50 75 100 125 150 175
δ
=tp/T
T
tp
R =15°C/W
th(j-a)
T (°C)
amb
R=R
th(j-a) th(j-c)
Figure 4. Normalized avalanche power
derating versus junction temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values, per diode)
I (A)
M
140
120
100
80
60
40
I
M
20
0
1E-3 1E-2 1E-1 1E+0
t
δ
=0.5
t(s)
T =75°C
C
T =100°C
C
T =125°C
C
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6. Relative variation of thermal
impedance junction to ambient versus pulse duration
Z/R
th(j-c) th(j-c)
1.0
0.8
0.6
δ = 0.5
0.4
δ = 0.2
0.2
δ = 0.1
Single pulse
0.0
1E-4 1E-3 1E-2 1E-1 1E+0
t (s)
p
δ
=tp/T
T
tp
Doc ID 17262 Rev 1 3/7
Loading...
+ 4 hidden pages