®
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
V
V
F
I
F(AV)
RRM
T
j
(max)
2 x 10 A
170 V
175°C
0.75 V
STPS20170C
A1
K
A2
K
K
Features
■ High reverse voltage
■ High junction temperature capability
■ Avalanche specification with derating curves
Benefits
■ Can challenge bipolar ultrafast diodes with
better dynamic characteristics.
Description
Dual center tap Schottky rectifier diode su ited for
high frequency switched mode power supplies.
A2
K
A1
TO-220AB
STPS20170CT
A2
K
A1
TO-220FPAB
STPS20170CFP
D2PAK
STPS20170CG
K
2
I
STPS20170CR
Table 2: Order Codes
Part Numbers Marking
STPS20170CT STPS20170CT
STPS20170CFP STPS20170CFP
STPS20170CR STPS20170CR
A1
PAK
A2
A2
K
A1
June 2005
STPS20170CG STPS20170CG
STPS20170CG-TR STPS20170CG
REV. 2
1/8
STPS20170C
Table 3: Absolute Ratings (limiting values, per diod e)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
T
T
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
Ptot
--------------
* : thermal runaway condition for a diode on its own heatsink
dTj
Table 4: Thermal Parameters
Repetitive peak reverse voltage 170 V
RMS forward voltage 30 A
TO-220AB /
Average forward current
2
PAK / I2PAK
D
δ = 0.5
TO-220FPAB
Surge non repetitive forward current
Repetitive peak avalanche po wer
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature * 175 °C
j
1
------------------------- -
<
Rth j a–()
= 155°C
T
c
Per diode
Per device
= 135°C
T
c
t
= 10ms sinusoidal
p
t
= 1µs Tj = 25°C
p
Per diode
Per device
6700 W
10
20
10
20
180 A
A
Symbol Parameter Value Unit
TO-220AB / D
R
th(j-c)
Junction to case
TO-220FPAB
R
th(c)
When the diodes 1 and 2 are used simultaneously:
∆ Tj(diode 1) = P(diode 1) x R
th(j-c)
TO-220AB / D2PAK / I2PAK
TO-220FPAB 2.5
(Per diode) + P(diode 2) x R
2
PAK / I2PAK
th(c)
Per diode
Total
Per diode
Total
Coupling
2.2
1.3
4.5
3.5
0.3
°C/W
Table 5: Static Electrical Characteristics (per diode)
Symbol Parameter Tests conditions Min. Typ Max. Unit
T
= 25°C
*
I
R
V
F
Pulse test: * tp = 5 ms, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.64 x I
Reverse leakage current
**
Forward voltage drop
** tp = 380 µs,
δ < 2%
j
= 125°C
T
j
= 25°C
T
j
= 125°C
T
j
= 25°C
T
j
= 125°C
T
j
V
R
I
F
I
F
= V
= 10A
= 20A
F(AV)
RRM
+ 0.011 I
0.69 0.75
0.79 0.86
F2(RMS)
15 µA
15 mA
0.90
V
0.99
2/8
STPS20170C
Figure 1: Average forward power dissipation
versus average forward current (per diode)
P (W)
F(AV)
10
9
8
7
6
5
4
3
2
1
0
0123456789101112
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3: Normalized avalanche power
derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2: Average forward current versus
ambient temperature (δ = 0.5, per diode)
I (A)
F(AV)
12
11
10
9
8
7
6
5
4
3
2
=tp/T
1
δ
0
0 25 50 75 100 125 150 175
R =15°C/W
th(j-a)
T
tp
R=R
th(j-a) th(j-c)
T (°C)
amb
R=R
th(j-a) th(j-c)
(TO-220FPAB)
22
(TO-220AB,I PAK and D PAK)
Figure 4: Normalized avalanche power
derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
2
values, per diode) (TO-220AB, D
I (A)
M
150
125
100
75
50
IM
25
0
1.E-03 1.E-02 1.E-01 1.E+00
t
δ
=0.5
t(s)
PAK, I2PAK)
T =50°C
C
T =75°C
C
T =125°C
C
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode) (TO-220FPAB)
I (A)
M
100
90
80
70
60
50
40
30
IM
20
10
0
1.E-03 1.E-02 1.E-01 1.E+00
t
δ
=0.5
t(s)
T =50°C
C
T =75°C
C
T =125°C
C
3/8