Features
STPS1L60
Power Schottky rectifier
■ Negligible switching losses
■ Low forward voltage drop
■ Surface mount miniature packages
■ Avalanche capability specified
Description
Axial and surface mount power Schottky rectifiers
suited to switched mode power supplies and high
frequency DC to DC converters.
Packaged in SMA, STmite flat and DO-41, this
device is especially intended for use in low
voltage, high frequency inverters and small
battery chargers.
K
DO-41
STPS1L60
A
K
SMA
(JEDEC DO-214AC)
STPS1L60A
Table 1. Device summary
Symbol Value
I
F(AV)
V
RRM
(max) 150 °C
T
j
(max) 0.56 V
V
F
A
A
K
STmite flat
(DO222-AA)
STPS1L60MF
1 A
60 V
October 2009 Doc ID 7504 Rev 8 1/10
www.st.com
10
Characteristics STPS1L60
1 Characteristics
Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
Repetitive peak reverse voltage 60 V
RRM
STmite flat 2 A
I
F(RMS)
I
F(AV)
I
P
T
Forward rms current
SMA, DO-41 10 A
SMA T
Average forward current
STmite flat T
Surge non repetitive forward current tp =10 ms sinusoidal 40 A
FSM
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 1200 W
ARM
Storage temperature range - 65 to + 150 °C
stg
T
Maximum operating junction temperature
j
= 130 °C δ = 0.5
L
= 120 °C δ = 0.5
L
= 135 °C δ = 0.5
C
(1)
1ADO-41 T
150 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
<
Rth(j-a)
1
dPtot
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Table 3. Thermal resistance
Symbol Parameter Value Unit
SMA 120
R
Junction to ambient
th(j-a)
Lead length = 10 mm DO-41 100
°C/W
SMA 30
R
R
Table 4. Static electrical characteristics
Junction to lead
th(j-l)
Junction to case STmite flat 20 °C/W
th(j-c)
Lead length = 10 mm DO-41 45
°C/W
Symbol Parameter Tests conditions Min. Typ. Max. Unit
= 25 °C
T
(1)
I
Reverse leakage current
R
j
= 100 °C 1.5 5 mA
T
j
V
Tj = 25 °C
(1)
V
1. Pulse test: tp = 380 µs, δ < 2%
Forward voltage drop
F
Tj = 100 °C 0.56
= 125 °C 0.5 0.54
T
j
T
= 25 °C
j
Tj = 100 °C 0.68
= 125 °C 0.6 0.66
T
j
I
I
To evaluate the conduction losses use the following equation:
P = 0.44 x I
2/10 Doc ID 7504 Rev 8
F(AV)
+ 0.12 I
F2(RMS)
= V
R
= 1 A
F
= 2 A
F
50 µA
RRM
0.57
V
0.75
STPS1L60 Characteristics
Figure 1. Average forward power dissipation
versus average forward current
P
(W)
F(AV)
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2
δ = 0.05
δ = 0.1
I
F(AV)
(A)
δ = 0.2
δ = 0.5
δ = tp/T
δ = 1
T
t
p
Figure 3. Average forward current versus
ambient temperature (δ = 0.5)
(DO-41)
I
(A)
F(AV)
1.2
1.0
0.8
R
th(j-a)
= R
th(j-l)
DO-41
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
(SMA)
I
(A)
F(AV)
1.2
R
= R
th(j-a)
th(j-a)
(°C)
th(j-l)
= 120 °C/W
1.0
0.8
0.6
T
R
amb
0.4
δ = tp/T
T
t
p
0.2
0.0
0 25 50 75 100 125 150
SMA
Figure 4. Average forward current versus
ambient temperature (δ = 0.5)
(STmite flat)
I
(A)
F(AV)
1.2
1.0
0.8
R
th(j-a)
= R
th(j-c)
STmite flat
0.6
0.4
0.2
0.0
0 25 50 75 100 125 150
δ = tp/T
T
t
p
T
R
amb
th(j-a)
(°C)
= 100 °C/W
Figure 5. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1 µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
0.6
0.4
0.2
δ = tp/T
0.0
0 25 50 75 100 125 150
R
= 250 °C/W
T
th(j-a)
t
p
T
amb
(°C)
Figure 6. Normalized avalanche power
derating versus junction
temperature
P(Tj)
ARM
P (25 °C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Doc ID 7504 Rev 8 3/10