ST STPS1L30 User Manual

®
LOW DROP POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
I
F(AV)
V
RRM
T
(max) 150°C
j
(max) 0.3 V
V
F
1 A
STPS1L30
FEATURES AND BENEFITS
Very low forward voltage drop for less power
dissipation
Optimized conduction/reverse losses trade-off
(JEDEC DO-214AC)
SMA
STPS1L30A
SMB
(JEDEC DO-214AA)
STPS1L30U
which means the highest yield in the applications
Surface mount miniature packages
Avalanche capability specified
DESCRIPTION
Single Schottky rectifier suited to Switched Mode Power Supplies and high frequency DC to DC con­verters, freewheel diode and integrated circuit
Table 2: Order Codes
Part Number Marking
STPS1L30A GB3 STPS1L30U G23
latch up protection. Packaged in SMA and SMB, this device is espe­cially intended for use in parallel with MOSFETs in synchronous rectification.
Table 3: Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
T
Repetitive peak reverse voltage 30 V
RMS forward voltage 10 A
T
Average forward current
= 135°C δ = 0.5
L
Surge non repetitive forward current tp = 10ms sinusoidal 75 A
Repetitive peak reverse current tp = 2µs F = 1kHz square 1 A
Non repetitive peak reverse current tp = 100µs square 1 A
Repetitive peak avalanche power tp = 1µs Tj = 25°C 1500 W
Storage temperature range -65 to + 150 °C
stg
Maximum operating junction temperature * 150 °C
j
1A
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
* : thermal runaway condition for a diode on its own heatsink
------------- --
dTj
1
--------------- ----------->
Rth j a
()
August 2004
REV. 6
1/7
STPS1L30
Table 4: Thermal Resistance
Symbol Parameter Value Unit
R
th(j-l)
Junction to lead
Table 5: Static Electrical Characteristics
Symbol Parameter Tests conditions Min. Typ Max. Unit
T
= 25°C
IR *
V
Reverse leakage current
*
Forward voltage drop
F
Pulse test: * tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.225 x I
j
T
= 100°C
j
= 25°C
T
j
= 125°C
T
j
= 25°C
T
j
= 125°C
T
j
V
R
I
F
I
F
= V
= 1A
= 2A
SMA 30
SMB 25
RRM
+ 0.075 I
F(AV)
F2(RMS)
°C/W
200
615
0.395
0.26 0.3
0.445
0.325 0.375
µA
mA
V
Figure 1: Average forward power dissipation versus average forward current
P (W)
F(AV)
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.0 0.2 0.4 0.6 0.8 1.0 1.2
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
δ = 1
=tp/T
T
tp
Figure 3: Normalized avalanche power derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 2: Average forward current versus ambient temperature (δ = 0.5)
I (A)
F(AV)
1.2
R=R
1.0
0.8
0.6
0.4
0.2
0.0
T
tp
=tp/T
δ
0 25 50 75 100 125 150
R =120°C/W
T (°C)
amb
th(j-a)
R =100°C/W
th(j-a) th(j-I)
th(j-a)
Figure 4: Normalized avalanche power derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
2/7
STPS1L30
Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA)
I (A)
M
10
8
T =25°C
6
4
2
0
1E-3
I
M
t
δ
=0.5
1E-2 1E-1
t(s)
a
T =50°C
a
T =100°C
a
1E+0
Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA)
Z/R
th(j-c) th(j-c)
1.0
Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB)
I (A)
M
10
8
T =25°C
6
4
IM
2
0
1E-3
δ=0.5
t
1E-2 1E-1 1E+0
t(s)
a
T =50°C
a
T =100°C
a
Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMB)
Z/R
th(j-c) th(j-c)
1.0
0.8
0.6
δ = 0.5
0.4
δ
=tp/T
T
tp
δ = 0.2
0.2
δ = 0.1
Single pulse
0.0 1E-2 1E-1 1E+0 1E+1 1E+2 5E+2
t (s)
p
Figure 9: Reverse leakage current versus reverse voltage applied (typical values)
I (mA)
R
1E+2
1E+1
1E+0
1E-1
1E-2
1E-3
0 5 10 15 20 25 30
T =150°C
j
T =125°C
j
T =100°C
j
T =25°C
j
V (V)
R
0.8
0.6
= 0.5
δ
0.4
δ
=tp/T
T
tp
= 0.2
δ
0.2
= 0.1
δ
Single pulse
0.0 1E-2 1E-1 1E+0 1E+1 1E+2 5E+2
t (s)
p
Figure 10: Junction capacitance versus reverse voltage applied (typical values)
C(pF)
500
100
V (V)
10
12 5102030
R
F=1MHz T =25°C
j
3/7
Loading...
+ 4 hidden pages