ST STPS1L20MF User Manual

Low drop power Schottky rectifier in flat package
Features
Very low profile package: 0.85 mm
Backward compatible with standard STmite
footprint
Negligible switching losses
Extremely fast switching
Low forward voltage drop for higher efficiency
and extended battery life
Low thermal resistance
Avalanche capability specified
Description
Single Schottky rectifier suited for switch mode power supplies and high frequency dc to dc converters.
STPS1L20MF
K
STmite flat
(DO222-AA)

Table 1. Device summary

Symbol Value
I
F(AV)
V
RRM
T
(max) 150 °C
j
(max) 0.37 V
V
F
A
1 A
20 V
Packaged in STmite flat, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. Due to the very small size of the package this device fits battery powered equipment (cellular, notebook, PDA’s, printers) as well as chargers and PCMCIA cards.
July 2011 Doc ID 12640 Rev 2 1/7
www.st.com
7
Characteristics STPS1L20MF

1 Characteristics

Table 2. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
dV/dt Critical rate of rise of reverse voltage (rated V
1. condition to avoid thermal runaway for a diode on its own heatsink

Table 3. Thermal resistance

Repetitive peak reverse voltage 20 V
RRM
Forward current rms 2 A
Average forward current Tc = 140 °C δ = 0.5 1 A
Surge non repetitive forward current tp = 10 ms sinusoidal 50 A
FSM
Repetitive peak avalanche power tp = 1 µs Tj = 25 °C 1400 W
ARM
Storage temperature range - 65 to + 150 °C
stg
T
Maximum operating junction temperature
j
dPtot
--------------­dTj
1
--------------------------
<
Rth j a–()
(1)
, Tj = 25 °C) 10000 V/µs
R
150 °C
Symbol Parameter Value Unit
R
R
th(j-a)
1. Mounted with minimum recommended pad size, PC board FR4

Table 4. Static electrical characteristics

Junction to case 20 °C/W
th(j-c)
(1)
Junction to ambient 250 °C/W
Symbol Parameter Tests conditions Min. Typ. Max. Unit
(1)
I
Reverse leakage current
R
(1)
VF
1. Pulse test: = 380 µs, δ < 2%
Forward voltage drop
Tj = 25 °C
= V
V
R
= 85 °C 0.90 4.50
T
j
T
= 25 °C
j
= 85 °C 0.45 2.50
T
j
= 25 °C
T
j
T
= 85 °C 0.30 1.60
j
= 25 °C
T
j
T
= 85 °C 0.32 0.37
j
T
= 25 °C
j
= 85 °C 0.37 0.42
T
j
T
= 25 °C
j
= 85 °C 0.42 0.49
T
j
= 25 °C
T
j
T
= 85 °C 0.46 0.56
j
RRM
VR = 10 V
= 5 V
V
R
= 1 A
I
F
I
= 2 A
F
= 3 A
I
F
= 4 A
I
F
0.015 0.075
0.005 0.035
0.003 0.025
0.38 0.43
0.42 0.47
0.46 0.53
0.50 0.60
mA
V
To evaluate the conduction losses use the following equation: P = 0.32 x I
2/7 Doc ID 12640 Rev 2
F(AV)
+ 0.05 I
F2(RMS)
STPS1L20MF Characteristics
Figure 1. Conduction losses versus average
current
P (W)
F(AV)
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Normalized avalanche power
derating versus pulse duration
P(tp)
ARM
P (1µs)
ARM
1
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I (A)
F(AV)
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0 25 50 75 100 125 150
R =270°C/W
th(j-a)
T (°C)
amb
R=R
th(j-a) th(j-c)
Figure 4. Normalized avalanche power
derating versus junction temperature
P(T)
ARM j
P (25 °C)
ARM
1.2
1
0.1
0.01
t (µs)
0.001
0.10.01 1
10 100
p
1000
Figure 5. Non repetitive surge peak forward
current versus overload duration (maximum values)
I (A)
M
25
20
15
10
5
IM
t
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t(s)
T =25°C
C
T =75°C
C
T =125°C
C
0.8
0.6
0.4
0.2
0
25 50 75 100 125
T (°C)
Figure 6. Relative variation of thermal
impedance junction to case versus pulse duration
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
Single pulse
0.0
1.E-04 1.E-03 1.E-02 1.E-01
t (s)
p
δ
T
=tp/T
j
150
tp
Doc ID 12640 Rev 2 3/7
Loading...
+ 4 hidden pages