ST STPS1L20M User Manual

®
LOW DROP POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
I
V
T
j
V
F
F(AV)
RRM
(max)
(max)
1 A
150°C
0.37 V
STPS1L20M
A
C
FEATURES AND BENEFITS
Very small conduction losses
Negligible switching losses
Extremely fast switching
Low forward voltage drop for higher efficiency
STmite
(DO216-AA)
and extented battery life
Low thermal resistance
Avalanche capability specified
DESCRIPTION
Table 2: Order Code
Part Number Marking
STPS1L20M 1L2
Single Schottky rectifier suited for switch mode power supplies and high frequency DC to DC converters. Packaged in STmite, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. Due to the small size of the package this device fits battery powered equipment (cellular, notebook, PDA’s, printers) as well chargers and PCMCIA cards.
Table 3: Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
P
ARM
T
T
dV/dt
dPtot
* : thermal runaway condition for a diode on its own heatsink
------------- --
dTj
Repetitive peak reverse voltage 20 V
RMS forward voltage 2 A
T
Average forward current
Surge non repetitive forward current
Repetitive peak avalanche power
Storage temperature range -65 to + 150 °C
stg
Maximum operating junction temperature * 150 °C
j
Critical rate of rise of reverse voltage (rated V
1
--------------- ----------->
Rth j a()
= 140°C δ = 0.5
c
= 10 ms sinusoidal
t
p
p
t
= 1µs Tj = 25°C
, Tj = 25°C)
R
1400 W
10000 V/µs
1A
50 A
November 2005
REV. 4
1/6
STPS1L20M
Table 4: Thermal Resistance
Symbol Parameter Value Unit
R
th(j-c)
R
th(j-l)
* Mounted with minimum recommended pad size, PC board FR4.
Table 5: Static Electrical Characteristics
Symbol Parameter Tests conditions Min. Typ Max. Unit
I
R
V
Junction to case 20 °C/W
* Junction to ambient
*
Reverse leakage current
*
Forward voltage drop
F
T
= 25°C
j
T
= 85°C
j
= 25°C VR = 10V
T
j
= 85°C
T
j
= 25°C VR = 5V
T
j
= 85°C
T
j
= 25°C
T
j
T
= 85°C
j
= 25°C
T
j
= 85°C
T
j
V
R
I
F
I
F
= V
= 1A
= 3A
0.015 0.075
RRM
0.005 0.035
0.003 0.025
250
0.9 4.5
0.45 2.5
0.3 1.6
0.38 0.43
0.32 0.37
0.46 0.53
0.42 0.49
°C/W
mA
V
Pulse test: * tp = 380 µs, δ < 2%
To evaluate the conduction losses use the following equation: P = 0.31 x I
Figure 1: Conduction losses versus average current
P (W)
F(AV)
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
δ = 0.05
δ = 0.1
I (A)
F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
+ 0.06 I
F(AV)
F2(RMS)
Figure 2: Average forward current versus ambient temperature (δ = 0.5)
I (A)
F(AV)
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0 25 50 75 100 125 150
R =270°C/W
th(j-a)
T (°C)
amb
R=R
th(j-a) th(j-c)
2/6
STPS1L20M
Figure 3: Normalized avalanche power derating versus pulse duration
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values)
I (A)
M
25
20
15
10
5
IM
t
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t(s)
T =25°C
C
T =75°C
C
T =125°C
C
Figure 4: Normalized avalanche power derating versus junction temperature
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
25 50 75 100 125 150
T (°C)
j
Figure 6: Relative variation of thermal impedance junction to ambient versus pulse duration
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
Single pulse
0.0
1.E-04 1.E-03 1.E-02 1.E-01
t (s)
p
δ
=tp/T
T
tp
Figure 7: Reverse leakage current versus reverse voltage applied (typical values)
I (mA)
R
1.E+02
1.E+01
1.E+00
1.E-01
1.E-02
1.E-03
0 2 4 6 8 101214161820
T =150°C
j
T =125°C
j
T =100°C
j
T =75°C
j
T =50°C
j
T =25°C
j
V (V)
R
Figure 8: Reverse leakage current versus junction temperature (typical values)
I (mA)
R
1.E+02
1.E+01
1.E+00
V =20V
R
1.E-01
1.E-02
T (°C)
1.E-03
0 25 50 75 100 125 150
j
3/6
STPS1L20M
Figure 9: Junction capacitance versus reverse voltage applied (typical values)
C(pF)
1000
100
V (V)
10
1 10 100
R
F=1MHz
V =30mV
OSC RMS
T =25°C
j
Figure 11: Thermal resistance junction to ambient versus copper surface under tab (epoxy printed board FR4, Cu = 35µm, typical values)
R (°C/W)
th(j-a)
250
200
Figure 10: Forward voltage drop versus forward current
I (A)
FM
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
V (V)
FM
(maximum values)
T =85°C
j
(typical values)
T =85°C
j
T =25°C
j
(maximum values)
150
100
50
0
0 20 40 60 80 100 120 140 160 180 200
S(mm²)
4/6
Figure 12: STmite Package Mechanical Data
L3
b2
C
D
b
H
L2
L
R
A
R1
A1
0° to 6°
E
STPS1L20M
DIMENSIONS
REF.
A 0.85 1.00 1.15 0.033 0.039 0.045
A1 -0.05 0.05 -0.002 0.002
b 0.40 0.65 0.016 0.025
b2 0.70 1.00 0.027 0.039
c 0.10 0.25 0.004 0.010 D 1.75 1.90 2.05 0.069 0.007 0.081 E 1.75 1.90 2.05 0.069 0.007 0.081 H 3.60 3.75 3.90 0.142 0.148 0.154 L 0.50 0.63 0.80 0.020 0.025 0.031
L2 1.20 1.35 1.50 0.047 0.053 0.059 L3 0.50
R 0.07 0.003
R1 0.07 0.003
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
0.019
ref
ref
Figure 13: Foot Print Dimensions (in millimeters)
1.82
1.38
2.03
1.10
0.50
0.71
0.75
Table 6: Ordering Information
Ordering type Marking Package Weight Base qty Delivery mode
STPS1L20M 1L2 STmite 15.5 mg 12000 Tape & reel
Table 7: Revision History
Date Revision Description of Changes
Jul-2003 2A Last update.
13-Sep-2004 3
STmite package dimensions reference A1 change: from blank (min) to -0.05mm and from 0.10 (max) to 0.05mm.
Page 2, table 5: conduction losses evaluation values changed:
29-Nov-2005 4
. From P = 0.34 x I
. To P = 0.31 x I
F(AV)
F(AV)
+ 0.06 I
+ 0.07 I
F2(RMS)
F2(RMS)
5/6
STPS1L20M
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
STMicroelectronics group of companies
www.st.com
6/6
Loading...