POWER DISSIPATION
NEGLIGIBLE SWITCHING LOSSES ALLOWING
n
HIGH FREQUENCY OPERATION
AVALANCHE CAPABILITY SPECIFIED
n
A1
A2
K
DESCRIPTION
Dual center tap Schottky barrier rectifier designed
for highfrequencySwitchedModePowerSupplies
TO-220AB
and high frequency DC to DC converters.
Packaged in TO-220AB this device is intended for
use in low voltage, high frequency converters,
free-wheeling and polarity protection applications.
ABSOLUTE RATINGS (limiting values, per diode)
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward current
Surge non repetitive forward currenttp = 10 ms sinusoidal
Repetitive peak reverse currenttp=2µs square F=1kHz
Non repetitive peak reverse currenttp = 100 µs square
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTjRth ja
Tc = 140°C
δ= 0.5
Per diode
Per device
thermal runaway condition for a diodeon its own heatsink
−1()
40V
30A
8A
16A
180A
1A
2A
4000W
-65 to+150°C
150°C
10000V/µs
July 2003 - Ed : 6A
1/4
STPS16L40CT
THERMAL RESISTANCES
SymbolParameterValueUnit
R
th(j-c)
Junction to case
Per diode
Total
R
th(c)
Coupling0.3
When the diodes 1 and 2 areused simultaneously :
∆ Tj(diode 1) = P(diode1) xR
(Per diode) + P(diode 2) xR
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
SymbolParameterTests ConditionsMin.Typ.Max.Unit
*
I
R
V
F
Reverse leakage current
*
Forward voltage dropTj = 25°CI
Tj=25°CV
Tj = 100°C
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
R=VRRM
=8A
F
=8A
F
=16A
F
=16A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P=0.26xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
F(AV)
+ 0.024 I
F2(RMS)
Fig.2:Averagecurrentversusambient
temperature (δ = 0.5) (per diode).
2.2
°C/W
1.3
0.7mA
1535mA
0.5V
0.390.45
0.63
0.550.64
PF(av)(W)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
012345678910
δ = 0.05
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.011
p
101001000
IF(av)(A)
9
8
7
6
5
4
3
2
1
0
0255075100125150
δ
=tp/T
T
tp
Rth(j-a)=15°C/W
Tamb(°C)
Rth(j-a)=Rth(j-c)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
T (°C)
j
2/4
STPS16L40CT
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximum values) (per
diode).
IM(A)
120
100
80
60
40
IM
20
0
1E-31E-21E-11E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values) (per diode).
IR(mA)
2E+2
1E+2
1E+1
Tj=150°C
Tj=125°C
Fig. 6: Relative variation of thermal impedance
junction to case versus pulse duration .
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
Single pulse
tp(s)
1E-41E-31E-21E-11E+0
δ
=tp/T
T
tp
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values) (per diode).
Informationfurnished is believedto be accurateand reliable. However,STMicroelectronics assumes noresponsibility for theconsequences of
useof suchinformation nor forany infringement ofpatents or otherrights of thirdparties which mayresult fromitsuse. Nolicense is grantedby
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change withoutnotice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval ofSTMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics