®
LOW DROP POWER SCHOTTKY RECTIFIER
MAIN PRODUCTS CHARACTERISTICS
STPS16L40CT
I
F(AV)
V
RRM
Tj (max) 150 °C
V
(max) 0.45 V
F
2x8A
40 V
A1
K
A2
FEATURES AND BENEFITS
LOW FORWARD VOLTAGE DROP FOR LESS
n
POWER DISSIPATION
NEGLIGIBLE SWITCHING LOSSES ALLOWING
n
HIGH FREQUENCY OPERATION
AVALANCHE CAPABILITY SPECIFIED
n
A1
A2
K
DESCRIPTION
Dual center tap Schottky barrier rectifier designed
for highfrequencySwitchedModePowerSupplies
TO-220AB
and high frequency DC to DC converters.
Packaged in TO-220AB this device is intended for
use in low voltage, high frequency converters,
free-wheeling and polarity protection applications.
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward current
Surge non repetitive forward current tp = 10 ms sinusoidal
Repetitive peak reverse current tp=2µs square F=1kHz
Non repetitive peak reverse current tp = 100 µs square
Repetitive peak avalanche power tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTj Rth j a
Tc = 140°C
δ= 0.5
Per diode
Per device
thermal runaway condition for a diodeon its own heatsink
−1()
40 V
30 A
8A
16 A
180 A
1A
2A
4000 W
-65 to+150 °C
150 °C
10000 V/µs
July 2003 - Ed : 6A
1/4
STPS16L40CT
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th(j-c)
Junction to case
Per diode
Total
R
th(c)
Coupling 0.3
When the diodes 1 and 2 areused simultaneously :
∆ Tj(diode 1) = P(diode1) xR
(Per diode) + P(diode 2) xR
th(j-c)
th(c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
*
I
R
V
F
Reverse leakage current
*
Forward voltage drop Tj = 25°CI
Tj=25°CV
Tj = 100°C
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
R=VRRM
=8A
F
=8A
F
=16A
F
=16A
F
Pulse test : * tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation :
P=0.26xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
F(AV)
+ 0.024 I
F2(RMS)
Fig. 2: Average current versus ambient
temperature (δ = 0.5) (per diode).
2.2
°C/W
1.3
0.7 mA
15 35 mA
0.5 V
0.39 0.45
0.63
0.55 0.64
PF(av)(W)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
012345678910
δ = 0.05
δ = 0.1
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
IF(av)(A)
9
8
7
6
5
4
3
2
1
0
0 25 50 75 100 125 150
δ
=tp/T
T
tp
Rth(j-a)=15°C/W
Tamb(°C)
Rth(j-a)=Rth(j-c)
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
2/4