ST STPS16H100CG, STPS16H100CFP, STPS16H100CR User Manual

查询STPS16H100C供应商
®
STPS16H100CT/CG/CFP/CR
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
RRM
Tj (max) 175 °C
V
(max) 0.64V
F
FEATURES AND BENEFITS
NEGLIGIBLE SWITCHING LOSSES
HIGH JUNCTION TEMPERATURE CAPABILITY
LOW LEAKAGE CURRENT
GOOD TRADE OFF BETWEEN LEAKAGE
CURRENT AND FORWARD VOLTAGE DROP
AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
DualcentertapSchottkyrectifierdesignedfor high frequency miniature Switch Mode Power Supplies such as adaptators and on board DC/DC converters.
2x8A
100 V
A1
A2
K
A1
TO-220AB
STPS16H100CT
K
A1
TO-220FPAB
STPS16H100CFP
A2
A2
K
STPS16H100CG
STPS16H100CR
K
D2PAK
I2PAK
A1
A1
A2
A2
K
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage 100 V RMS forward current 30 A Average forward
current δ = 0.5
TO-220AB D2PAK/I2PAK
Tc = 165°C Per diode 8 A
TO-220FPAB Tc = 150°C Per device 16 I I I
P
T
FSM RRM RSM
ARM
stg
Surge non repetitive forward current tp = 10 ms sinusoidal 200 A Repetitive peak reverse current tp=2µssquare F = 1kHz 1 A Non repetitive peak reverse current tp = 100 µs square 2 A Repetitive peak avalanche power tp= 1µs Tj = 25°C 8700 W Storage temperature range -65 to+175 °C
Tj Maximum operating junction temperature * 175 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
* :
<
dTj Rth j a
July 2003 - Ed: 2A
thermal runaway condition for a diode on its own heatsink
−1()
1/7
STPS16H100CT/CG/CFP/CR
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
R
th (c)
When the diodes 1 and 2 are used simultaneously :
Tj(diode 1) = P(diode1) x R
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests Conditions Min. Typ. Max. Unit
I
R
V
Junction to ambient TO-220AB / D2PAK/I2PAK Per diode 1.6 °C/W
TO-220FPAB 4 TO-220AB / D
2
PAK/I2PAK Total 1.1 °C/W TO-220FPAB 3.5 TO-220AB / D2PAK/I2PAK
Coupling
0.6 °C/W
TO-220FPAB 3
(Per diode) + P(diode 2) x R
th(j-c)
* Reverse leakage Current Tj = 25°C VR=V
th(c)
RRM
3.6 µA
Tj = 125°C 1.6 5 mA
** Forward Voltage drop Tj = 25°C IF= 8 A 0.77 V
F
Tj = 125°CI Tj = 25°C I Tj = 125°C I
= 8 A 0.59 0.64
F
= 16 A 0.88
F
= 16 A 0.67 0.73
F
Pulse test : * tp=5ms,δ<2%
** tp = 380 µs, δ <2%
To evaluate the conduction losses use the following equation : P = 0.55 x I
Fig.1: Conductionlossesversus average current.
F(AV)
+ 0.011 x I
F2(RMS)
Fig. 2: Average forward current versus ambient temperature (δ=0.5).
P (W)F(AV)
7
6
5
4
3
2
1
0
012345678910
δ = 0.05
δ = 0.1
I (A)F(AV)
δ = 0.2
δ = 0.5
δ
=tp/T
δ = 1
T
tp
I (A)F(AV)
9
8 7
6
5 4
3
2 1
=tp/T
δ
0
0 25 50 75 100 125 150 175
Rth
=Rth
(j-a)
(j-c)
Rth
=50°C/W
(j-a)
T
tp
T (°C)amb
TO-220AB/D²PAK/I²PAK
2/7
STPS16H100CT/CG/CFP/CR
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5-1: Non repetitive surge peak forward current versus overload duration (maximum values) (TO-220AB, D²PAK, I²PAK).
I (A)M
200 180 160 140 120 100
80 60 40
IM
20
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
TC=25°C
TC=75°C
TC=125°C
Fig. 4: Normalized avalanche power derating versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2 1
0.8
0.6
0.4
0.2
T (°C)
0
j
0 25 50 75 100 125 150
Fig. 5-2: Non repetitive surge peak forward current versus overload duration (maximum values) (TO-220FPAB).
I (A)M
120 110 100
90 80 70 60 50 40 30
IM
20 10
0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
TC=25°C
TC=75°C
TC=125°C
Fig. 6-1: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AB, D²PAK & I²PAK).
Zth(j-c) / Rth(j-c)
1.0
0.9
0.8
0.7
δ = 0.5
0.6
0.5
0.4
δ = 0.2
δ = 0.1
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
t (s)P
δ
=tp/T
T
tp
Fig. 6-2: Relative variation of thermal impedance junctionto case versus pulse duration (TO-220FPAB).
Zth(j-c) / Rth(j-c)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
δ = 0.2
0.3
δ = 0.1
0.2
0.1
Single pulse
0.0
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
t (s)P
δ
=tp/T
T
tp
3/7
Loading...
+ 4 hidden pages