Main product characteristics
I
F(AV)
V
RRM
V
(max) 0.33 V
F
0.5 A
30 V
STPS0530Z
Schottky rectifiers
Features and benefits
■ Very small conduction losses
■ Negligible switching losses
■ Extremely fast switching
K
SOD-123
STPS0503Z
A
Description
Single Schottky rectifier suited for switch mode
power supplies and high frequency DC to DC
converters.
Packaged in SOD-123, this device is intended for
use in low voltage, high frequency inverters, free
wheeling and polarity protection applications. Due
to the small size of the package this device fits
GSM and PCMCIA requirements.
Table 1. Absolute ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
T
stg
T
T
dPtot
---------------
1. condition to avoid thermal runaway for a diode on its own heatsink
dTj
Repetitive peak reverse voltage 30 V
RMS forward current 2 A
Average forward current δ = 0.5 Ta = 55° C 0.5 A
Surge non repetitive forward current tp = 10 ms sinusoidal 5.5 A
Storage temperature range -65 to + 150 °C
Maximum operating junction temperature
j
Maximum temperature for soldering during 10 s 260 °C
L
1
--------------------------
<
Rth j a–()
Order code
Order code Marking
STPS0503Z Z53
(1)
150 °C
October 2006 Rev 2 1/7
www.st.com
7
Characteristics STPS0530Z
1 Characteristics
Table 2. Thermal resistance
Symbol Parameter Value Unit
Val ue
(1)
°C/W
R
th(j-a)
1. Copper area on PCB S = 2.5 mm
Table 3. Static electrical characteristics
Junction to ambient 340
2
Symbol Parameter Test conditions
= 25° C
T
(1)
I
R
V
1. Pulse test: tp = 5 ms, δ < 2%
2. Pulse test: tp = 380 µs, δ < 2%
Reverse leakage current
(2)
Forward voltage drop
F
j
= 125° C 3 5 mA
T
j
= 25° C
T
j
T
= 125° C 9 21 mA
j
= 25° C
T
j
T
= 125° C 0.20 0.22
j
T
= 25° C
j
= 125° C 0.31 0.33
T
j
V
= 15 V
R
= V
V
R
RRM
= 0.1 A
I
F
IF = 0.5 A
To evaluate the maximum conduction losses use the following equation:
P = 0.23 x I
F(AV)
+ 0.18 I
F2(RMS)
UnitSTPS0530Z
Typ. Max.
12 µA
130 µA
0.375
V
0.43
2/7
STPS0530Z Characteristics
Figure 1. Conduction losses versus average
current
P (W)
F(AV)
0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6
δ = 0.05
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3. Non repetitive surge peak forward
current versus overload duration
(maximum values)
I (A)M
4.0
3.5
3.0
2.5
2.0
1.5
T
=50°CT
=50°C
amb
1.0
IM
0.5
0.0
1.E-03 1.E-02 1.E-01 1.E+00
δ=0.5
t
t(s)
amb
T
=25°C
amb
T
=75°C
amb
Figure 5. Reverse leakage current versus
reverse voltage applied (typical
values)
I (mA)
R
1.E+01
Tj=125°C
Figure 2. Average forward current versus
ambient temperature (δ = 0.5)
I (A)F(AV)
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
0 25 50 75 100 125
R
=340°C/W
th(j-a)
S=2.5mm²
Tamb(°C)
Figure 4. Relative variation of thermal
impedance junction to ambient
versus pulse duration
Zth(j-a)/Rth(j-a)
1.0E+00
δ = 0.5
δ = 0.2
δ = 0.1
1.0E-01
1.0E-02
δ
=tp/T
T
tp
Single pulse
tp(s)
1.0E-03
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
Figure 6. Reverse leakage current versus
junction temperature (typical
values)
I (mA)R
1.E+01
VR=30V
1.E+00
1.E-01
1.E-02
1.E-03
024681012141618202224262830
Tj=100°C
Tj=75°C
Tj=50°C
Tj=25°C
V (V)
R
1.E+00
1.E-01
1.E-02
Tj(°C)
1.E-03
0 25 50 75 100 125
3/7