ST STM8AF6268, STM8AF6248, STM8AF6266, STM8AF6246, STM8AF6226 User Manual

...
STM8AF6x26/4x/66/68
LQFP48 7x7
LQFP32 7x7
VFQFPN32 5x5
Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM,
10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
Datasheet − production data
Features
–Max f – Advanced STM8A core with Harvard
architecture and 3-stage pipeline
– Average 1.6 cycles/instruction resulting in
10 MIPS at 16 MHz f standard benchmark
Memories
– Flash Program memory: 16 to 32 Kbytes
Flash; data retention 20 years at 55 °C after 1 kcycle
– Data memory: 0.5 to 1 Kbyte true data
EEPROM; endurance 300 kcycles
– RAM: 1 to 2 Kbytes
Clock management
– Low-power crystal resonator oscillator with
external clock input
– Internal, user-trimmable 16 MHz RC and
low-power 128 kHz RC oscillators
– Clock security system with clock monitor
Reset and supply management
– Wait/auto-wakeup/Halt low-power modes
with user definable clock gating
– Low consumption power-on and power-
down reset
Interrupt management
– Nested interrupt controller with 32 vectors – Up to 34 external interrupts on 5 vectors
Timers
– Up to 2 general purpose 16-bit PWM timers
with up to 3 CAPCOM channels each (IC, OC or PWM)
– Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-
time insertion and flexible synchronization – 8-bit AR basic timer with 8-bit prescaler – Auto-wakeup timer
CPU
: 16 MHz
for industry
CPU
– Window and independent watchdog timers
Communication interfaces
–LINUART – LIN 2.1 compliant, master/slave modes
with automatic resynchronization
– SPI interface up to 10 Mbit/s or f
2
–I
C interface up to 400 Kbit/s
Analog-to-digital converter (ADC)
MASTER
– 10-bit accuracy, 2LSB TUE accuracy, 2LSB
TUE linearity ADC and up to 10 multiplexed channels with individual data buffer
– Analog watchdog, scan and continuous
sampling mode
I/Os
– Up to 38 user pins including 10 HS I/Os – Highly robust I/O design, immune against
current injection
Operating temperature up to 150 °C
Qualification conforms to AEC-Q100 rev G

Table 1. Device summary

Part numbers: STM8AF622x/4x STM8AF6266/68
STM8AF6268, STM8AF6248, STM8AF6266, STM8AF6246, STM8AF6226
Part numbers: STM8AF612x/4x
STM8AF6168, STM8AF6148, STM8AF6166, STM8AF6146, STM8AF6126
In the order code, ‘F’ applies to devices with Flash program
1.
memory and data EEPROM while ‘H’ refers to devices with Flash program memory only. ‘F’ is replaced by ‘P’ for devices with FASTROM (see Tables 2 and 3, and Figure 47).
2. Not recommended for new design.
(1)
(2)
STM8AF6166/68
(2)
/2
July 2012 Doc ID 14952 Rev 6 1/89
This is information on a product in full production.
www.st.com
1
Contents STM8AF61xx, STM8AF62xx
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 STM8A central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.1 Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1.3 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 13
5.2.1 SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2 Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Flash program and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4.2 Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.3 Protection of user boot code (UBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4.4 Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5.2 16 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . 15
5.5.3 128 kHz low-speed internal RC oscillator (LSI) . . . . . . . . . . . . . . . . . . . 16
5.5.4 16 MHz high-speed external crystal oscillator (HSE) . . . . . . . . . . . . . . 16
5.5.5 External clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5.6 Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Low-power operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7.1 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7.2 Auto-wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7.3 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Contents
5.7.4 Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . 18
5.7.5 Basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.8 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.9 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.9.1 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.9.2 Inter integrated circuit (I
5.9.3 Universal asynchronous receiver/transmitter with LIN support
(LINUART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2
C) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.10 Input/output specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8 Interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 54
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 56
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Doc ID 14952 Rev 6 3/89
Contents STM8AF61xx, STM8AF62xx
10.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3.8 TIM 1, 2, 3, and 4 timer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3.9 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3.10 I
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2
C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 74
11 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.1.1 STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
13.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM8AF62xx product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. STM8AF/H61xx product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers . . . . . . . . . . . . . . . 16
Table 5. Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 6. TIM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. ADC naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. Communication peripheral naming correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description . . . . . . . . . . . . . . . . . . . . . 26
Table 11. Memory model for the devices covered in this datasheet. . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 12. I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 13. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 14. CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. Temporary memory unprotection registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 16. STM8A interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 17. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 18. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 22. Operating lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 24. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 25. Total current consumption in Run, Wait and Slow mode.
General conditions for V
Table 26. Total current consumption in Halt and Active-halt modes.
General conditions for V
Table 27. Oscillator current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 28. Programming current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 29. Typical peripheral current consumption V
Table 30. HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 31. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 32. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 33. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 34. Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 35. Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 36. Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 37. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 38. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 39. TIM 1, 2, 3, and 4 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 40. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 41. I
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 42. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 43. ADC accuracy for V
DDA
Table 44. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 45. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 46. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
apply, TA = -40 to 150 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
DD
apply, TA = -40 to 55 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
DD
= 5.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DD
= 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Doc ID 14952 Rev 6 5/89
List of tables STM8AF61xx, STM8AF62xx
Table 47. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 48. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 49. VFQFPN 32-lead very thin fine pitch quad flat no-lead package
mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 50. LQFP 48-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 77
Table 51. LQFP 32-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 79
Table 52. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx List of figures
List of figures
Figure 1. STM8A block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Flash memory organization of STM8A products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3. VFQFPN/LQFP 32-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4. LQFP 48-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. Register and memory map of STM8A products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 6. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 7. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 8. f
CPUmax
Figure 9. External capacitor C Figure 10. Typ. I Figure 11. Typ. I Figure 12. Typ. I Figure 13. Typ. I Figure 14. Typ. I Figure 15. Typ. I
Figure 16. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 17. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 18. Typical HSI frequency vs V Figure 19. Typical LSI frequency vs V Figure 20. Typical V Figure 21. Typical pull-up resistance R Figure 22. Typical pull-up current I Figure 23. Typ. V Figure 24. Typ. V Figure 25. Typ. V Figure 26. Typ. V Figure 27. Typ. V Figure 28. Typ. V Figure 29. Typ. V Figure 30. Typ. V Figure 31. Typ. V Figure 32. Typ. V Figure 33. Typical NRST V Figure 34. Typical NRST pull-up resistance R Figure 35. Typical NRST pull-up current I
Figure 36. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 37. SPI timing diagram where slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 38. SPI timing diagram where slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 39. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 40. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 41. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 42. VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5). . . . . . . . . . . . . . . 76
Figure 43. LQFP 48-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 44. LQFP 48-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 45. LQFP 32-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 46. LQFP 32-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 47. Ordering information scheme
versus V
DD(RUN)HSE
DD(RUN)HSE
DD(RUN)HSI
DD(WFI)HSE
DD(WFI)HSE
DD(WFI)HSI
IL
@ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
OL
@ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
OL
@ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
OL
@ VDD = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
OL
@ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OL
@ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OL
- V
DD
- V
DD
- VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DD
- V
DD
DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
vs. VDD @f
vs. f vs. VDD @ f vs. VDD @ f vs. f
vs. VDD @ f
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
EXT
@ VDD = 5.0 V, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . . 53
CPU
@ VDD = 5.0 V, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . . . 54
CPU
= 16 MHz, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . 53
CPU
= 16 MHz, peripheral = off . . . . . . . . . . . . . . . . . . . . . . . 54
CPU
= 16 MHz, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . 54
CPU
= 16 MHz, peripheral = off . . . . . . . . . . . . . . . . . . . . . . . 54
CPU
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DD
and VIH vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . 60
PU
vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
pu
@ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OH
@ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OH
@ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OH
and VIH vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IL
pu
(1)
vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
PU
vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Doc ID 14952 Rev 6 7/89
Introduction STM8AF61xx, STM8AF62xx

1 Introduction

This datasheet refers to the STM8AF61xx (STM8AF612x, STM8AF614x, STM8AF6166, and STM8AF6168) and STM8AF62xx products with 16 to 32 Kbytes of Flash program memory.
In the order code, the letter ‘F’ refers to product versions with data EEPROM and ‘H’ refers to product versions without data EEPROM. The identifiers ‘F’ and ‘H’ do not coexist in a given order code.
The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.
For complete information on the STM8A microcontroller memory, registers and
peripherals, please refer to STM8S and STM8A microcontroller families reference manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8 Flash programming manual (PM0051).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
8/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Description

2 Description

The STM8AF61xx and STM8AF62xx automotive 8-bit microcontrollers offer from 16 to 32 Kbytes of Flash program memory and integrated true data EEPROM. They are referred to as medium density STM8A devices in the STM8S and STM8A microcontroller families reference manual (RM0016).
All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.
Device performance is ensured by a clock frequency of up to 16 MHz CPU and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.
Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and and modular peripherals. Full documentation is offered with a wide choice of development tools.
Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5 V operating supply.
All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party in­circuit debugging tool.
Doc ID 14952 Rev 6 9/89
Product line-up STM8AF61xx, STM8AF62xx

3 Product line-up

²

Table 2. STM8AF62xx product line-up

Medium
Order code Package
density
Flash program memory
(bytes)
RAM
(bytes)
Data EE
(bytes)
10-bit
A/D ch.
Timers
(IC/OC/PWM)
Serial
interfaces
I/0
wakeup
pins
STM8AF/P6268
32 K 2 K 1 K
LQFP48
STM8AF/P6248 16 K 2 K 0.5 K
STM8AF/P6266
(7x7)
32 K 2 K 1 K
LQFP32
(7x7)
STM8AF/P6226 8 K 2 K 384
STM8AF/P6266
32 K 2 K 1 K 7 1x8-bit: TIM4
VFQFPN32
STM8AF/P6246 16 K 2 K 0.5 K
²

Table 3. STM8AF/H61xx product line-up

(1)
Medium
density
Order code Package
Flash
program
RAM
(bytes)
Data EE
(bytes)
memory
(bytes)
STM8AF/H/P6168
32 K 2 K 1 K
LQFP48
STM8AF/H/P6148 16 K 1 K 0.5 K
STM8AF/H/P6166
(7x7)
32 K 2 K 1 K
LQFP32
(7x7)
STM8AF/H/P6126 8 K 512 384
1. These devices are not recommended for new design.
10
7
10-bit
A/D ch.
10
7
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(9/9/9)
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(8/8/8)
3x16-bit: TIM1,
TIM2, TIM3
(8/8/8)
Timers
(IC/OC/PWM)
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(9/9/9)
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(8/8/8)
LIN(UART),
SPI, I²C
LIN(UART),
SPI, I²C
LIN(UART),
SPI, I²C
Serial
interfaces
LIN(UART),
SPI, I²C
LIN(UART),
SPI, I²C
38/35
25/23STM8AF/P6246 16 K 2 K 0.5 K
25/23
I/0
wakeup
pins
38/35
25/23STM8AF/H/P6146 16 K 1 K 0.5 K
10/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Block diagram
XTAL 1 - 16 MHz
RC int. 16 MHz
RC int. 128 kHz
STM8A CORE
Debug/SWIM
I
2
C
SPI
LINUART
16-bit general purpose
AWU tim er
Reset block
Reset
Clock controller
Detector
Clock to peripherals and core
10 Mbit/s
16 channels
Window WDG
IWDG
Up to 32 Kbytes
Up to 1 Kbytes
Up to 2 Kbytes
Boot ROM
10-bit ADC
9 CAPCOM
Reset
400 Kbit/s
Master/slave
Single wire
automatic
debug interf.
channels
program
Flash
16-bit advanced control
timer (TIM1)
8-bit basic timer
(TIM4)
data EEPROM
RAM
Up to
Address and data bus
resynchronization
timers (TIM2, TIM3)
POR
BOR

4 Block diagram

Figure 1. STM8A block diagram

1. Legend: ADC: Analog-to-digital converter beCAN: Controller area network BOR: Brownout reset I²C: Inter-integrated circuit multimaster interface IWDG: Independent window watchdog LINUART: Local interconnect network universal asynchronous receiver transmitter POR: Power on reset SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter Window WDG: Window watchdog
Doc ID 14952 Rev 6 11/89
Product overview STM8AF61xx, STM8AF62xx

5 Product overview

This section is intended to describe the family features that are actually implemented in the products covered by this datasheet.
For more detailed information on each feature please refer to the STM8S and STM8A microcontroller families reference manual (RM0016).

5.1 STM8A central processing unit (CPU)

The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency and performance. It contains 21 internal registers (six directly addressable in each execution context), 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

5.1.1 Architecture and registers

Harvard architecture
3-stage pipeline
32-bit wide program memory bus with single cycle fetching for most instructions
X and Y 16-bit index registers, enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter with 16-Mbyte linear memory space
16-bit stack pointer with access to a 64 Kbyte stack
8-bit condition code register with seven condition flags for the result of the last
instruction.

5.1.2 Addressing

20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for efficient implementation of local variables
and parameter passing

5.1.3 Instruction set

80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers
12/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Product overview

5.2 Single wire interface module (SWIM) and debug module (DM)

5.2.1 SWIM

The single wire interface module, SWIM, together with an integrated debug module, permits non-intrusive, real-time in-circuit debugging and fast memory programming. The interface can be activated in all device operation modes and can be connected to a running device (hot plugging).The maximum data transmission speed is 145 bytes/ms.

5.2.2 Debug module

The non-intrusive debugging module features a performance close to a full-flavored emulator. Besides memory and peripheral operation, CPU operation can also be monitored in real-time by means of shadow registers.
R/W of RAM and peripheral registers in real-time
R/W for all resources when the application is stopped
Breakpoints on all program-memory instructions (software breakpoints), except the
interrupt vector table
Two advanced breakpoints and 23 predefined breakpoint configurations

5.3 Interrupt controller

Nested interrupts with three software priority levels
21 interrupt vectors with hardware priority
Five vectors for external interrupts (up to 34 depending on the package)
Trap and reset interrupts

5.4 Flash program and data EEPROM

8 Kbytes to 32 Kbytes of medium density single voltage program Flash memory
Up to 1 Kbytes true (not emulated) data EEPROM
Read while write: writing in the data memory is possible while executing code in the
Flash program memory
The whole Flash program memory and data EEPROM are factory programmed with 0x00.

5.4.1 Architecture

The memory is organized in blocks of 128 bytes each
Read granularity: 1 word = 4 bytes
Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
Writing, erasing, word and block management is handled automatically by the memory
interface.
Doc ID 14952 Rev 6 13/89
Product overview STM8AF61xx, STM8AF62xx
Programmable area
Data
UBC area
Flash program memory area
Data memory area (1 Kbytes)
EEPROM
Remains write protected during IAP
memory
Write access possible for IAP
Option bytes
Flash program
memory
maximum 32 Kbytes

5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.4.3 Protection of user boot code (UBC)

If the user chooses to update the Flash program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.
In the STM8A a memory area of up to 32 Kbytes can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.
The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see Section 9: Option bytes on page 41).
Figure 2. Flash memory organization of STM8A products

5.4.4 Read-out protection (ROP)

The STM8A provides a read-out protection of the code and data memory which can be activated by an option byte setting (see the ROP option byte in section 10).
The read-out protection prevents reading and writing Flash program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory.
The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option
14/89 Doc ID 14952 Rev 6
byte area. This keyword must be entered via the SWIM interface to temporarily unlock the device.
STM8AF61xx, STM8AF62xx Product overview
If desired, the temporary unlock mechanism can be permanently disabled by the user through OPT6/NOPT6 option bytes.

5.5 Clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

5.5.1 Features

Clock sources:
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
1-16 MHz high-speed external crystal (HSE)
Up to 16 MHz high-speed user-external clock (HSE user-ext)
Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock
(16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
Safe clock switching: Clock sources can be changed safely on the fly in Run mode
through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core or individual peripherals.
Wakeup: In case the device wakes up from low-power modes, the internal RC
oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before Halt mode was entered.
Clock security system (CSS): The CSS permits monitoring of external clock sources
and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
Configurable main clock output (CCO): This feature permits to outputs a clock signal
for use by the application.

5.5.2 16 MHz high-speed internal RC oscillator (HSI)

Default clock after reset 2 MHz (16 MHz/8)
Fast wakeup time
User trimming
The register CLK_HSITRIMR with three trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.
For reason of compatibility with other devices from the STM8A family, a special mode with only two trimming bits plus sign can be selected. This selection is controlled with the HSITRIM0 bit in the option byte registers OPT3 and NOPT3.
Doc ID 14952 Rev 6 15/89
Product overview STM8AF61xx, STM8AF62xx

5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.
In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 16 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.
Frequency range: 1 MHz to 16 MHz
Crystal oscillation mode: preferred fundamental
I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 16 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.
In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).
Table 4. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers
Bit
PCKEN17 TIM1 PCKEN13 LINUART PCKEN27 Reserved PCKEN23 ADC
PCKEN16 TIM3 PCKEN12 Reserved PCKEN26 Reserved PCKEN22 AWU
PCKEN15 TIM2 PCKEN11 SPI PCKEN25 Reserved PCKEN21 Reserved
PCKEN14 TIM4 PCKEN10 I
Peripheral
clock
Bit
Peripheral
clock
2
C PCKEN24 Reserved PCKEN20 Reserved
Bit
Peripheral
clock
Bit
Peripheral
clock
16/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Product overview

5.6 Low-power operating modes

For efficient power management, the application can be put in one of four different low power modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.
Wait mode
In this mode, the CPU is stopped but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.
Active-halt mode with regulator on
In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in Active­halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
Active-halt mode with regulator off
This mode is the same as Active-halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
Halt mode
CPU and peripheral clocks are stopped, the main voltage regulator is powered off.
Wakeup is triggered by external event or reset.
In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

5.7 Timers

5.7.1 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications. The watchdog timer activity is controlled by the application program or option bytes. Once the watchdog is activated, it cannot be disabled by the user program without going through reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application timing perfectly. The application software must refresh the counter before time-out and during a limited time window. If the counter is refreshed outside this time window, a reset is issued.
Doc ID 14952 Rev 6 17/89
Product overview STM8AF61xx, STM8AF62xx
Independent watchdog timer
The independent watchdog peripheral can be used to resolve malfunctions due to hardware or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure. If the hardware watchdog feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the key register is written by software before the counter reaches the end of count.

5.7.2 Auto-wakeup counter

This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked by the internal 128 kHz internal low-frequency RC oscillator or external clock.
LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.

5.7.3 Beeper

This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be output on a pin. This is useful when audible sounds without interference need to be generated for use in the application.

5.7.4 Advanced control and general purpose timers

STM8A devices described in this datasheet, contain up to three 16-bit advanced control and general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can be used either as input compare, output compare or PWM channel. These timers are named TIM1, TIM2 and TIM3.
Table 5. Advanced control and general purpose timers
Timer
TIM1 16-bit Up/down 1 to 65536 4 3 Yes Yes Yes Yes
TIM2 16-bit Up
TIM3 16-bit Up
Counter
width
Counter
type
Prescaler
factor
n
2
n = 0 to 15
n
2
n = 0 to 15
Channels
3 None No No No No
2 None No No No No
Inverted outputs
Repetition
counter
trigger
unit
External
trigger
Break
input
18/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Product overview
TIM1: Advanced control timer
This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.
16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
Four independent CAPCOM channels configurable as input capture, output compare,
PWM generation (edge and center aligned mode) and single pulse mode output
Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In
the present implementation it is possible to trigger the ADC upon a timer event.
External trigger to change the timer behavior depending on external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break
TIM2 and TIM3: 16-bit general purpose timers
16-bit auto-reload up-counter
15-bit prescaler adjustable to fixed power of two ratios 1…32768
Timers with three or two individually configurable CAPCOM channels
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.7.5 Basic timer

The typical usage of this timer (TIM4) is the generation of a clock tick.
Table 6. TIM4
Timer
TIM4 8-bit Up
Counter
width
8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
Clock source: master clock
Interrupt source: 1 x overflow/update
Counter
type
Prescaler
factor
n
2
n = 0 to 7
Channels
Inverted outputs
Repetition
counter
trigger
unit
External
trigger
0 None No No No No
Break
input
Doc ID 14952 Rev 6 19/89
Product overview STM8AF61xx, STM8AF62xx

5.8 Analog-to-digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.
The ADC name differs between the datasheet and the STM8A/S reference manual (see
Ta bl e 7).

Table 7. ADC naming

Peripheral name in datasheet
Peripheral name in reference manual
(RM0016)
ADC ADC1
ADC features
10-bit resolution
Single and continuous conversion modes
Programmable prescaler: f
Conversion trigger on timer events and external events
Interrupt generation at end of conversion
Selectable alignment of 10-bit data in 2 x 8 bit result register
Shadow registers for data consistency
ADC input range: V
Analog watchdog
Schmitt-trigger on analog inputs can be disabled to reduce power consumption
Scan mode (single and continuous)
Dedicated result register for each conversion channel
Buffer mode for continuous conversion
SSA
MASTER
≤ VIN ≤ V
Note: An additional AIN12 analog input is not selectable in ADC scan mode or with analog
watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.
divided by 2 to 18
DDA

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and the STM8A/S reference manual (see
Ta bl e 8).

Table 8. Communication peripheral naming correspondence

Peripheral name in datasheet
LINUART UART2
20/89 Doc ID 14952 Rev 6
Peripheral name in reference manual
(RM0016)
STM8AF61xx, STM8AF62xx Product overview

5.9.1 Serial peripheral interface (SPI)

The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.
Maximum speed: 10 Mbit/s or f
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave mode/master mode management by hardware or software for both master and
MASTER
slave
Programmable clock polarity and phase
Programmable data order with MSB-first or LSB-first shifting
Dedicated transmission and reception flags with interrupt capability
SPI bus busy status flag
Hardware CRC feature for reliable communication:
CRC value can be transmitted as last byte in Tx mode
CRC error checking for last received byte
/2 both for master and slave

5.9.2 Inter integrated circuit (I2C) interface

The devices covered by this datasheet contain one I2C interface. The interface is available on all the supported packages.
2
I
C master features:
Clock generation
Start and stop generation
2
I
C slave features:
Programmable I
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz),
Fast speed (up to 400 kHz)
Status flags:
Transmitter/receiver mode flag
End-of-byte transmission flag
2
–I
C busy flag
Error flags:
Arbitration lost condition for master mode
Acknowledgement failure after address/data transmission
Detection of misplaced start or stop condition
Overrun/underrun if clock stretching is disabled
2
C address detection
Doc ID 14952 Rev 6 21/89
Product overview STM8AF61xx, STM8AF62xx
Interrupt:
Successful address/data communication
Error condition
Wakeup from Halt
Wakeup from Halt on address detection in slave mode

5.9.3 Universal asynchronous receiver/transmitter with LIN support (LINUART)

The devices covered by this datasheet contain one LINUART interface. The interface is available on all the supported packages. The LINUART is an asynchronous serial communication interface which supports extensive LIN functions tailored for LIN slave applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.1.
Detailed feature list:
LIN mode
Master mode:
LIN break and delimiter generation
LIN break and delimiter detection with separate flag and interrupt source for read back
checking.
Slave mode:
Autonomous header handling – one single interrupt per valid header
Mute mode to filter responses
Identifier parity error checking
LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)
clock source
Break detection at any time, even during a byte reception
Header errors detection:
Delimiter too short
Synch field error
Deviation error (if automatic resynchronization is enabled)
Framing error in synch field or identifier field
Header time-out
22/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Product overview
UART mode
Full duplex, asynchronous communications - NRZ standard format (mark/space)
High-precision baud rate generator
A common programmable transmit and receive baud rates up to f
Programmable data word length (8 or 9 bits) – 1 or 2 stop bits – parity control
Separate enable bits for transmitter and receiver
Error detection flags
Reduced power consumption mode
Multi-processor communication - enter mute mode if address match does not occur
Wakeup from mute mode (by idle line detection or address mark detection)
Two receiver wakeup modes:
MASTER
/16
Address bit (MSB)
Idle line

5.10 Input/output specifications

The product features four different I/O types:
Standard I/O 2 MHz
Fast I/O up to 10 MHz
High sink 8 mA, 2 MHz
True open drain (I
2
C interface)
To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.
The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitt­trigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.
STM8A I/Os are designed to withstand current injection. For a negative injection current of 4
mA, the resulting leakage current in the adjacent input does not exceed 1 µA. Thanks to
this feature, external protection diodes against current injection are no longer required.
Doc ID 14952 Rev 6 23/89
Pinouts and pin description STM8AF61xx, STM8AF62xx
I2C_SCL/AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
V
DDA
V
SSA
I2C_SDA/AIN5/PB5
32 31 3029 28 2726 25
24 23 22 21 20 19 18 17
9 101112131415
16
1 2 3 4 5 6 7 8
VCAP
V
DD
V
DDIO
AIN12/PF4
NRST
OSCIN/PA1
OSCOUT/PA2
V
SS
PC3 (HS)/TIM1_CH3 PC2 (HS)/TIM1_CH2 PC1 (HS)/TIM1_CH1 PE5/SPI_NSS
PC7/SPI_MISO PC6/SPI_MOSI PC5/SPI_SCK PC4 (HS)/TIM1_CH4
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1/TIM2_CH3
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2/CLK_CCO/TIM1_BRK
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP

6 Pinouts and pin description

6.1 Package pinouts

Figure 3. VFQFPN/LQFP 32-pin pinout

1. (HS) high sink capability.
24/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Pinouts and pin description
44 4342 4140 3938 37
36 35
34 33 32 31 30 29 28 27 26 25
24
23
12
13 14 1516 1718 1920 21 22
1 2 3 4 5 6 7 8 9 10 11
48 47 46 45
PA6
AIN8/PE7
PC1 (HS)/TIM1_CH1 PE5/SPI_NSS
PG1
AIN9/PE6
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1
PE0/CLK_CCO
PE1/I
2
C_SCL
PE2/I
2
C_SDA
PE3/TIM1_BKIN
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2
V
SSIO_2
PC5/SPI_SCK PC4 (HS)/TIM1_CH4 PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PG0 PC7/SPI_MISO PC6/SPI_MOSI V
DDIO_2
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
V
DDA
V
SSA
V
SS
VCAP
V
DD
V
DDIO_1
TIM2_CH3/PA3
PA4 PA5
NRST
OSCIN/PA1
OSCOUT/PA2
V
SSIO_1

Figure 4. LQFP 48-pin pinout

2. (HS) high sink capability.

Table 9. Legend/abbreviation

Type I= input, O = output, S = power supply
Level Input CM = CMOS (standard for all I/Os)
Output HS = High sink (8 mA)
Output speed O1 = Standard (up to 2 MHz)
O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset
Port and control configuration
Reset state
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase (i.e. “under reset”) and after internal reset release (i.e. at reset state).
Doc ID 14952 Rev 6 25/89
Pinouts and pin description STM8AF61xx, STM8AF62xx

Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description

Pin
number
Pin name
LQFP48
Input Output
Type
wpu
floating
Ext. interrupt
High sink
Speed
OD
PP
Main function
Default alternate
(after reset)
(1)(2)
function
VFQFPN/LQFP32
1 1 NRST I/O - X - - - - - Reset
(3)
22PA1/OSCIN
I/O X X- -O1XXPor t A1 Resonator/crystal in
3 3 PA2/OSCOUT I/O X XX-O1XXPort A2 Resonator/crystal out
4-V
54V
SSIO_1
SS
S - - - - - - - I/O ground
S - - - - - - - Digital ground
6 5 VCAP S - - - - - - - 1.8 V regulator capacitor
76V
87V
DD
DDIO_1
- 8 PF4/AIN12
(4)(5)
S - - - - - - - Digital power supply
S - - - - - - - I/O power supply
I/O X X-O1XXPort F4 Analog input 12
9 - PA3/TIM2_CH3 I/O X XX -O1XXPort A3 Timer 2 - channel 3
Alternate
function after
remap
[option bit]
TIM3_CH1 [AFR1]
10 - PA4 I/O X XX-O3XXPor t A4
11 - PA5 I/O X XX-O3XXPor t A5
12 - PA6 I/O X XX-O3XXPor t A6
13 9 V
14 10 V
DDA
SSA
S - - - - - - - Analog power supply
S - - - - - - - Analog ground
15 - PB7/AIN7 I/O X XX -O1XXPort B7 Analog input 7
16 - PB6/AIN6 I/O X XX -O1XXPort B6 Analog input 6
17 11 PB5/AIN5 I/O X XX -O1XXPort B5 Analog input 5
18 12 PB4/AIN4 I/O X XX -O1XXPort B4 Analog input 4
19 13 PB3/AIN3 I/O X XX -O1XXPort B3 Analog input 3
I [AFR6]
I [AFR6]
TIM1_ETR [AFR5]
TIM1_
20 14 PB2/AIN2 I/O X XX -O1XXPort B2 Analog input
NCC3 [AFR5]
TIM1_
21 15 PB1/AIN1 I/O X XX -O1XXPort B1 Analog input 1
NCC2 [AFR5]
TIM1_
22 16 PB0/AIN0 I/O X XX -O1XXPort B0 Analog input 0
NCC1 [AFR5]
2
C_SDA
2
C_SCL
26/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Pinouts and pin description
Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description
Pin
number
Pin name
LQFP48
Input Output
Typ e
wpu
floating
Ext. interrupt
High sink
OD
Speed
PP
Main function
Default alternate
(after reset)
(1)(2)
function
(continued)
VFQFPN/LQFP32
23 - PE7/AIN8 I/O X X-O1XXPort E7 Analog input 8
24 PE6/AIN9 I/O X XX -O1XXPort E7 Analog input 9
25 17 PE5/SPI_NSS I/O X XX -O1XXPort E5 SPI master/slave select —
26 18 PC1/TIM1_CH1 I/O X XXHSO3XXPort C1 Timer 1 - channel 1
27 19 PC2/TIM1_CH2 I/O X XXHSO3XXPort C2 Timer 1- channel 2
28 20 PC3/TIM1_CH3 I/O X XXHSO3XXPort C3 Timer 1 - channel 3
29 21 PC4/TIM1_CH4 I/O X XXHSO3XXPort C4 Timer 1 - channel 4
30 22 PC5/SPI_SCK I/O X XX O3XXPort C5 SPI clock
31 - V
32 - V
SSIO_2
DDIO_2
33 23 PC6/SPI_MOSI I/O X XX-O3XXPort C6
S - - - - - - - I/O ground
S - - - - - - - I/O power supply
SPI master out/ slave in
Alternate
function after
remap
[option bit]
34 24 PC7/SPI_MISO I/O X XX-O3XXPort C7 SPI master in/ slave out —
35 - PG0 I/O X X--O1XXPort G0 -—
36 - PG1 I/O X X--O1XXPort G1 -—
37 - PE3/TIM1_BKIN I/O X XX -O1XXPort E3 Timer 1 - break input
2
38 - PE2/I
39 - PE1/I
C_SDA I/O X -X-O1T
2
C_SCL I/O X -X-O1T
40 - PE0/CLK_CCO I/O X XX -O3XXPort E0
(6)
- Port E2 I2C data
(6)
- Port E1 I2C clock
Configurable clock output
TIM1_BKIN
41 25 PD0/TIM3_CH2 I/O X XXHSO3XXPort D0 Timer 3 - channel 2
[AFR3]/ CLK_CCO [AFR2]
42 26 PD1/SWIM
43 27 PD2/TIM3_CH1 I/O X XXHSO3XXPort D2 Timer 3 - channel 1
44 28 PD3/TIM2_CH2 I/O X XXHSO3XXPort D3 Timer 2 - channel 2
45 29
46 30
PD4/TIM2_CH1/ BEEP
PD5/ LINUART_TX
(7)
I/O X X XHSO4X XPort D1 SWIM data interface
TIM2_CH3 [AFR1]
ADC_ETR [AFR0]
I/O X XXHSO3XXPort D4 Timer 2 - channel 1
BEEP output [AFR7]
I/O X XX -O1XXPort D5 LINUART data transmit —
Doc ID 14952 Rev 6 27/89
Pinouts and pin description STM8AF61xx, STM8AF62xx
Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description
Pin
number
Input Output
(1)(2)
(continued)
Alternate
LQFP48
Pin name
Typ e
wpu
floating
Speed
High sink
Ext. interrupt
OD
PP
Main function
Default alternate
function
(after reset)
function after
remap
[option bit]
VFQFPN/LQFP32
47 31
48 32 PD7/TLI
1. Refer to Table 9 for the definition of the abbreviations.
2. Reset state is shown in bold.
3. In Halt/Active-halt mode this pad behaves in the following way:
4. On this pin, a pull-up resistor as specified in Table 37. I/O static characteristics is enabled during the reset phase of the
5. AIN12 is not selectable in ADC scan mode or with analog watchdog.
6. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, week pull-up, and protection diode to V
7. The PD1 pin is in input pull-up during the reset phase and after reset release.
8. If this pin is configured as interrupt pin, it will trigger the TLI.
PD6/ LINUART_RX
(8)
- the input/output path is disabled
- if the HSE clock is used for wakeup, the internal weak pull up is disabled
- if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used By managing the OR bit correctly, it must be ensured that the pad is not left floating during Halt/Active-halt.
product.
not implemented)
I/O X XX -O1XXPort D6
I/O X XX -O1XXPort D7 Top level interrupt
LINUART data receive
DD
are

6.2 Alternate function remapping

As shown in the rightmost column of Ta b le 10, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the STM8S and STM8A microcontroller families reference manual, RM0016).
Section 9: Option bytes on page 41. When the remapping option is active, the
28/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Memory and register map
Up to 1 Kbyte data EEPROM
HW registers
CPU/SWIM/Debug/ITC registers
IT vectors
Up to 32 Kbytes of
00 0000
RAM end
00 4000
00 4800
00 5000
00 581D
00 6000
00 6800
00 7F00
00 8000
Flash Program memory end
00 8080
Reserved
Reserved
stack
Up to 2 Kbytes RAM
00 4400
Reserved
Option bytes
00 4900
Reserved
2 Kbytes of Boot ROM
Flash program memory

7 Memory and register map

7.1 Memory map

Figure 5. Register and memory map of STM8A products

Table 11. Memory model for the devices covered in this datasheet

Flash program
memory size
Flash program
memory end
address
RAM size
RAM end
address
32K 0x00 0FFFF
8K 0x00 09FFF
Doc ID 14952 Rev 6 29/89
2K 0x00 07FF 0x00 060016K 0x00 0BFFF
Stack roll-over
address
Memory and register map STM8AF61xx, STM8AF62xx

7.2 Register map

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to the reference manual RM0016.

Table 12. I/O port hardware register map

Address Block Register label Register name
0x00 5000
PA_ODR Port A data output latch register 0x00
Reset
status
0x00 5001 PA_IDR Port A input pin value register 0xXX
0x00 5002 PA_DDR Port A data direction register 0x00
Por t A
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX
0x00 5007 PB_DDR Port B data direction register 0x00
Por t B
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0xXX
0x00 500C PC_DDR Port C data direction register 0x00
Por t C
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX
0x00 5011 PD_DDR Port D data direction register 0x00
Por t D
0x00 5012 PD_CR1 Port D control register 1 0x02
(1)
(1)
(1)
(1)
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX
0x00 5016 PE_DDR Port E data direction register 0x00
Por t E
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX
0x00 501B PF_DDR Port F data direction register 0x00
Por t F
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
30/89 Doc ID 14952 Rev 6
(1)
(1)
STM8AF61xx, STM8AF62xx Memory and register map
Table 12. I/O port hardware register map (continued)
Address Block Register label Register name
0x00 501E
PG_ODR Port G data output latch register 0x00
0x00 501F PG_IDR Port G input pin value register 0xXX
0x00 5020 PG_DDR Port G data direction register 0x00
Por t G
0x00 5021 PG_CR1 Port G control register 1 0x00
0x00 5022 PG_CR2 Port G control register 2 0x00
1. Depends on the external circuitry.

Table 13. General hardware register map

Address Block Register label Register name
0x00 505A
FLASH_CR1 Flash control register 1 0x00
status
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF
0x00 505D FLASH_FPR Flash protection register 0x00
0x00 505E FLASH_NFPR
Flash
Flash complementary protection
register
Reset
status
(1)
Reset
0xFF
0x00 505F FLASH_IAPSR
0x00 5060 to
0x00 5061
0x00 5062 Flash FLASH_PUKR
Flash in-application programming status register
Reserved area (2 bytes)
Flash Program memory unprotection register
0x40
0x00
0x00 5063 Reserved area (1 byte)
0x00 5064 Flash FLASH_DUKR Data EEPROM unprotection register 0x00
0x00 5065 to
0x00 509F
0x00 50A0
EXTI_CR1 External interrupt control register 1 0x00
Reserved area (59 bytes)
ITC
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 to
0x00 50B2
Reserved area (17 bytes)
0x00 50B3 RST RST_SR Reset status register 0xXX
0x00 50B4 to
0x00 50BF
0x00 50C0
CLK_ICKR Internal clock control register 0x01
Reserved area (12 bytes)
CLK
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
(1)
Doc ID 14952 Rev 6 31/89
Memory and register map STM8AF61xx, STM8AF62xx
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 50C3
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
0x00 50C7 CLK_PCKENR1 Peripheral clock gating register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF
0x00 50CB Reserved area (1 byte)
0x00 50CC
0x00 50CD CLK_SWIMCCR SWIM clock control register
0x00 50CE
to 0x00 50D0
0x00 50D1
0x00 50D2 WWDG_WR WWDR window register 0x7F
0x00 50D3 to
0x00 50DF
0x00 50E0
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
CLK
CLK
WWDG
IWDG
CLK_CMSR Clock master status register 0xE1
CLK_HSITRIMR HSI clock calibration trimming register 0x00
Reserved area (3 bytes)
WWDG_CR WWDG control register 0x7F
Reserved area (13 bytes)
IWDG_KR IWDG key register 0xXX
Reset
status
0bXXXX
XXX0
(2)
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF
0x00 50F0
0x00 50F1 AWU_APR
0x00 50F2 AWU_TBR AWU timebase selection register 0x00
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4 to
0x00 50FF
32/89 Doc ID 14952 Rev 6
AWU
AWU_CSR1 AWU control/status register 1 0x00
Reserved area (13 bytes)
AWU asynchronous prescaler buffer
Reserved area (12 bytes)
register
0x3F
STM8AF61xx, STM8AF62xx Memory and register map
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 5200
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
SPI
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0xFF
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0xFF
0x00 5208 to
0x00 520F
0x00 5210
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C own address register low 0x00
0x00 5214 I2C_OARH I2C own address register high 0x00
0x00 5215 Reserved area (1 byte)
0x00 5216 I2C_DR I2C data register 0x00
I2C
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x00
SPI_CR1 SPI control register 1 0x00
Reserved area (8 bytes)
I2C_CR1 I2C control register 1 0x00
Reset
status
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C clock control register low 0x00
0x00 521C I2C_CCRH I2C clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
0x00 521E to
0x00 523F
Doc ID 14952 Rev 6 33/89
Reserved area (24 bytes)
Memory and register map STM8AF61xx, STM8AF62xx
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 5240
0x00 5241 UART2_DR LINUART data register 0xXX
0x00 5242 UART2_BRR1 LINUART baud rate register 1 0x00
0x00 5243 UART2_BRR2 LINUART baud rate register 2 0x00
0x00 5244 UART2_CR1 LINUART control register 1 0x00
LINUART
0x00 5245 UART2_CR2 LINUART control register 2 0x00
0x00 5246 UART2_CR3 LINUART control register 3 0x00
0x00 5247 UART2_CR4 LINUART control register 4 0x00
0x00 5248 Reserved
0x00 5249 UART2_CR6 LINUART control register 6 0x00
0x00 524A to
0x00 524F
0x00 5250
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00
UART2_SR LINUART status register 0xC0
Reserved area (6 bytes)
TIM1_CR1 TIM1 control register 1 0x00
Reset
status
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00
0x00 525C TIM1_CCER1
0x00 525D TIM1_CCER2
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00
TIM1
TIM1 capture/compare enable register
1
TIM1 capture/compare enable register
2
0x00
0x00
34/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Memory and register map
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 5265
0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00
0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/compare register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x00
0x00 5270 to
0x00 52FF
0x00 5300
0x00 5301 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5302 TIM2_SR1 TIM2 status register 1 0x00
0x00 5303 TIM2_SR2 TIM2 status register 2 0x00
TIM1
TIM1_CCR1H TIM1 capture/compare register 1 high 0x00
Reserved area (147 bytes)
TIM2_CR1 TIM2 control register 1 0x00
Reset
status
0x00 5304 TIM2_EGR TIM2 event generation register 0x00
0x00 5305 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5306 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 5307 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00
0x00 5308 TIM2_CCER1
0x00 5309 TIM2_CCER2
0x00 530A TIM2_CNTRH TIM2 counter high 0x00
0x00 530B TIM2_CNTRL TIM2 counter low 0x00
00 530C0x TIM2_PSCR TIM2 prescaler register 0x00
0x00 530D TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 530E TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 530F TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5310 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5311 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0x00
0x00 5312 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5313 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00
TIM2
TIM2 capture/compare enable register
1
TIM2 capture/compare enable register
2
0x00
0x00
Doc ID 14952 Rev 6 35/89
Memory and register map STM8AF61xx, STM8AF62xx
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 5314 TIM2 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00
0x00 5315 to
0x00 531F
0x00 5320
0x00 5321 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5322 TIM3_SR1 TIM3 status register 1 0x00
0x00 5323 TIM3_SR2 TIM3 status register 2 0x00
0x00 5324 TIM3_EGR TIM3 event generation register 0x00
0x00 5325 TIM3_CCMR1 TIM3 capture/compare mode register 1 0x00
0x00 5326 TIM3_CCMR2 TIM3 capture/compare mode register 2 0x00
0x00 5327 TIM3_CCER1
0x00 5328 TIM3_CNTRH TIM3 counter high 0x00
0x00 5329 TIM3_CNTRL TIM3 counter low 0x00
0x00 532A TIM3_PSCR TIM3 prescaler register 0x00
0x00 532B TIM3_ARRH TIM3 auto-reload register high 0xFF
0x00 532C TIM3_ARRL TIM3 auto-reload register low 0xFF
TIM3
TIM3_CR1 TIM3 control register 1 0x00
Reserved area (11 bytes)
TIM3 capture/compare enable register
1
Reset
status
0x00
0x00 532D TIM3_CCR1H TIM3 capture/compare register 1 high 0x00
0x00 532E TIM3_CCR1L TIM3 capture/compare register 1 low 0x00
0x00 532F TIM3_CCR2H TIM3 capture/compare register 2 high 0x00
0x00 5330 TIM3_CCR2L TIM3 capture/compare register 2 low 0x00
0x00 5331 to
0x00 533F
0x00 5340
0x00 5341 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5342 TIM4_SR TIM4 status register 0x00
0x00 5343 TIM4_EGR TIM4 event generation register 0x00
0x00 5344 TIM4_CNTR TIM4 counter 0x00
0x00 5345 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5346 TIM4_ARR TIM4 auto-reload register 0xFF
0x00 5347 to
0x00 53DF
TIM4
TIM4_CR1 TIM4 control register 1 0x00
Reserved area (15 bytes)
Reserved area (185 bytes)
36/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Memory and register map
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 53E0
0x00 53E1 ADC _DB0RL ADC data buffer register 0 low 0x00
0x00 53E2 ADC _DB1RH ADC data buffer register 1 high 0x00
0x00 53E3 ADC _DB1RL ADC data buffer register 1 low 0x00
0x00 53E4 ADC _DB2RH ADC data buffer register 2 high 0x00
0x00 53E5 ADC _DB2RL ADC data buffer register 2 low 0x00
0x00 53E6 ADC _DB3RH ADC data buffer register 3 high 0x00
0x00 53E7 ADC _DB3RL ADC data buffer register 3 low 0x00
0x00 53E8 ADC _DB4RH ADC data buffer register 4 high 0x00
0x00 53E9 ADC _DB4RL ADC data buffer register 4 low 0x00
ADC
0x00 53EA ADC _DB5RH ADC data buffer register 5 high 0x00
0x00 53EB ADC _DB5RL ADC data buffer register 5 low 0x00
0x00 53EC ADC _DB6RH ADC data buffer register 6 high 0x00
0x00 53ED ADC _DB6RL ADC data buffer register 6 low 0x00
0x00 53EE ADC _DB7RH ADC data buffer register 7 high 0x00
0x00 53EF ADC _DB7RL ADC data buffer register 7 low 0x00
0x00 53F0 ADC _DB8RH ADC data buffer register 8 high 0x00
ADC _DB0RH ADC data buffer register 0 high 0x00
Reset
status
0x00 53F1 ADC _DB8RL ADC data buffer register 8 low 0x00
0x00 53F2 ADC _DB9RH ADC data buffer register 9 high 0x00
0x00 53F3 ADC _DB9RL ADC data buffer register 9 low 0x00
0x00 53F4 to
0x00 53FF
0x00 5400
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
ADC
0x00 5406 ADC_TDRH
0x00 5407 ADC_TDRL
0x00 5408 ADC _HTRH ADC high threshold register high 0xFF
0x00 5409 ADC_HTRL ADC high threshold register low 0x03
0x00 540A ADC _LTRH ADC low threshold register high 0x00
ADC _CSR ADC control/status register 0x00
Reserved area (12 bytes)
ADC Schmitt trigger disable register
high
ADC Schmitt trigger disable register
low
0x00
0x00
Doc ID 14952 Rev 6 37/89
Memory and register map STM8AF61xx, STM8AF62xx
Table 13. General hardware register map (continued)
Address Block Register label Register name
0x00 540B
ADC_LTRL ADC low threshold register low 0x00
status
0x00 540C ADC _AWSRH ADC watchdog status register high 0x00
0x00 540D ADC_AWSRL ADC watchdog status register low 0x00
ADC
0x00 540E ADC _AWCRH ADC watchdog control register high 0x00
0x00 540F ADC _AWCRH ADC watchdog control register low 0x00
0x00 5410 to
0x00 541F
1. Depends on the previous reset source.
2. Write only register.

Table 14. CPU/SWIM/debug module/interrupt controller registers

Reserved area (16 bytes)
Address Block Register label Register name
0x00 7F00
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x80
0x00 7F03 PCL Program counter low 0x00
Reset
Reset
status
0x00 7F04 XH X index register high 0x00
(1)
0x00 7F05 XL X index register low 0x00
CPU
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x17
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CC Condition code register 0x28
0x00 7F0B to
0x00 7F5F
Reserved area (85 bytes)
0x00 7F60 CPU CFG_GCR Global configuration register 0x00
0x00 7F70
ITC_SPR1 Interrupt software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF
ITC
0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF
0x00 7F76 to
0x00 7F79
Reserved area (4 bytes)
(2)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
38/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Memory and register map
Table 14. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register label Register name
0x00 7F81 to
0x00 7F8F
0x00 7F90
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
Reserved area (15 bytes)
status
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
DM
0x00 7F96 DM_CR1 DM debug module control register 1 0x00
0x00 7F97 DM_CR2 DM debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B to
0x00 7F9F
1. Accessible by debug module only
2. Product dependent value, see Figure 5: Register and memory map of STM8A products.
Reserved area (5 bytes)
Reset

Table 15. Temporary memory unprotection registers

Address Block Register label Register name
0x00 5800
Reset status
TMU_K1 Temporary memory unprotection key register 1 0x00
0x00 5801 TMU_K2 Temporary memory unprotection key register 2 0x00
0x00 5802 TMU_K3 Temporary memory unprotection key register 3 0x00
0x00 5803 TMU_K4 Temporary memory unprotection key register 4 0x00
0x00 5804 TMU_K5 Temporary memory unprotection key register 5 0x00
TMU
0x00 5805 TMU_K6 Temporary memory unprotection key register 6 0x00
0x00 5806 TMU_K7 Temporary memory unprotection key register 7 0x00
0x00 5807 TMU_K8 Temporary memory unprotection key register 8 0x00
0x00 5808 TMU_CSR
Temporary memory unprotection control and status
register
0x00
Doc ID 14952 Rev 6 39/89
Interrupt table STM8AF61xx, STM8AF62xx

8 Interrupt table

Table 16. STM8A interrupt table

Priority
Source
block
Description
Interrupt vector
address
Wakeup
from Halt
Comments
Reset Reset 0x00 6000 Yes Reset vector in ROM
TRAP SW interrupt 0x00 8004
0 TLI External top level interrupt 0x00 8008
1 AWU Auto-wakeup from Halt 0x00 800C Yes
Clock
2
controller
Main clock controller 0x00 8010
3 MISC Ext interrupt E0 0x00 8014 Yes Port A interrupts
4 MISC Ext interrupt E1 0x00 8018 Yes Port B interrupts
5 MISC Ext interrupt E2 0x00 801C Yes Port C interrupts
6 MISC Ext interrupt E3 0x00 8020 Yes Port D interrupts
7 MISC Ext interrupt E4 0x00 8024 Yes Port E interrupts
8 Reserved
9 Reserved
(1)
(1)
——
——
10 SPI End of transfer 0x00 8030 Yes
11 Timer 1
Update/overflow/ trigger/break
0x00 8034
12 Timer 1 Capture/compare 0x00 8038
13 Timer 2 Update/overflow 0x00 803C
14 Timer 2 Capture/compare 0x00 8040
15 Timer 3 Update/overflow 0x00 8044
16 Timer 3 Capture/compare 0x00 8048
17 Reserved
18 Reserved
2
19 I
C I
(1)
(1)
2
C interrupts 0x00 8054 Yes
——
——
20 LINUART Tx complete/error 0x00 8058
21 LINUART Receive data full reg. 0x00 805C
22 ADC End of conversion 0x00 8060
23 Timer 4 Update/overflow 0x00 8064
24 EEPROM
1. All reserved and unused interrupts must be initialized with ‘IRET’ for robust programming.
End of Programming/ Write in not allowed area
40/89 Doc ID 14952 Rev 6
0x00 8068
STM8AF61xx, STM8AF62xx Option bytes

9 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Each option byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP and UBC options that can only be toggled in ICP mode (via SWIM).
Refer to the STM8 Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

Table 17. Option bytes

Ta bl e 17: Option bytes below.
Addr.
0x00 4800
0x00 4801
0x00 4802
0x00 4803
0x00 4804
0x00 4805
0x00 4806
0x00 4807
0x00 4808
0x00 4809
0x00 480A
Option
name
Read-out
protection
(ROP)
User boot
code
(UBC)
Alternate
function
remapping
(AFR)
Watchdog
option
Clock
option
HSE clock
startup
Option
byte no.
OPT0 ROP[7:0] 0x00
OPT1 Reserved UBC[5:0] 0x00
NOPT1 Reserved NUBC[5:0] 0xFF
OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00
NOPT2
OPT3 Reserved
NOPT3 Reserved
OPT4 Reserved
NOPT4 Reserved
OPT5 HSECNT[7:0] 0x00
NOPT5 NHSECNT[7:0] 0xFF
765 4 3 2 1 0
NAFR7NAFR6NAFR5NAFR4NAFR3NAFR2NAFR1NAFR
Option bits Factory
0
16MHZ
TRIM0
N16MHZ
TRIM0
LSI
_EN
NLSI
_EN
EXT CLK
NEXT
CLK
IWDG
_HW
NIWDG
_HW
CKAWU
SEL
NCKAW
USEL
WWDG
_HW
NWWD
G_HW
PRSC1PRS
NPR
SC1
WWDG
_HALT
NWWG
_HALT
C0
NPR
SC0
default setting
0xFF
0x00
0xFF
0x00
0xFF
Doc ID 14952 Rev 6 41/89
Option bytes STM8AF61xx, STM8AF62xx
Table 17. Option bytes (continued)
Addr.
0x00 480B
0x00
480C
0x00
480D
0x00 480E
0x00 480F
0x00 4810
0x00 4811
0x00 4812
0x00 4813
0x00 4814
0x00 4815
Option
name
TMU
Flash wait
states
TMU
Option
byte no.
765 4 3 2 1 0
Option bits Factory
default setting
OPT6 TMU[3:0] 0x00
NOPT6 NTMU[3:0] 0xFF
OPT7 Reserved
NOPT7 Reserved
WAIT
STATE
NWAIT
STATE
0x00
0xFF
Reserved
OPT8 TMU_KEY 1 [7:0] 0x00
OPT9 TMU_KEY 2 [7:0] 0x00
OPT10 TMU_KEY 3 [7:0] 0x00
OPT11 TMU_KEY 4 [7:0] 0x00
OPT12 TMU_KEY 5 [7:0] 0x00
OPT13 TMU_KEY 6 [7:0] 0x00
0x00 4816
0x00 4817
0x00 4818
OPT14 TMU_KEY 7 [7:0] 0x00
OPT15 TMU_KEY 8 [7:0] 0x00
OPT16 TMU_MAXATT [7:0] 0xC7
0x00 4819
to
Reserved
487D
0x00 487E
0x00
Boot-
loader
487F
1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no effect on EMC reset.
OPT17 BL [7:0] 0x00
(1)
NOPT17 NBL[7:0] 0xFF
42/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Option bytes

Table 18. Option byte description

Option byte no. Description
ROP[7:0]: Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
OPT0
OPT1
OPT2
Note: Refer to the STM8S and STM8A microcontroller families reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
UBC[5:0]: User boot code area
0x00: No UBC, no write-protection 0x01: Page 0 to 1 defined as UBC, memory write-protected 0x02: Page 0 to 3 defined as UBC, memory write-protected 0x03 to 0x3F: Pages 4 to 63 defined as UBC, memory write-protected
Note: Refer to the STM8S and STM8A microcontroller families reference manual (RM0016) section on Flash/EEPROM write protection for more details.
AFR7: Alternate function remapping option 7
0: Port D4 alternate function = TIM2_CH1 1: Port D4 alternate function = BEEP
AFR6: Alternate function remapping option 6
0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = I
2
C_SDA, port B4 alternate function =
I2C_SCL.
AFR5: Alternate function remapping option 5
0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B0 alternate function = AIN0. 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH1N.
AFR4: Alternate function remapping option 4
Reserved, bit must be kept at "0"
AFR3: Alternate function remapping option 3
0: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = TIM1_BKIN
AFR2: Alternate function remapping option 2
0: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = CLK_CCO
Note: AFR2 option has priority over AFR3 if both are activated
AFR1: Alternate function remapping option 1
0: Port A3 alternate function = TIM2_CH3, port D2 alternate function TIM3_CH1. 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM2_CH3.
AFR0: Alternate function remapping option 0
0: Port D3 alternate function = TIM2_CH2 1: Port D3 alternate function = ADC_ETR
Doc ID 14952 Rev 6 43/89
Option bytes STM8AF61xx, STM8AF62xx
Table 18. Option byte description (continued)
Option byte no. Description
HSITRIM: Trimming option for 16 MHz internal RC oscillator
0: 3-bit on-the-fly trimming (compatible with devices based on the 128K silicon)
1: 4-bit on-the-fly trimming
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3
IWDG_HW: Independent watchdog
0: IWDG independent watchdog activated by software 1: IWDG independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on Halt
0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
CKAWUSEL: Auto-wakeup unit/clock
0: LSI clock source selected for AWU
OPT4
OPT5
OPT6
OPT7 Reserved
OPT8
OPT9
OPT10
OPT11
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0]: AWU clock prescaler
00: Reserved 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
TMU[3:0]: Enable temporary memory unprotection
0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
TMU_KEY 1 [7:0]: Temporary unprotection key 0
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_KEY 2 [7:0]: Temporary unprotection key 1
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_KEY 3 [7:0]: Temporary unprotection key 2
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_KEY 4 [7:0]: Temporary unprotection key 3
Temporary unprotection key: Must be different from 0x00 or 0xFF
44/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Option bytes
Table 18. Option byte description (continued)
Option byte no. Description
OPT12
OPT13
OPT14
OPT15
OPT16
OPT17
TMU_KEY 5 [7:0]: Temporary unprotection key 4
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_KEY 6 [7:0]: Temporary unprotection key 5
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_KEY 7 [7:0]: Temporary unprotection key 6
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_KEY 8 [7:0]: Temporary unprotection key 7
Temporary unprotection key: Must be different from 0x00 or 0xFF
TMU_MAXATT [7:0]: TMU access failure counter
TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte).
When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased.
BL [7:0]: Bootloader enable
If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).
Doc ID 14952 Rev 6 45/89
Electrical characteristics STM8AF61xx, STM8AF62xx
50 pF
STM8A pin

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to VSS.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100 % of the devices with an ambient temperature at T T
(given by the selected temperature range).
Amax
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

= -40 °C, TA = 25 °C, and TA =
A
Unless otherwise specified, typical data are based on TA = 25 °C, V given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.
Figure 6. Pin loading conditions
= 5.0 V. They are
DD
.
46/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
V
IN
STM8A pin

10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.
Figure 7. Pin input voltage

10.2 Absolute maximum ratings

Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 19. Voltage characteristics

Symbol Ratings Min Max Unit
V
DDx
- V
Supply voltage (including V
SS
DDA and VDDIO
Input voltage on true open drain pins (PE1, PE2)
V
IN
|V
- VDD| Variations between different power pins - 50
DDx
- VSS| Variations between all the different ground pins - 50
|V
SSx
Input voltage on any other pin
(2)
(1)
)
(2)
-0.3 6.5 V
V
SS
V
SS
- 0.3
- 0.3 V
DD
6.5
+ 0.3
see Absolute maximum ratings
V
ESD
Electrostatic discharge voltage
(electrical sensitivity) on
page 72
1. All power (VDD, V external power supply
2. I
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by V pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
DDIO
, V
) and ground (VSS, V
DDA
> VDD while a negative injection is induced by V
IN
SSIO
, V
) pins must always be connected to the
SSA
value. A positive
INJ(PIN)
< VSS. For true open-drain
IN
V
mV
Doc ID 14952 Rev 6 47/89
Electrical characteristics STM8AF61xx, STM8AF62xx

Table 20. Current characteristics

Symbol Ratings Max. Unit
I
VDDIO
I
VSSIO
Total current into V
Total current out of V
power lines (source)
DDIO
ground lines (sink)
SS IO
Output current sunk by any I/O and control pin 20
I
IO
I
I
1. All power (VDD, V
(4)
INJ(PIN)
INJ(TOT)
external supply.
Output current source by any I/Os and control pin -20
Injected current on any pin ±10
Sum of injected currents 50
, V
DDIO
) and ground (VSS, V
DDA
SSIO
, V
SSA
2. The total limit applies to the sum of operation and injected currents.
3. V
4. This condition is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the

Table 21. Thermal characteristics

includes the sum of the positive injection currents. V
DDIO
currents.
injection current must be limited externally to the I while a negative injection is induced by V current allowed and the corresponding VIN maximum must always be respected.
< VSS. For true open-drain pads, there is no positive injection
IN
value. A positive injection is induced by V
INJ(PIN)
Symbol Ratings Value Unit
(1)(2)(3)
(1)(2)(3)
100
100
) pins must always be connected to the
includes the sum of the negative injection
SSIO
IN
mA
> VDD
T
STG
T
J

Table 22. Operating lifetime

Storage temperature range −65 to 150
Maximum junction temperature 160
(1)
Symbol Ratings Value Unit
40 to 125 °C Grade 1
OLF Conforming to AEC-Q100 rev G
40 to 150 °C Grade 0
1. For detailed mission profile analysis, please contact your local ST Sales Office.
°C
48/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics

10.3 Operating conditions

Table 23. General operating conditions

Symbol Parameter Conditions Min Max Unit
f
CPU
V
DD/VDDIO
V
CAP
Internal CPU clock frequency TA = -40 °C to 150 °C 0 16 MHz
Standard operating voltage - 3.0 5.5 V
C
: capacitance of external
EXT
capacitor
(1)
ESR of external capacitor
at 1 MHz
(2)
470 3300 nF
-0.3
ESL of external capacitor - 15 nH
LQFP32 - 85
P
D
Power dissipation (all temperature ranges)
LQFP48 - 88
Suffix A
85
Suffix B 105
T
A
Ambient temperature
Suffix C 125
Suffix D
(3)
150
-40
Suffix A 90
Suffix B 110
T
J
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.
2. This frequency of 1 MHz as a condition for V
3. Available on STM8AF62xx devices only.
Junction temperature range
Suffix C 130
Suffix D
parameters is given by design of internal regulator.
CAP
(3)
155
Ω
mWVFQFPN32 - 200
°C
Doc ID 14952 Rev 6 49/89
Electrical characteristics STM8AF61xx, STM8AF62xx
f
CPU
[MHz]
Supply voltage [V]
24
12
8
4 0
3.0 4.0 5.0
Functionality
Functionality guaranteed
@ T
A
-40 to 150 °C
not guaranteed
in this area
16
5.5
Figure 8. f
1. This figure is valid only for STM8AF62xx devices.

Table 24. Operating conditions at power-up/power-down

CPUmax
versus V
DD
Symbol Parameter Conditions Min
(1)
2
(1)
2
t
VDD
VDD rise time rate -
VDD fall time rate -
Reset release delay VDD rising - 3 - ms
t
TEMP
V
IT+
V
IT-
V
HYS(BOR)
1. Guaranteed by design, not tested in production
2. If VDD is below 3 V, the code execution is guaranteed above the V kept. The EEPROM programming sequence must not be initiated.
Reset generation delay V
Power-on reset threshold
(2)
Brown-out reset threshold
Brown-out reset hysteresis
falling - 3 - µs
DD
- 2.65 2.8 2.95
- 2.58 2.73 2.88
--
and V
IT-
Typ
Max Unit
-
-
(1)
70
thresholds. RAM content is
IT+
-mV
µs/V
V
50/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
C
Rleak
ESR ESL

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C V
CAP
pin. C
is specified in Ta bl e 23. Care should be taken to limit the series inductance
EXT
to less than 15 nH.
Figure 9. External capacitor C
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
EXT

10.3.2 Supply current characteristics

The current consumption is measured as described in Figure 6 on page 46 and Figure 7 on
page 47.
If not explicitly stated, general conditions of temperature and voltage apply.
Table 25. Total current consumption in Run, Wait and Slow mode.
General conditions for V
Symbol Parameter Conditions Typ Max Unit
All peripherals
Supply
(1)
I
DD(RUN)
current in Run mode
Supply
(1)
I
DD(RUN)
current in Run mode
Supply
(1)
I
DD(WFI)
current in Wait mode
Supply
I
DD(SLOW)
(1)
current in Slow mode
1. The current due to I/O utilization is not taken into account in these values.
2. Values not tested in production. Design guidelines only.
clocked, code executed from Flash program memory, HSE external clock (without resonator)
All peripherals clocked, code executed from RAM and EEPROM, HSE external clock (without resonator)
CPU stopped, all peripherals off, HSE external clock
scaled down,
f
CPU
all peripherals off, code executed from RAM
apply, TA = −40 to 150 °C
DD
= 16 MHz 7.4 14
f
CPU
= 8 MHz 4.0
f
CPU
f
= 4 MHz 2.4
CPU
f
= 2 MHz 1.5 2.5
CPU
= 16 MHz 3.7 5.0
f
CPU
= 8 MHz 2.2
f
CPU
f
= 4 MHz 1.4
CPU
f
= 2 MHz 1.0 1.5
CPU
f
= 16 MHz 1.65 2.5
CPU
= 8 MHz 1.15
f
CPU
f
= 4 MHz 0.90
CPU
f
= 2 MHz 0.80 1.5
CPU
Ext. clock 16 MHz
= 125 kHz
f
CPU
LSI internal RC
= 128 kHz
f
CPU
7.4
4.1
3.0
2.0
1.9
1.6
1.50 1.95
1.50
1.80
(2)
(2)
(2)
(2)
(2)
(2)
(2)
EXT
to the
mA
Doc ID 14952 Rev 6 51/89
Electrical characteristics STM8AF61xx, STM8AF62xx
Table 26. Total current consumption in Halt and Active-halt modes.
General conditions for V
apply, TA = −40 to 55 °C
DD
Conditions
Symbol Parameter
Main
voltage
regulator
(1)
(MVR)
Flash
mode
Clock source and
(2)
temperature
condition
specific
Clocks stopped 5
I
DD(H)
Supply current in Halt mode Off
Power-
down
Clocks stopped,
TA = 25 °C
Ext. clock 16 MHz
Supply current in Active-halt mode with regulator on
On
Power-
down
f
MASTER
= 125 kHz
LSI clock 128 kHz 150
I
DD(AH)
Supply current in Active-halt mode with regulator off
Off
Power-
down
LSI clock 128 kHz 25
LSI clock 128 kHz,
TA = 25 °C
t
WU(AH)
Wakeup time from Active­halt mode with regulator on
Wakeup time from Active­halt mode with regulator off
On
Operating
mode
= -40 to 150 °C
T
A
Off 50
Typ Max Unit
(3)
35
525
770
900
(3)
µA
(3)
230
(3)
42
25 30
10
30
(3)
µs
(3)
80
1. Configured by the REGAH bit in the CLK_ICKR register.
2. Configured by the AHALT bit in the FLASH_CR1 register.
3. Data based on characterization results. Not tested in production.
Current consumption for on-chip peripherals
Table 27. Oscillator current consumption
Symbol Parameter Conditions Typ
Quartz or
I
DD(OSC)
I
DD(OSC)
1. During startup, the oscillator current consumption may reach 6 mA.
2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small Rm value. Refer to crystal manufacturer for more details
3. Informative data.
HSE oscillator current consumption
HSE oscillator current consumption
(2)
(2)
ceramic
resonator,
CL = 33 pF
= 5 V
V
DD
Quartz or
ceramic
resonator,
CL = 33 pF
= 3.3 V
V
DD
= 24 MHz 1 2.0
f
OSC
f
= 16 MHz 0.6 -
OSC
f
= 8 MHz 0.57 -
OSC
f
= 24 MHz 0.5 1.0
OSC
f
= 16 MHz 0.25 -
OSC
= 8 MHz 0.18 -
f
OSC
Max
(3)
(3)
(1)
Unit
mA
52/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
0
1
2
3
4
5
6
7
8
9
10
2.533.544.555.56
V
DD
[V]
I
DD(RUN)HSE
[mA]
25°C
85°C
12 5 °C
0
1
2
3
4
5
6
7
8
9
10
0 5 10 1 5 20 25 30
fcpu [MHz]
I
DD(RUN)HSE
[mA]
25°C
85°C
12 5 °C
Table 28. Programming current consumption
Symbol Parameter Conditions Typ Max Unit
VDD = 5 V, -40 °C to 150 °C,
I
DD(PROG)
Table 29. Typical peripheral current consumption VDD = 5.0 V
Programming current
erasing and programming data
or Flash program memory
1.0 1.7 mA
(1)
f
Symbol Parameter
I
DD(TIM1)
I
DD(TIM2)
I
DD(TIM3)
I
DD(TIM4)
I
DD(LINUART)
I
DD(SPI)
I
DD(I2C)
I
DD(AWU)
I
DD(TOT_DIG)
I
DD(ADC)
1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital supply voltage, the values are similar in the full supply voltage range.
2. Data based on a differential IDD measurement between no peripheral clocked and a single active peripheral. This measurement does not include the pad toggling consumption.
TIM1 supply current
TIM2 supply current
TIM3 supply current
TIM4 supply current
LINUART supply current
SPI supply current
I2C supply current
AWU supply current
All digital peripherals on 0.22 1
ADC supply current when converting
(3)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
Typ.
2 MHz
0.03 0.23
0.02 0.12
0.01 0.1
0.004 0.03
0.03 0.11
0.01 0.04
0.02 0.06
0.003 0.02
0.93 0.95
master
=
Typ. f
master
=
16 MHz
3. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions.
Current consumption curves
Unit
mA
Figure 10 to Figure 15 show typical current consumption measured with code executing in
RAM.
Figure 10. Typ. I
DD(RUN)HSE
@f
= 16 MHz, peripheral = on
CPU
vs. VDD
Figure 11. Typ. I
DD(RUN)HSE
vs. f
CPU
@ VDD = 5.0 V, peripheral = on
Doc ID 14952 Rev 6 53/89
Electrical characteristics STM8AF61xx, STM8AF62xx
0
1
2
3
4
2.5 3.5 4.5 5.5 6.5
VDD [V]
IDD(RUN)HSI [mA]
25°C 85°C 125°C
0
1
2
3
4
5
6
2.5 3.5 4.5 5.5 6.5
VDD [V]
IDD(WFI)HSE [mA]
25°C 85°C 125°C
0
1
2
3
4
5
6
0 5 10 15 20 25 30
fcpu [MHz]
I
DD(WFI)HSE
[mA]
25°C
85°C
12 5 °C
0
0.5
1
1.5
2
2.5
2.5 3 3.5 4 4. 5 5 5.5 6
V
DD
[V]
I
DD(WFI)HSI
[mA]
25°C
85°C
12 5 °C
Figure 12. Typ. I
@ f
CPU
Figure 14. Typ. I
@ VDD = 5.0 V, peripheral = on
DD(RUN)HSI
vs. VDD
= 16 MHz, peripheral = off
DD(WFI)HSE
vs. f
CPU
Figure 13. Typ. I
@ f
CPU
Figure 15. Typ. I
@ f
CPU
DD(WFI)HSE
vs. V
DD
= 16 MHz, peripheral = on
DD(WFI)HSI
vs. V
DD
= 16 MHz, peripheral = off

10.3.3 External clock sources and timing characteristics

HSE user external clock
Subject to general operating conditions for VDD and TA.
Table 30. HSE user external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEdHL
V
HSEH
V
HSEL
I
LEAK_HSE
1. In CSS is used, the external clock must have a frequency above 500 kHz.
54/89 Doc ID 14952 Rev 6
User external clock source frequency
TA is -40 to
150 °C
Comparator hysteresis - 0.1 x V
OSCIN input pin high level voltage
OSCIN input pin low level voltage
OSCIN input leakage current
V
- 0.7 x V
-V
< V
IN
< V
DD
SS
(1)
0
DD
DD
SS
-16MHz
--
-V
- 0.3 x V
DD
DD
-1 - +1 µA
V
STM8AF61xx, STM8AF62xx Electrical characteristics
OSCIN
f
HSE
External clock
STM8A
source
V
HSEL
V
HSEH
OSCOUT
OSCIN
f
HSE
to core
C
L1
C
L2
R
F
STM8A
Resonator
Current control
g
m
R
m
C
m
L
m
C
O
Resonator
Figure 16. HSE external clock source
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 16 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).
Table 31. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
R
F
C
L1/CL2
g
m
t
SU(HSE)
1. The oscillator needs two load capacitors, CL1 and CL2, to act as load for the crystal. The total load capacitance (C (C
* CL2)/(CL1 + CL2). If CL1 = CL2, C
L1
2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is reached. It can vary with the crystal type that is used.
Feedback resistor - - 220 - kΩ
(1)
Recommended load capacitance - - - 20 pF
Oscillator transconductance - 5 - - mA/V
is
(2)
Startup time
= CL1 / 2. Some oscillators have built-in load capacitors, CL1 and CL2.
load
V
DD
stabilized
-2.8 -ms
load
) is
Figure 17. HSE oscillator circuit diagram
Doc ID 14952 Rev 6 55/89
Electrical characteristics STM8AF61xx, STM8AF62xx
gmg
mcrit
»
g
mcrit
2 Π× HSE
f
×()
2
Rm× 2Co C+()
2
=
HSE oscillator critical gm formula
The crystal characteristics have to be checked with the following formula:
where g
can be calculated with the crystal parameters as follows:
mcrit
Rm: Notional resistance (see crystal specification)
: Notional inductance (see crystal specification)
L
m
: Notional capacitance (see crystal specification)
C
m
Co: Shunt capacitance (see c
= C
C
L1
= C: Grounded external capacitance
L2
rystal specification)

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for VDD and TA.
High speed internal RC oscillator (HSI)
Table 32. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSI
ACC
t
su(HSI)
1. Depending on option byte setting (OPT3 and NOPT3)
2. Guaranteed by characterization, not tested in production
Frequency - 16 - MHz
HSI oscillator user trimming accuracy
HS
HSI oscillator accuracy (factory calibrated)
Trimmed by the application for any V
and TA
DD
conditions
V
= 3.0 V VDD ≤ 5.5 V,
DD
-40 °C ≤ T
150 °C
A
HSI oscillator wakeup time - - 2
(1)
-1
-0.5
(1)
-1
-0.5
-5 - 5
(1)
(2)
(1)
%
µs
56/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
-3%
-2%
-1%
0%
1%
2%
3%
2.5 3 3.5 4 4.5 5 5.5 6
V
DD
[V]
HSI frequency variation [%]
-40°C
25°C
85°C
-3%
-2%
-1%
0%
1%
2%
3%
2.5 3 3.5 4 4.5 5 5.5 6 V
DD
[V]
LSI frequency variation [%]
Figure 18. Typical HSI frequency vs V
DD
Low speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Table 33. LSI oscillator characteristics
125°C
Symbol Parameter Conditions Min Typ Max Unit
f
LSI
t
su(LSI)
1. Data based on characterization results, not tested in production.
Figure 19. Typical LSI frequency vs V
Frequency - 112 128 144 kHz
LSI oscillator wakeup time - - - 7
DD
(1)
25°C
µs
Doc ID 14952 Rev 6 57/89
Electrical characteristics STM8AF61xx, STM8AF62xx

10.3.5 Memory characteristics

Flash program memory/data EEPROM memory
General conditions: TA = -40 to 150 °C.
Table 34. Flash program memory/data EEPROM memory
Symbol Parameter Conditions Min Typ Max Unit
V
DD
V
DD
Operating voltage (all modes, execution/write/erase)
Operating voltage (code execution)
f
is 0 to 16 MHz
CPU
with 0 ws
f
is 0 to 16 MHz
CPU
with 0 ws
3.0 - 5.5
2.6 - 5.5
Standard programming time (including erase) for byte/word/block
t
prog
(1 byte/4 bytes/128 bytes)
Fast programming time for 1 block (128 bytes)
t
erase
Table 35. Flash program memory
Erase time for 1 block (128 bytes) - - 3 3.3 ms
--66.6
--33.3
Symbol Parameter Condition Min Max Unit
T
WE
N
WE
t
RET
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a write/erase operation addresses a single byte.
Table 36. Data memory
Temperature for writing and erasing - -40 150 °C
Flash program memory endurance (erase/write cycles)
(1)
Data retention time
TA = 25 °C 1000 - cycles
T
= 25 °C 40 -
A
= 55 °C 20 -
T
A
years
V
ms
Symbol Parameter Condition Min Max Unit
T
WE
N
WE
t
RET
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a
2. More information on the relationship between data retention time and number of write/erase cycles is
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.
Temperature for writing and erasing -40 150 °C
Data memory endurance (erase/write cycles)
(1)
T
Data retention time
write/erase operation addresses a single byte.
available in a separate technical document.
58/89 Doc ID 14952 Rev 6
TA = 25 °C 300 k -
= -40°C to 125 °C 100 k
A
T
= 25 °C 40
A
= 55 °C 20
T
A
(2)(3)
(2)(3)
(2)
cycles
-
­years
-
STM8AF61xx, STM8AF62xx Electrical characteristics

10.3.6 I/O port pin characteristics

General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.
Table 37. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
IL
V
IH
V
hys
V
OH
Input low level voltage -0.3 V 0.3 x V
Input high level voltage 0.7 x V
Hysteresis
(1)
Standard I/0, V
I = 3 mA
DD
= 5 V,
-
V
- 0.5 V - -
DD
DD
0.1 x V
DD
VDD + 0.3 V
-
Output high level voltage
Standard I/0, VDD = 3 V,
I = 1.5 mA
V
- 0.4 V - -
DD
DD
High sink and true open
drain I/0, V
DD
= 5 V
--0.5
I = 8 mA
V
OL
R
pu
, t
t
R
I
lkg
Output low level voltage
Pull-up resistor VDD = 5 V, V
Rise and fall time
F
(10% - 90%)
Digital input pad leakage current
= 5 V
DD
I = 3 mA
Standard I/0, V
DD
= 3 V
I = 1.5 mA
= V
IN
SS
Fast I/Os
Load = 50 pF
Standard and high sink I/Os
Load = 50 pF
Fast I/Os
Load = 20 pF
Standard and high sink I/Os
Load = 20 pF
V
V
IN
V
DD
SS
--0.6
--0.4
35 50 65 kΩ
20
50
(2)
(2)
(2)
(2)
--35
- - 125
--±1µA
VStandard I/0, V
ns
V
V
IN
IN
V
V
DD
DD
- - ±250
- - ±500
(3)
V
SS
I
lkg ana
Analog input pad leakage current
-40 °C < TA < 125 °C
V
SS
-40 °C < TA < 150 °C
I
lkg(inj)
I
DDIO
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
Leakage current in adjacent I/O
(3)
Total current on either V
or V
DDIO
SSIO
Injection current ±4 mA - - ±1
Including injection currents - - 60 mA
Doc ID 14952 Rev 6 59/89
nA
µA
Electrical characteristics STM8AF61xx, STM8AF62xx
0
1
2
3
4
5
6
2.5 3 3.5 4 4.5 5 5.5 6 V
DD
[V]
V
IL
/ V
IH
[V]
-40°C
25°C
85°C
125°C
30
35
40
45
50
55
60
2.53 3.54 4.55 5.56 V
DD
[V]
Pull-Up resistance [k ohm]
-40°C
25°C
85°C
125°C
2. Guaranteed by design.
3. Data based on characterization results, not tested in production.
Figure 20. Typical VIL and VIH vs VDD @ four temperatures
Figure 21. Typical pull-up resistance R
vs VDD @ four temperatures
PU
60/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
0
20
40
60
80
100
120
140
0123456
V
DD
[V]
Pull-Up current [µA]
-40°C
25°C
85°C
125°C
Note: The pull-up is a pure resistor (slope goes through 0).
0
0.25
0.5
0.75
1
1.25
1.5
01234567
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
024681012
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0246 8101214
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 5 10 15 20 25
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
125°C
Figure 22. Typical pull-up current Ipu vs VDD @ four temperatures
Typical output level curves
Figure 23 to Figure 32 show typical output level curves measured with output on a single
pin.
Figure 23. Typ. VOL @ VDD = 3.3 V (standard
ports)
Figure 24. Typ. VOL @ VDD = 5.0 V (standard
ports)
Figure 25. Typ. VOL @ VDD = 3.3 V (true open
drain ports)
Figure 26. Typ. VOL @ VDD = 5.0 V (true open
drain ports)
Doc ID 14952 Rev 6 61/89
Electrical characteristics STM8AF61xx, STM8AF62xx
0
0.25
0.5
0.75
1
1.25
1.5
0246 8101214
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
0 5 10 15 20 25
I
OL
[mA]
V
OL
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
01234567
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
024681012
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0246 8101214
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 5 10 15 20 25
I
OH
[mA]
V
DD
- V
OH
[V]
-40°C
25°C
85°C
125°C
Figure 27. Typ. VOL @ VDD = 3.3 V (high sink
ports)
Figure 29. Typ. V
DD - VOH
@ VDD = 3.3 V
(standard ports)
Figure 28. Typ. VOL @ VDD = 5.0 V (high sink
ports)
Figure 30. Typ. V
DD - VOH
@ VDD = 5.0 V
(standard ports)
Figure 31. Typ. V
DD - VOH
sink ports)
62/89 Doc ID 14952 Rev 6
@ VDD = 3.3 V (high
Figure 32. Typ. V
sink ports)
DD - VOH
@ VDD = 5.0 V (high
STM8AF61xx, STM8AF62xx Electrical characteristics
0
1
2
3
4
5
6
2.5 3 3.5 4 4.5 5 5.5 6 V
DD
[V]
V
IL
/ V
IH
[V]
-40°C
25°C
85°C
125°C

10.3.7 Reset pin characteristics

Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 38. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
(1)
(1)
(1)
-
-
IOL= 3 mA - - 0.6 V
-85-315ns
V
IL(NRST)
V
IH(NRST)
V
OL(NRST)
R
PU(NRST)
t
t
IFP(NRST)
IFP
NRST input low level voltage
NRST input high level voltage
NRST output low level voltage
NRST pull-up resistor - 30 40 60 kΩ
NRST input filtered pulse
NRST Input not filtered pulse duration
(2)
1. Data based on characterization results, not tested in production.
2. Data guaranteed by design, not tested in production.
Figure 33. Typical NRST VIL and VIH vs VDD @ four temperatures
V
SS
0.7 x V
DD
0.3 x V
-
-
DD
V
DD
500 ns
Doc ID 14952 Rev 6 63/89
Electrical characteristics STM8AF61xx, STM8AF62xx
30
35
40
45
50
55
60
2.5 3 3.5 4 4.5 5 5.5 6 V
DD
[V]
NRST Pull-Up resistance [k ohm]
-40°C
25°C
85°C
125°C
0
20
40
60
80
100
120
140
0123456
V
DD
[V]
NRST Pull-Up current [µA]
-40°C
25°C
85°C
125°C
External
reset
circuit
STM8A
Filter
R
PU
V
DD
Internal reset
NRST
0.1µF
(optional)
Figure 34. Typical NRST pull-up resistance RPU vs V
Figure 35. Typical NRST pull-up current Ipu vs V
DD
DD
The reset network shown in Figure 36 protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below V
NRST pin characteristics), otherwise the reset is not taken into account internally.
Figure 36. Recommended reset pin protection
64/89 Doc ID 14952 Rev 6
IL(NRST)
max (see Ta bl e 38:
STM8AF61xx, STM8AF62xx Electrical characteristics

10.3.8 TIM 1, 2, 3, and 4 timer specifications

Subject to general operating conditions for VDD, f
Table 39. TIM 1, 2, 3, and 4 electrical specifications
MASTER
, and TA unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
(1)
---16MHz
10.3.9
f
EXT
1. Not tested in production. On 64 Kbyte devices, the frequency is limited to 16 MHz.
Timer external clock frequency

SPI serial peripheral interface

Unless otherwise specified, the parameters given in Ta bl e 40 are derived from tests performed under ambient temperature, f conditions. t
MASTER
= 1/f
MASTER
.
MASTER
frequency and VDD supply voltage
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 40. SPI characteristics
Symbol Parameter Conditions Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. f
SCK
2. The pad has to be configured accordingly (fast mode).
3. Values based on design simulation and/or characterization results, and not tested in production.
Master mode 0 10
SPI clock frequency
VDD < 4.5 V 0 6
Slave mode
VDD = 4.5 V to 5.5 V 0 8
)
SPI clock rise and fall time Capacitive load: C = 30 pF - 25
(3)
NSS setup time Slave mode 4 * t
(3)
NSS hold time Slave mode 70 -
(3)
SCK high and low time Master mode t
(3)
(3)
Data input setup time
(3)
(3)
Data input hold time
(3)
(3)(4)
Data output access time Slave mode - 3* t
(3)(5)
Data output disable time Slave mode 25
(3)
Data output valid time
(3)
Data output valid time Master mode (after enable edge) - 30
(3)
Data output hold time
(3)
< f
MASTER
/2.
Master mode 5 -
Slave mode 5 -
Master mode 7 -
Slave mode 10 -
Slave mode (after enable edge)
VDD < 4.5 V - 75
= 4.5 V to 5.5 V - 53
V
DD
Slave mode (after enable edge) 31 -
Master mode (after enable edge) 12 -
MASTER
SCK
/2 - 15 t
SCK
(1)
(1)
(2)
-
/2 + 15
MASTER
MHz
ns
Doc ID 14952 Rev 6 65/89
Electrical characteristics STM8AF61xx, STM8AF62xx
ai14134
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 O UT
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
Figure 37. SPI timing diagram where slave mode and CPHA = 0
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 V
DD
.
Figure 38. SPI timing diagram where slave mode and CPHA = 1
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 V
DD
.
66/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
AI
3#+OUTPUT
#0(!
-/3)
/5454
-)3/
).0 54
#0(!
-3").
- 3"/54
")4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
T
C3#+
T
W3#+(
T
W3#+,
T
R3#+
T
F3#+
T
H-)
(IGH
3#+OUTPUT
#0(!
#0(!
#0/,
#0/,
T
SU-)
T
V-/
T
H-/
Figure 39. SPI timing diagram - master mode
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 V
DD
.
Doc ID 14952 Rev 6 67/89
Electrical characteristics STM8AF61xx, STM8AF62xx

10.3.10 I2C interface characteristics

Table 41. I2C characteristics
Symbol Parameter
Standard mode I
(2)
Min
Max
2
C Fast mode I2C
(2)
Min
(2)
Max
(1)
Unit
(2)
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
b
1. f
MASTER
Data based on standard I
2.
The maximum hold time of the start condition has only to be met if the interface does not stretch the low
3. time
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
4. undefined region of the falling edge of SCL
SCL clock low time 4.7 - 1.3 -
SCL clock high time 4.0 - 0.6 -
SDA setup time 250 - 100 -
SDA data hold time
SDA and SCL rise time
= 3 to 5.5 V)
(V
DD
SDA and SCL fall time (VDD = 3 to 5.5 V)
(3)
0
-
- 1000 - 300
- 300 - 300
(4)
0
900
START condition hold time 4.0 - 0.6 -
Repeated START condition setup time 4.7 - 0.6 -
STOP condition setup time 4.0 - 0.6 - µs
STOP to START condition time (bus free)
4.7 - 1.3 - µs
Capacitive load for each bus line - 400 - 400 pF
, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)
2
C protocol requirement, not tested in production
µs
(3)
ns
µs
68/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics
AINx
STM8A
V
DD
I
L
V
T
0.6V
V
T
0.6V
V
AIN
R
AIN
10-bit A/D conversion
C
AIN
T
s
C
samp
Rswitch

10.3.11 10-bit ADC characteristics

Subject to general operating conditions for V
DDA
, f
MASTER
, and TA unless otherwise
specified.
Table 42. ADC characteristics
Symbol Parameter Conditions Min
f
ADC
V
DDA
V
REF+
V
REF-
V
AIN
C
samp
(1)
t
S
t
STAB
t
CONV
R
switch
1. During the sample time, the sampling capacitance, C
ADC clock frequency - 111 kHz - 4 MHz kHz/MHz
Analog supply - 3 - 5.5
Positive reference voltage - 2.75 -
Negative reference voltage - V
-
Conversion voltage range
(1)
Devices with
external V
pins
V
REF-
REF+
SSA
V
SSA
V
/
REF-
Internal sample and hold capacitor - - - 3 pF
f
= 2 MHz - 1.5 -
Sampling time
ADC
)
(3 x 1/f
Wakeup time from standby
Total conversion time including
ADC
f
= 4 MHz - 0.75 -
ADC
f
= 2 MHz - 7 -
ADC
= 4 MHz - 3.5 -
f
ADC
f
= 2 MHz - 7 -
ADC
sampling time
= 4 MHz - 3.5 -
f
(14 x 1/f
ADC
)
ADC
Equivalent switch resistance - - - 30 kΩ
(3 pF typ), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t effect on the conversion result.
After the end of the sample time tS, changes of the analog input voltage have no
S.
samp
Typ
Max Unit
V
DDA
-0.5
V
-
-
V
DDA
REF+
V
µs
Figure 40. Typical application with ADC
1. Legend: R
= external resistance, C
AIN
= capacitors, C
AIN
= internal sample and hold capacitor.
samp
Doc ID 14952 Rev 6 69/89
Electrical characteristics STM8AF61xx, STM8AF62xx
E
O
E
G
1LSB
IDEAL
1LSB
IDEAL
V
DDAVSSA
1024
------------------------------ -----------=
1023
1022 1021
5
4
3
2
1
0
7
6
1234567
1021102210231024
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
Table 43. ADC accuracy for V
Symbol Parameter Conditions Typ
|ET| Total unadjusted error
|E
| Offset error
O
| Gain error
|E
G
|E
| Differential linearity error
D
| Integral linearity error
|E
L
|ET| Total unadjusted error
|EO| Offset error
|EG| Gain error
|ED| Differential linearity error
|EL| Integral linearity error
1. Max value is based on characterization, not tested in production.
2. ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for I
and ΣI
INJ(PIN)
3. TUE 2LSB can be reached on specific salestypes on the whole temperature range.
4. Target values.
INJ(PIN)
(2)
(2)
(2)
(2)
(2)
(2)
in Section 10.3.6 does not affect the ADC accuracy.
(2)
(2)
DDA
(2)
(2)
= 5 V
f
ADC
f
ADC
= 2 MHz
= 4 MHz
Max
1.4
0.8 3
0.1 2
0.9 1
0.7 1.5
(4)
1.9
(4)
1.3
(4)
0.6
(4)
1.5
(4)
1.2
1.5
(1)
Unit
(3)
3
LSB
(4)
4
(4)
4
(4)
3
(4)
2
(4)
Figure 41. ADC accuracy characteristics
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
= Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.
E
T
EO = Offset error: Deviation between the first actual transition and the first ideal one. EG = Gain error: Deviation between the last ideal transition and the last actual one. E
= Differential linearity error: Maximum deviation between actual steps and the ideal one.
D
EL = Integral linearity error: Maximum deviation between any actual transition and the end point correlation
line.
70/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Electrical characteristics

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to V
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
and VSS
DD
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Table 44. EMS data
Symbol Parameter Conditions Level/class
= 3.3 V, TA= 25 °C,
V
DD
f
MASTER
Conforms to IEC 1000-4-2
V f
MASTER
Conforms to IEC 1000-4-4
= 16 MHz (HSI clock),
= 3.3 V, TA= 25 °C,
DD
= 16 MHz (HSI clock),
3B
4A
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on V pins to induce a functional disturbance
DD
and V
SS
Doc ID 14952 Rev 6 71/89
Electrical characteristics STM8AF61xx, STM8AF62xx
Electromagnetic interference (EMI)
Emission tests conform to the SAE J 1752/3 standard for test software, board layout and pin loading.
Table 45. EMI data
Conditions
Symbol Parameter
General conditions
V
= 5 V,
DD
T
= 25 °C,
S
Peak level
EMI
A
LQFP80 package conforming to SAE J
SAE EMI level 2 2.5
1. Data based on characterization results, not tested in production.
1752/3
frequency band
0.1 MHz to 30 MHz 15 17
30 MHz to 130 MHz 18 22
130 MHz to 1 GHz -1 3
Max f
Monitored
8
MHz
CPU
(1)
Unit
16
MHz
dBµV
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.
Table 46. ESD absolute maximum ratings
Symbol Ratings Conditions Class
V
ESD(HBM)
ESD(CDM)
V
ESD(MM)
1. Data based on characterization results, not tested in production
Electrostatic discharge voltage (Human body model)
Electrostatic discharge voltage (Charge device model)
Electrostatic discharge voltage (Machine model)
TA = 25°C, conforming to
TA= 25°C, conforming to
TA= 25°C, conforming to
72/89 Doc ID 14952 Rev 6
JESD22-A114
JESD22-C101
JESD22-A115
Maximum
value
3A 4000
3 500
B 200
(1)
Unit
VV
STM8AF61xx, STM8AF62xx Electrical characteristics
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up performance.
A supply overvoltage (applied to each power supply pin) and
A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
Table 47. Electrical sensitivities
Symbol Parameter Conditions
= 25 °C
T
A
T
= 85 °C
LU Static latch-up class
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).
2. Available on STM8AF62xx devices only.
A
= 125 °C
T
A
T
= 150 °C
A
(2)
Class
A
(1)

10.4 Thermal characteristics

In case the maximum chip junction temperature (T
operating conditions on page 49 is exceeded, the functionality of the device cannot be
guaranteed.
T
, in degrees Celsius, may be calculated using the following equation:
Jmax
T
Jmax
Where:
–T
–P
–P
–P
is the maximum ambient temperature in °C
Amax
Θ
is the package junction-to-ambient thermal resistance in ° C/W
JA
is the sum of P
Dmax
is the product of I
INTmax
INTmax
chip internal power.
represents the maximum power dissipation on output pins
I/Omax
Where: P
I/Omax =
Σ (V
) + Σ((VDD-VOH)*IOH),
OL*IOL
taking into account the actual VOL/I in the application.
) specified in Ta bl e 23: General
Jmax
= T
and P
DD
+ (P
Amax
I/Omax (PDmax
Dmax
x ΘJA)
= P
INTmax
+ P
I/Omax
)
and VDD, expressed in Watts. This is the maximum
and VOH/IOH of the I/Os at low and high level
OL
Doc ID 14952 Rev 6 73/89
Electrical characteristics STM8AF61xx, STM8AF62xx

Table 48. Thermal characteristics

Symbol Parameter Value Unit
Θ
JA
Θ
JA
Θ
JA
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.
Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm
Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm
Thermal resistance junction-ambient VFQFPN32
(1)

10.4.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

10.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see
Section 12: Ordering information).
The following example shows how to calculate the temperature range needed for a given application.
57 °C/W
59 °C/W
25 °C/W
Assuming the following application conditions:
Maximum ambient temperature T I level with I
This gives: P
Thus: P
= 14 mA, VDD = 5 V, maximum 20 I/Os used at the same time in output at low
DDmax
P
P
P
= 8 mA, VOL= 0.4 V
OL
INTmax =
IOmax =
Dmax =
Dmax
14 mA x 5 V= 70 mW
20 x 8 mA x 0.4 V = 64 mW
INTmax
70 mW + 64 mW
= 134 mW.
= 70 mW and P
= 82 °C (measured according to JESD51-2),
Amax
64 mW:
IOmax
Using the values obtained in Ta bl e 48: Thermal characteristics on page 74 T calculated as follows:
For LQFP64 46 °C/W
T
= 82 °C + (46 °C/W x 134 mW) = 82 °C + 6 °C = 88 °C
Jmax
This is within the range of the suffix B version parts (-40 < TJ < 105 °C).
Parts must be ordered at least with the temperature range suffix B.
Jmax
is
74/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Package characteristics

11 Package characteristics

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: ECOPACK® is an ST trademark.
®
packages, depending on their level of environmental compliance. ECOPACK®
www.st.com.
Doc ID 14952 Rev 6 75/89
Package characteristics STM8AF61xx, STM8AF62xx

11.1 Package mechanical data

Figure 42. VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5)

Seating plane
C
A
ddd C
A3
A1
D
e
9
8
b
E2
1
Pin # 1 ID R = 0.30
Table 49. VFQFPN 32-lead very thin fine pitch quad flat no-lead package
32
D2
Bottom view
16
17
E
24
L
L
42_ME
mechanical data
mm inches
Dim.
Min Typ Max Min Typ Max
(1)
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.000 0.020 0.050 0.000 0.0008 0.0020
A3 0.200 0.0079
b 0.180 0.250 0.300 0.0071 0.0098 0.0118
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D2 3.400 3.450 3.500 0.1339 0.1358 0.1378
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E2 3.400 3.450 3.500 0.1339 0.1358 0.1378
e 0.500 0.0197
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits
76/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Package characteristics
5B_ME
L
A1 K
L1
c
A
A2
ccc
C
D
D1
D3
E3
E1 E
24
25
36
37
b
48
1
Pin 1 identification
12
13

Figure 43. LQFP 48-pin low profile quad flat package (7 x 7)

Table 50. LQFP 48-pin low profile quad flat package mechanical data

mm inches
(1)
Dim.
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.500 0.2165
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.500 0.2165
e 0.500 0.0197
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits
Doc ID 14952 Rev 6 77/89
Package characteristics STM8AF61xx, STM8AF62xx
















"?&0


Figure 44. LQFP 48-pin recommended footprint

1. Drawing is not to scale. Dimensions are in millimeters.
78/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Package characteristics
5V_ME
L
A1 K
L1
c
A
A2
ccc
C
D
D1
D3
E3
E1 E
16
17
24
25
b
32
1
Pin 1 identification
8
9

Figure 45. LQFP 32-pin low profile quad flat package (7 x 7)

Table 51. LQFP 32-pin low profile quad flat package mechanical data

mm inches
Dim.
Min Typ Max Min Typ Max
(1)
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.600 0.2205
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.600 0.2205
e 0.800 0.0315
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
ccc 0.100 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits
Doc ID 14952 Rev 6 79/89
Package characteristics STM8AF61xx, STM8AF62xx





6?&0

Figure 46. LQFP 32-pin recommended footprint

1. Drawing is not to scale. Dimensions are in millimeters.
80/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Ordering information
STM8A F 62 6 8 T D xxx
(2)
Y
Product class
8-bit automotive microcontroller
Program memory size
2 = 8 Kbytes
4 = 16 Kbytes
6 = 32 Kbytes
Package type
T = LQFP
U = VFQFPN
Example:
Device family
61 = Silicon rev Y, LIN only
(3)
62 = Silicon rev X and rev W, LIN only
Program memory type
F = Flash + EEPROM
P= FASTROM
H = Flash no EEPROM
(3)
Temperature range
A = -40 to 85 °C
B = -40 to 105 °C
(3)
C = -40 to 125 °C
D = -40 to 150 °C
(4)
Pin count
6 = 32 pins
8 = 48 pins
Packing
Y = Tray
U = Tube
X = Tape and reel compliant with EIA 481-C

12 Ordering information

Figure 47. Ordering information scheme
(1)
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com to you.
2. Customer specific FASTROM code or custom device configuration. This field shows ‘SSS’ if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.
3. Not recommended for new design.
4. Available on STM8AF62xx devices.
or contact the ST Sales Office nearest
Doc ID 14952 Rev 6 81/89
STM8 development tools STM8AF61xx, STM8AF62xx

13 STM8 development tools

Development tools for the STM8A microcontrollers include the
STice emulation system offering tracing and code profiling
STVD high-level language debugger including assembler and visual development
environment - seamless integration of third party C compilers.
STVP Flash programming software
In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit debugging/programming tools.

13.1 Emulation and in-circuit debugging tools

The STM8 tool line includes the STice emulation system offering a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8A application development is supported by a low-cost in-circuit debugger/programmer.
The STice is the fourth generation of full-featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including tracing, profiling and code coverage analysis to help detect execution bottlenecks and dead code.
In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers via the STM8 single wire interface module an application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.

13.1.1 STice key features

Program and data trace recording up to 128 K records
Advanced breakpoints with up to 4 levels of conditions
Data breakpoints
Real-time read/write of all device resources during emulation
Occurrence and time profiling and code coverage analysis (new features)
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
USB 2.0 high speed interface to host PC
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements.
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
(SWIM), which allows non-intrusive debugging of
82/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx STM8 development tools

13.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

13.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller’s Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

13.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of your application directly from an easy-to-use graphical interface.
Available toolchains include:
C compiler for STM8
All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.
STM8 assembler linker
Free assembly toolchain included in the STM8 toolset, which allows you to assemble and link your application source code.
Doc ID 14952 Rev 6 83/89
STM8 development tools STM8AF61xx, STM8AF62xx

13.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on your application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming your STM8A.
For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.
84/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Revision history

14 Revision history

Table 52. Document revision history

Date Revision Changes
22-Aug-2008 1 Initial release
Document revised as the following: Updated Features on page 1; Updated Table 1: Device summary; Updated Section 3: Product line-up; Changed Section 5: Product overview; Updated Section 6: Pinouts and pin description;
10-Aug-2009 2
22-Oct-2009 3
08-Jul-2010 4
Changed Section 7.2: Register map; Updated Section 8: Interrupt table; Updated Section 9: Option bytes; Updated Section 10: Electrical characteristics; Updated Section 11: Package characteristics; Updated Section 12: Ordering information; Added Section 13: STM8 development tools.
Adapted Table 10: STM8AF61xx/62xx (32 Kbytes) microcontroller
pin description.
Added Section 13.4.5: LIN header error when automatic
resynchronization is enabled.
Updated title on cover page. Added VFQFPN32 5x 5 mm package. Added STM8AF62xx devices, and modified cover page header to
clarify the part numbers covered by the datasheets. Updated Note 1 below Table 1: Device summary.
Updated D temperature range to -40 to 150°C. Content of Section 5: Product overview reorganized. Renamed Section 7 Memory and register map, and content merged
with Register map section. Renamed BL_EN and NBL_EN, BL and NBL, respectively, in
Table 17: Option bytes.
Added Table 22: Operating lifetime. Added CEXT and P
(power dissipation) in Table 23: General
D
operating conditions, and Section 10.3.1: VCAP external capacitor.
Suffix D maximum junction temperature (T
) updated in Table 23:
J
General operating conditions.
Update t
VDD in Table 24: Operating conditions at power-up/power-
down.
Moved Table 29: Typical peripheral current consumption VDD = 5.0 V to Section : Current consumption for on-chip peripherals and
removed I
DD(CAN)
.
Updated Section 12: Ordering information for the devices supported by the datasheet.
Updated Section 13: STM8 development tools.
Doc ID 14952 Rev 6 85/89
Revision history STM8AF61xx, STM8AF62xx
Table 52. Document revision history (continued)
Date Revision Changes
Modified references to reference manual, and Flash programming manual in the whole document.
Added reference to AEC Q100 standard on cover page. Renamed timer types as follows: – Auto-reload timer to general purpose timer – Multipurpose timer to advanced control timer – System timer to basic timer
Introduced concept of medium density Flash program memory. Updated timer names in Figure 1: STM8A block diagram.
Added TMU brief description in Section 5.4: Flash program and data
EEPROM, and updated TMU_MAXATT description in Table 18: Option byte description.
Updated clock sources in clock controller features (Section 5.5.1). Changed 16MHZTRIM0 to HSITRIM bit in Section : User trimming.
Added Table 4: Peripheral clock gating bits in Section 5.5.6. Updated Section 5.6: Low-power operating modes. Added calibration using TIM3 in Section 5.7.2: Auto-wakeup counter. Added Table 7: ADC naming and Table 8: Communication peripheral
31-Jan-2011 5
naming correspondence.
Added Note 1 related AIN12 pin in Section 5.8: Analog-to-digital
converter (ADC)and Table 10: STM8AF61xx/62xx (32 Kbytes) microcontroller pin description.
Updated SPI data rate to 10 Mbit/s or f
Serial peripheral interface (SPI).
/2 in Section 5.9.1:
MASTER
Added reset state in Table 9: Legend/abbreviation.
Table 10: STM8AF61xx/62xx (32 Kbytes) microcontroller pin description: added Note 7 related to PD1/SWIM, modified Note 6,
corrected wpu input for PE1 and PE2, and renamed TIMn_CCx and TIMn_NCCx to TIMn_CHx and TIMn_CHxN, respectively.
Section 7.2: Register map:
Replaced tables describing register maps and reset values for non­volatile memory, global configuration, reset status, clock controller, interrupt controller, timers, communication interfaces, and ADC, by
Table 13: General hardware register map.
Added Note 1 for Px_IDR registers in Table 12: I/O port hardware
register map. Updated register reset values for Px_IDR registers.
Added SWIM and debug module register map.
86/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx Revision history
Table 52. Document revision history (continued)
Date Revision Changes
Renamed Fast Active Halt mode to Active-halt mode with regulator on, and Slow Active Halt mode to Active-halt mode with regulator off.
Updated Table 26: Total current consumption in Halt and Active-halt
modes. General conditions for VDD apply, TA = -40 to 55 °C, in
31-Jan-2011
(continued)
18-Jul-2012 6
particular I t
WU(SAH)
Removed I
DD(FAH)
renamed t
and I
DD(USART)
DD(SAH)
WU(AH)
from Table 29: Typical peripheral current
consumption VDD = 5.0 V.
5
Updated general conditions in Section 10.3.5: Memory
characteristics. Modified T program memory and Table 36: Data memory.
Update I
maximum value for TA ranging from −40 to 150 °C in
lkg ana
Table 37: I/O static characteristics.
Added t
IFP(NRST)
and renamed V
characteristics. Added recommendations concerning NRST pin level
above Figure 36: Recommended reset pin protection, and updated external capacitor value.
Added Raisonance compiler in Section 13.2: Software tools. Moved know limitations to separate errata sheet.
Updated wildcards of document part numbers.
Table 1: Device summary: updated footnote 1 and added footnote 2
to all STM8AF61xx part numbers.
Section 1: Introduction: small text change in first paragraph. Table 2: STM8AF62xx product line-up: added “P” version for all order
codes; updated RAM.
Table 3: STM8AF/H61xx product line-up: added “P” version for all
order codes.
Figure 1: STM8A block diagram: updated POR, BOR and WDG;
updated LINUART input; added legend.
Section 5.4: Flash program and data EEPROM: removed
nonrelevant bullet points and added a sentence about the factory programme.
Table 4: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers: updated
ADC features: updated ADC input range. Table 11: Memory model for the devices covered in this datasheet:
updated 16 Kbyte and 8 Kbyte information.
Table 17: Option bytes: updated factory default setting for NOPT17;
added footnote 1.
Section 10.1.1: Minimum and maximum values: T
40 °C).
Table 23: General operating conditions: updated V Table 25: Total current consumption in Run, Wait and Slow mode.
General conditions for VDD apply, TA = -40 to 150 °C: updated
conditions for I
DD(RUN)
.
Table 37: I/O static characteristics: added new condition and new
max values for rise and fall time; updated footnote 2.
renamed I
DD(AH)
; t
WU(FAH)
and
, and temperature condition added.
maximum value in Table 35: Flash
WE
F(NRST) tIFP
in Table 38: NRST pin
= -40 °C (not
A
.
CAP
Doc ID 14952 Rev 6 87/89
Revision history STM8AF61xx, STM8AF62xx
Table 52. Document revision history (continued)
Date Revision Changes
Section 10.3.7: Reset pin characteristics: updated text below Figure 35: Typical NRST pull-up current Ipu vs VDD.
Figure 36: Recommended reset pin protection: updated unit of
capacitor.
Table 40: SPI characteristics: updated SCK high and low time
conditions and values.
Figure 39: SPI timing diagram - master mode: replaced ‘SCK input’
signals with ‘SCK output’ signals. Updated Table 49: VFQFPN 32-lead very thin fine pitch quad flat no-
18-Jul-2012
6
(continued)
lead package mechanical data, Table 50: LQFP 48-pin low profile quad flat package mechanical data, and Table 51: LQFP 32-pin low profile quad flat package mechanical data.
Replaced Figure 43: LQFP 48-pin low profile quad flat package (7 x
7) and Figure 45: LQFP 32-pin low profile quad flat package (7 x 7).
Added Figure 44: LQFP 48-pin recommended footprint and
Figure 46: LQFP 32-pin recommended footprint. Figure 47: Ordering information scheme(1): added footnote 1, added
“xxx” and footnote 2, updated example and device family; added FAST ROM.
Section 13.2.2: C and assembly toolchains: added www.iar.com
88/89 Doc ID 14952 Rev 6
STM8AF61xx, STM8AF62xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 14952 Rev 6 89/89
Loading...