ST STM32F101C4, STM32F101R4, STM32F101T4, STM32F101C6, STM32F101R6 User Manual

...
Low-density access line, ARM-based 32-bit MCU with
LQFP48
7 x 7 mm
LQFP64
10 x 10 mm
VFQFPN36
6 × 6 mm
VFQFPN48
7 × 7 mm
16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
Features
Core: ARM 32-bit Cortex™-M3
– 36 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
– Single-cycle multiplication and hardware
division
Memories
– 16 to 32 Kbytes of Flash memory – 4 to 6 Kbytes of SRAM
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC – PLL for CPU clock – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
Debug mode
– Serial wire debug (SWD) and JTAG
DMA
– 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs,
1 × 12-bit, 1 µs A/D converter (up to 16
channels) – Conversion range: 0 to 3.6 V – Temperature sensor
Up to 51 fast I/O ports
– 26/37/51 I/Os, all mappable on 16 external
supply for RTC and backup registers
BAT
interfaces
2
I
Cs and USARTs
interrupt vectors and almost all 5 V-tolerant
CPU
STM32F101x4 STM32F101x6
Up to 5 timers
– Up to two16-bit timers, each with up to 4
IC/OC/PWM or pulse counter
– 2 watchdog timers (Independent and
Window)
– SysTick timer: 24-bit downcounter
Up to 4 communication interfaces
– 1 x I – Up to 2 USARTs (ISO 7816 interface, LIN,
– 1 × SPI (18 Mbit/s)
CRC calculation unit, 96-bit unique ID
ECOPACK

Table 1. Device summary

STM32F101x4
STM32F101x6
2
C interface (SMBus/PMBus)
IrDA capability, modem control)
®
packages
Reference Part number
STM32F101C4, STM32F101R4, STM32F101T4
STM32F101C6, STM32F101R6, STM32F101T6
April 2011 Doc ID 15058 Rev 5 1/79
www.st.com
1
Contents STM32F101x4, STM32F101x6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.18 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.19 I
²
C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . 19
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Contents
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 31
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 31
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 50
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Evaluating the maximum junction temperature for an application . . . . . 75
Doc ID 15058 Rev 5 3/79
Contents STM32F101x4, STM32F101x6
7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Low-density STM32F101xx device features and peripheral counts . . . . . . . . . . . . . . . . . . 11
Table 3. STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Low-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 8. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 9. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 10. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 11. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 12. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Maximum current consumption in Sleep mode, code running from Flash
or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 15. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 36
Table 16. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 40
Table 18. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 19. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 20. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 21. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 22. LSE oscillator characteristics (f
Table 23. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 24. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 25. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 26. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 27. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 29. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 30. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 31. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 32. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 33. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 34. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 35. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 36. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 37. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 38. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 39. I Table 40. SCL frequency (f
Table 41. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
= MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
PCLK1
Table 42. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 43. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ADC
Table 44. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LSE
Doc ID 15058 Rev 5 5/79
List of tables STM32F101x4, STM32F101x6
Table 45. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 46. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 47. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 70
Table 48. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 71
Table 49. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 72
Table 50. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 73
Table 51. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 52. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 53. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 List of figures
List of figures
Figure 1. STM32F101xx Low-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F101xx Low-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4. STM32F101xx Low-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. STM32F101xx Low-density access line VFQPFN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 35
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 35
Figure 14. Typical current consumption on V
V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
BAT
Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DD
Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DD
Figure 17. Typical current consumption in Standby mode versus temperature at V
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 19. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 22. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 23. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 24. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 25. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 26. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 27. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 28. I
2
C bus AC waveforms and measurement circuit
Figure 29. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 30. SPI timing diagram - slave mode and CPHA = 1 Figure 31. SPI timing diagram - master mode
Figure 32. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 34. Power supply and reference decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 35. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline Figure 36. Recommended footprint (dimensions in mm) Figure 37. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline Figure 38. Recommended footprint (dimensions in mm)
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 72
Figure 40. Recommended footprint
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 41. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
with RTC on versus temperature at different
BAT
= 3.3 V and
DD
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Doc ID 15058 Rev 5 7/79
List of figures STM32F101x4, STM32F101x6
Figure 42. Recommended footprint Figure 43. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F101x4 and STM32F101x6 low-density access line microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2:
Full compatibility throughout the family.
The Low-density STM32F101xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 15058 Rev 5 9/79
Description STM32F101x4, STM32F101x6

2 Description

The STM32F101x4 and STM32F101x6 Low-density access line family incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory of 16 to 32 Kbytes and SRAM of 4 to 6 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (one I USARTs), one 12-bit ADC and up to two general-purpose 16-bit timers.
The STM32F101xx Low-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F101xx Low-density access line family includes devices in three different packages ranging from 36 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
These features make the STM32F101xx Low-density access line microcontroller family suitable for a wide range of applications such as application control and user interface, medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and HVACs.
2
C, one SPI, and two
10/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description

2.1 Device overview

Figure 1 shows the general block diagram of the device family.

Table 2. Low-density STM32F101xx device features and peripheral counts

Peripheral
Flash - Kbytes 16 32 16 32 16 32
SRAM - Kbytes 464646
General-purpose 222222
Timers
SPI 111111
2
I
C 111111
USART 222222
Communication
12-bit synchronized ADC
number of channels
STM32F101Tx STM32F101Cx STM32F101Rx
1
10 channels
1
10 channels
1
16 channels
GPIOs 26 37 51
CPU frequency 36 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Packages VFQFPN36
Ambient temperature: –40 to +85 °C (see Ta b l e 8 ) Junction temperature: –40 to +105 °C (see Ta bl e 8 )
LQFP48,
VFQFPN48
LQFP64
Doc ID 15058 Rev 5 11/79
Description STM32F101x4, STM32F101x6
Temp sensor
PA[15: 0]
EXTI
W W D G
NVIC
12bit ADC
SWD
16AF
JTDI
JTCK/ SWCLK
JTMS/SWDIO
NJTRST
JTDO
NRST
V
DD
= 2 to 3.6 V
80AF
PB[15: 0]
PC[15:0 ]
AHB2
SRAM
WAKEUP
GPIOA
GPIOB
GPIOC
F
max
: 3 6 MHz
V
SS
GP DMA
TIM2
TIM3
XTAL OSC
4-16 MHz
XTAL 32 kHz
OSC_IN OSC_OUT
OSC32_OUT
OSC32_IN
PLL &
APB1 : F
max
=24 / 36 MHz
PCLK1
HCLK
CLOCK MANAG T
PCLK 2
VOLT. REG.
3.3V TO 1.8V
POWER
Backu p i nterf ace
as AF
6 KB
RTC
RC 8 MHz
Cortex M3 CPU
USART1
USART2
7 channels
Back up
reg
SCL,SDA ,SMBA
I2C
as AF
PD[3:0]
GPIOD
AHB: F
max
=36 MHz
4 Chann els
4 Chann els
FCLK
RC 42 kHz
Stand by
IWDG
@VDD
@VBAT
POR / PDR
SUPPLY
@VDDA
VDDA
VSSA
@VDDA
V
BAT
RX,TX, CTS, RTS, Smartcard as AF
RX,TX, CTS, RTS,
APB2 : F
max
= 36 MHz
NVIC
SPI
MOSI,MISO,
SCK,NSS as AF
IF
int erface
@VDDA
SUPERVISION
PVD
Rst
Int
@VDD
AHB2
APB2
APB1
AWU
TAMPER-RTC
Flash 32 KB
BusM atrix
64 bit
Interface
Ibus
Dbus
pbus
obl
Flash
Trace
controller
System
ai15173c
TRACECLK TRACED[0:3]
as AS
SW/JTAG
TPIU
Trace/trig
CK, SmartCard as AF

Figure 1. STM32F101xx Low-density access line block diagram

1. AF = alternate function on I/O port pin.
= –40 °C to +85 °C (junction temperature up to 105 °C).
2. T
A
12/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description
HSE OSC
4-16 MHz
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
LSE OSC
32.768 kHz
HSI RC
8 MHz
LSI RC 40 kHz
to Independent Watchdog (IWDG)
PLL
x2, x3, x4
PLLMUL
Legend:
MCO
Clock Output
Main
PLLXTPRE
/2
..., x16
AHB Prescaler /1, 2..512
/2
PLLCLK
HSI
HSE
APB1
Prescaler
/1, 2, 4, 8, 16
ADC Prescaler /2, 4, 6, 8
ADCCLK
PCLK1
HCLK
PLLCLK
to AHB bus, core, memory and DMA
to TIM2, TIM3
to ADC
LSE
LSI
HSI
/128
/2
HSI
HSE
peripherals
to APB1
Peripheral Clock
Enable (13 bits)
Enable (3 bits)
P
eripheral Clock
APB2
Prescaler
/1, 2, 4, 8, 16
PCLK2
peripherals
to APB2
Peripheral Clock
Enable (11 bits)
36 MHz max
36 MHz max
to RTC
PLLSRC
SW
MCO
CSS
to Cortex System timer
/8
Clock
Enable (3 bits)
SYSCLK
RTCCLK
RTCSEL[1:0]
TIMXCLK
IWDGCLK
SYSCLK
FCLK Cortex free running clock
TIM2, TIM3 If (APB1 prescaler =1) x1 else x2
HSE = high-speed external clock signal HSI = high-speed internal clock signal LSI = low-speed internal clock signal LSE = low-speed external clock signal
ai15174
36 MHz max
36 MHz max

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.
Doc ID 15058 Rev 5 13/79
Description STM32F101x4, STM32F101x6

2.2 Full compatibility throughout the family

The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices.
Low- and high-density devices are an extension of the STM32F101x8/B devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Low­density devices feature lower Flash memory and RAM capacities and a timer less. High­density devices have higher Flash memory and RAM capacities, and additional peripherals like FSMC and DAC, while remaining fully compatible with the other members of the STM32F101xx family. The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F101xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

Table 3. STM32F101xx family

Memory size
Low-density devices Medium-density devices High-density devices
Pinout
16 KB
Flash
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM
144
100
64
2 × USARTs 2 × 16-bit timers
48
1 × SPI, 1 × I2C 1 × ADC
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
32 KB
Flash
(1)
64 KB
Flash
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, 1 × ADC
128 KB
Flash
256 KB
Flash
32 KB
RAM
384 KB
Flash
48 KB
RAM
512 KB
Flash
48 KB
RAM
5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I
2
Cs, 1 × ADC,
2 × DACs, FSMC (100 and 144 pins)
14/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The STM32F101xx Low-density access line family having an embedded ARM core, is therefore compatible with all ARM tools and software.

2.3.2 Embedded Flash memory

16 or 32 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

2.3.4 Embedded SRAM

Up to 6 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 Nested vectored interrupt controller (NVIC)

The STM32F101xx Low-density access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
Doc ID 15058 Rev 5 15/79
Description STM32F101x4, STM32F101x6

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 36 MHz. See Figure 2 for details on the clock tree.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.3.9 Power supply schemes

V
V
V
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.
= 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs
DDA
and PLL (minimum voltage to be applied to V V
and V
DDA
BAT
SSA
= 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when V

2.3.10 Power supply supervisor

The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
pins.
DD
must be connected to V
is below a specified threshold, V
DD
DD
DD
is 2.4 V when the ADC is used).
DDA
and VSS, respectively.
is not present.
POR/PDR
, without the need for an
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V
16/79 Doc ID 15058 Rev 5
power supply and compares it to the V
DD/VDDA
drops below the V
PVD
threshold. An interrupt can be
PVD
threshold and/or when VDD/V
DDA
is higher
STM32F101x4, STM32F101x6 Description
than the V
threshold. The interrupt service routine can then generate a warning
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 10: Embedded reset and power control block characteristics for the values of V
POR/PDR
and V
PVD
.

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop mode
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

The STM32F101xx Low-density access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.
Doc ID 15058 Rev 5 17/79
Description STM32F101x4, STM32F101x6
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I
2
C, USART, general purpose timers
TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 20 bytes of user application data when V
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
pin. The backup registers are ten 16-bit
BAT
power is not present.
DD

2.3.15 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

2.3.16 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.3.17 SysTick timer

This timer is dedicated for OS, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

2.3.18 General-purpose timers (TIMx)

There areup to two synchronizable general-purpose timers embedded in the STM32F101xx Low-density access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture,
18/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description
output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

2.3.19 I²C bus

The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes.
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.

2.3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability.
The USART interfaces can be served by the DMA controller.

2.3.21 Serial peripheral interface (SPI)

The SPI interface is able to communicate up to 18 Mbit/s in slave and master modes in full­duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
The SPI interface can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller.
Doc ID 15058 Rev 5 19/79
Description STM32F101x4, STM32F101x6
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

2.3.24 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V
< 3.6 V. The temperature sensor is internally
DDA
connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.25 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
20/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Pinouts and pin description
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
VDD_2 VSS_2 PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14387b
PC13-TAMPER-RTC
44 43 42 41 40 39 38 37
36
35 34
33 32 31 30 29 28 27 26 25
24
23
12
13 14 15 16 17 18
19 20 21 22
1 2 3 4 5 6 7 8 9 10 11
48 47 46 45
LQFP48
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VDD_2 VSS_2 PA1 3 PA1 2 PA1 1 PA1 0 PA9 PA8 PB15 PB14 PB13 PB12
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST VSSA VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA 1 5
PA 14
ai14378d
PC13-TAMPER-RTC

3 Pinouts and pin description

Figure 3. STM32F101xx Low-density access line LQFP64 pinout

Figure 4. STM32F101xx Low-density access line LQFP48 pinout

Doc ID 15058 Rev 5 21/79
Pinouts and pin description STM32F101x4, STM32F101x6
ai18300
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST VSSA VDDA
PA0-WKUP
PA 1 PA 2
VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA 9 PA 8 PB15 PB14 PB13 PB12
48
VFQFPN48
47 46
45 444342 41
40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
13
14 15
16 171819 20
21 22 23 24
1
2
3
4
5
6
7
8
9
10
11
12
V
SS_3
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
36 35 34 33 32 31 30 29 28
V
DD_3
1
27
V
DD_2
OSC_IN/PD0
2
26
V
SS_2
OSC_OUT/PD1
3
25
PA13
NRST
4
QFN36
24
PA12
V
SSA
5
23 PA11
V
DDA
6
22
PA10
PA0-WKUP
7
21
PA 9
PA 1
8
20
PA 8
PA 2 9
19
V
DD_1
10 11 12 13 14 15 16 17 18
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
V
SS_1
ai14654

Figure 5. STM32F101xx Low-density access line VFQPFN48 pinout

Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout

22/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Pinouts and pin description

Table 4. Low-density STM32F101xx pin definitions

Pins
Pin name
(1)
Type
LQFP64
LQFP48/
VFQFPN48
11- V
2 2 - PC13-TAMPER-RTC
3 3 - PC14-OSC32_IN
4 4 - PC15-OSC32_OUT
VFQFPN36
BAT
SV
(5)
I/O PC13
(5)
I/O PC14
(5)
I/O PC15
5 5 2 OSC_IN I OSC_IN
6 6 3 OSC_OUT O OSC_OUT
7 7 4 NRST I/O NRST
- 8 - PC0 I/O PC0 ADC_IN10
- 9 - PC1 I/O PC1 ADC_IN11
- 10 - PC2 I/O PC2 ADC_IN12
- 11 - PC3 I/O PC3 ADC_IN13
8125 V
9136 V
SSA
DDA
SV
SV
10 14 7 PA0-WKUP I/O PA0
11 15 8 PA1 I/O PA1
12 16 9 PA2 I/O PA2
13 17 10 PA3 I/O PA3
-18- V
-19- V
SS_4
DD_4
SV
SV
14 20 11 PA4 I/O PA4
15 21 12 PA5 I/O PA5 SPI_SCK
16 22 13 PA6 I/O PA6
17 23 14 PA7 I/O PA7
- 24 PC4 I/O PC4 ADC_IN14
- 25 PC5 I/O PC5 ADC_IN15
18 26 15 PB0 I/O PB0 ADC_IN8/TIM3_CH3
19 27 16 PB1 I/O PB1 ADC_IN9/TIM3_CH4
(2)
I / O level
Main
function
(3)
(after reset)
BAT
(6)
(6)
(6)
SSA
DDA
SS_4
DD_4
Alternate functions
Default Remap
TAMPER-RTC
OSC32_IN
OSC32_OUT
WKUP/USART2_CTS/
ADC_IN0/
TIM2_CH1_ETR
(7)
USART2_RTS/
ADC_IN1/TIM2_CH2
USART2_TX/
ADC_IN2/TIM2_CH3
USART2_RX/
ADC_IN3/TIM2_CH4
(7)
SPI_NSS
/ADC_IN4
USART2_CK
(7)
/ADC_IN5
SPI_MISO
SPI_MOSI
(7)
/ADC_IN6/
TIM3_CH1
(7)
/ADC_IN7/
TIM3_CH2
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(3)(4)
Doc ID 15058 Rev 5 23/79
Pinouts and pin description STM32F101x4, STM32F101x6
Table 4. Low-density STM32F101xx pin definitions (continued)
Pins
LQFP64
LQFP48/
VFQFPN48
Pin name
VFQFPN36
(1)
(2)
Typ e
Main
function
(3)
(after reset)
I / O level
Alternate functions
Default Remap
20 28 17 PB2 I/O FT PB2/BOOT1
21 29 - PB10 I/O FT PB10 TIM2_CH3
22 30 - PB11 I/O FT PB11 TIM2_CH4
23 31 18 V
24 32 19 V
SS_1
DD_1
SV
SV
SS_1
DD_1
25 33 - PB12 I/O FT PB12
26 34 - PB13 I/O FT PB13
27 35 - PB14 I/O FT PB14
28 36 - PB15 I/O FT PB15
- 37 - PC6 I/O FT PC6 TIM3_CH1
38 - PC7 I/O FT PC7 TIM3_CH2
39 - PC8 I/O FT PC8 TIM3_CH3
- 40 - PC9 I/O FT PC9 TIM3_CH4
29 41 20 PA8 I/O FT PA8 USART1_CK/MCO
30 42 21 PA9 I/O FT PA9 USART1_TX
31 43 22 PA10 I/O FT PA10 USART1_RX
(7)
(7)
32 44 23 PA11 I/O FT PA11 USART1_CTS
33 45 24 PA12 I/O FT PA12 USART1_RTS
34 46 25 PA13 I/O FT JTMS-SWDIO PA13
35 47 26 V
36 48 27 V
SS_2
DD_2
SV
SV
SS_2
DD_2
37 49 28 PA14 I/O FT JTCK/SWCLK PA14
38 50 29 PA15 I/O FT JTDI
-51 PC10 I/OFT PC10
-52 PC11 I/OFT PC11
-53 PC12 I/OFT PC12
552 PD0 I/OFTOSC_IN
6 6 3 PD1 I/O FT OSC_OUT
54 - PD2 I/O FT PD2 TIM3_ETR
(8)
(8)
39 55 30 PB3 I/O FT JTDO
(3)(4)
TIM2_CH1_ETR/
PA15 / SPI_NSS
TIM2_CH2 / PB3
TRACESWO
SPI_SCK
24/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Pinouts and pin description
Table 4. Low-density STM32F101xx pin definitions (continued)
Pins
LQFP64
LQFP48/
VFQFPN48
Pin name
VFQFPN36
(1)
(2)
Typ e
Main
function
(3)
(after reset)
I / O level
Alternate functions
Default Remap
40 56 31 PB4 I/O FT NJTRST
41 57 32 PB5 I/O PB5 I2C_SMBA
42 58 33 PB6 I/O FT PB6 I2C_SCL
43 59 34 PB7 I/O FT PB7 I2C_SDA
(7)
(7)
44 60 35 BOOT0 I BOOT0
45 61 - PB8 I/O FT PB8 I2C_SCL
46 62 - PB9 I/O FT PB9 I2C_SDA
47 63 36 V
48 64 1 V
SS_3
DD_3
1. I = input, O = output, S = supply.
2. FT= 5 V tolerant.
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be called SPI, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11.
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
8. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
SV
SV
SS_3
DD_3
(3)(4)
TIM3_CH1 / PB4
SPI_MISO
TIM3_CH2 /
SPI_MOSI
USART1_TX
USART1_RX
Doc ID 15058 Rev 5 25/79
Memory mapping STM32F101x4, STM32F101x6
APB memory space
DMA
RTC
WWDG
IWDG
USART2
ADC
USART1
SPI
EXTI
RCC
0
1
2
3
4
5
6
7
Peripherals
SRAM
reserved
reserved
Option Bytes
Reserved
0x4000 0000
0x4000 0400
0x4000 0800
0x4000 2800
0x4000 2C00
0x4000 3000
0x4000 3400
0x4000 4400
0x4000 4800
0x4000 5400
0x4000 5800
0x4000 6000
0x4000 6400
0x4000 6800
0x4000 6C00
0x4000 7000
0x4000 7400
0x4001 0000
0x4001 0400
0x4001 0800
0x4001 0C00
0x4001 1000
0x4001 1400
0x4001 1800
0x4001 2400
0x4001 2800
0x4001 2C00
0x4001 3000
0x4001 3400
0x4001 3800
0x4001 3C00
0x4002 0000
0x4002 0400
0x4002 1000
0x4002 1400
0x4002 2000
0x4002 2400
0x4002 3000
0x4002 3400
0x6000 0000
0xE010 0000
0xFFFF FFFF
reserved
reserved
reserved
CRC
reserved
reserved
Flash interface
reserved
reserved
reserved
reserved
reserved
reserved
reserved
Port D
Port C
Port B
Port A
AFIO
PWR
BKP
reserved
reserved
reserved
reserved
I2C
reserved
reserved
reserved
TIM3
TIM2
0xFFFF FFFF
0xE010 0000
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0x1FFF FFFF
0x1FFF F80F
0x1FFF F800
0x1FFF F000
0x0801 FFFF
0x0800 0000
System memory
Flash memory
Cortex-M3 internal
peripherals
ai15175b
0x0000 0000
Aliased to Flash or system memory depending on BOOT pins

4 Memory mapping

The memory map is shown in Figure 7.

Figure 7. Memory map

26/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

= 25 °C and TA = TAmax (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, V 2V≤ V
3.6 V voltage range). They are given only as design guidelines and are not
DD
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 8.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 9.
(mean±2Σ).
= 3.3 V (for the
DD
Doc ID 15058 Rev 5 27/79
Electrical characteristics STM32F101x4, STM32F101x6
ai15496
V
DD
1/2/3/4/5
Analo g:
RCs, PLL,
...
Power switch
V
BAT
GP I/O s
OUT
IN
Kernel logic
(CPU, Digital
& Memories)
Backup circuitry
(OSC32K,RTC,
Backup registers)
Wakeup logic
5 × 100 nF + 1 × 4.7 µF
1.8-3.6V
Regulator
V
SS
1/2/3/4/5
V
DDA
V
SSA
ADC
Level shifter
IO
Logic
V
DD
10 nF
+ 1 µF
V
DD
V
REF+
V
REF-
Figure 8. Pin loading conditions Figure 9. Pin input voltage
STM32F10xxx pin
C = 50 pF

5.1.6 Power supply scheme

Figure 10. Power supply scheme
ai14123b
STM32F10xxx pin
V
IN
ai14124b
Caution: In Figure 10, the 4.7 µF capacitor must be connected to V
28/79 Doc ID 15058 Rev 5
DD3
.
STM32F101x4, STM32F101x6 Electrical characteristics
ai14126
V
BAT
V
DD
V
DDA
IDD_V
BAT
I
DD

5.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics,
Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 5. Voltage characteristics

Symbol Ratings Min Max Unit
VDD − V
(2)
V
IN
|ΔV
DDx
|V
VSS|
SSX
V
ESD(HBM)
1. All main power (VDD, V supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 6: Current characteristics for the maximum allowed injected current values.
External main supply voltage (including
SS
V
and VDD)
DDA
(1)
Input voltage on five volt tolerant pin V
Input voltage on any other pin V
| Variations between different V
power pins 50
DD
Variations between all the different ground pins
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
) pins must always be connected to the external power
SSA
–0.3 4.0
0.3 V
SS
0.3 4.0
SS
DD
+ 4.0
50
see Section 5.3.11: Absolute
maximum ratings (electrical
sensitivity)
V
mV
Doc ID 15058 Rev 5 29/79
Electrical characteristics STM32F101x4, STM32F101x6

Table 6. Current characteristics

Symbol Ratings Max. Unit
(1)
(1)
(5)
is the absolute sum of the
INJ(PIN)
150
150
-5/+0
± 5
± 25
INJ(PIN)
INJ(PIN)
mA
must
must
I
VDD
I
VSS
Total current into VDD/V
Total current out of V
SS
power lines (source)
DDA
ground lines (sink)
Output current sunk by any I/O and control pin 25
I
IO
I
INJ(PIN)
ΣI
INJ(PIN)
1. All main power (VDD, V supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage values.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. I never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum ΣI positive and negative injected currents (instantaneous values).
Output current source by any I/Os and control pin 25
Injected current on five volt tolerant pins
(2)
Injected current on any other pin
(4)
(3)
Total injected current (sum of all I/O and control pins)
) and ground (VSS, V
DDA
) pins must always be connected to the external power
SSA

Table 7. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C

5.3 Operating conditions

5.3.1 General operating conditions

Table 8. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
DD
V
DDA
V
BAT
Internal AHB clock frequency 0 36
Internal APB1 clock frequency 0 36
Internal APB2 clock frequency 0 36
Standard operating voltage 2 3.6 V
Analog operating voltage (ADC not used)
(1)
Analog operating voltage (ADC used)
Backup operating voltage 1.8 3.6 V
Must be the same potential
(2)
as V
DD
MHzf
23.6
V
2.4 3.6
30/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
Table 8. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
LQFP64 444
P
D
Power dissipation at T
(3)
85 °C
=
A
mWLQFP48 363
VFQFPN36 1000
Maximum power dissipation –40 85 °C
T
A Ambient temperature
Low power dissipation
J Junction temperature range –40 105 °C
T
1. When the ADC is used, refer to Table 42: ADC characteristics.
2. It is recommended to power V between V
is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal
3. If T
A
characteristics on page 74).
4. In low power dissipation state, T
Table 6.2: Thermal characteristics on page 74).
DD
and V
can be tolerated during power-up and operation.
DDA
and V
DD
can be extended to this range as long as TJ does not exceed TJmax (see
A
from the same source. A maximum difference of 300 mV
DDA
(4)
–40 105 °C

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for TA.
Table 9. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
VDD rise time rate 0
t
VDD
fall time rate 20
V
DD

5.3.3 Embedded reset and power control block characteristics

The parameters given in Tab l e 1 0 are derived from tests performed under the ambient temperature and V
supply voltage conditions summarized in Tab l e 8 .
DD
µs/V
Doc ID 15058 Rev 5 31/79
Electrical characteristics STM32F101x4, STM32F101x6
.
Table 10. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V
PLS[2:0]=000 (falling edge) 2 2.08 2.16 V
PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V
PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V
PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V
PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V
PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
V
PVD
Programmable voltage detector level selection
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V
PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V
PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V
PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V
PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V
PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V
PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V
PLS[2:0]=111 (rising edge) 2.76 2.88 3 V
PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
(2)
V
PVDhyst
V
POR/PDR
V
PDRhyst
t
RSTTEMPO
1. The product behavior is guaranteed by design down to the minimum V
2. Guaranteed by design, not tested in production.
PVD hysteresis 100 mV
(1)
Power on/power down reset threshold
(2)
PDR hysteresis 40 mV
(2)
Reset temporization 1.5 2.5 4.5 ms
Falling edge
Rising edge 1.84 1.92 2.0 V
POR/PDR
1.8
value.
1.88 1.96 V
32/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics

5.3.4 Embedded reference voltage

The parameters given in Tab l e 1 1 are derived from tests performed under the ambient temperature and V
Table 11. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
supply voltage conditions summarized in Tab l e 8 .
DD
V
REFINT
T
S_vrefint
V
RERINT
T
Coeff
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Internal reference voltage –40 °C < TA < +85 °C 1.16 1.20 1.24 V
ADC sampling time when reading
(1)
the internal reference voltage
Internal reference voltage spread
(2)
over the temperature range
(2)
Temperature coefficient 100

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 11: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
5.1
17.1
= 3 V ±10 mV 10 mV
V
DD
(2)
µs
ppm/
°C
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
or VSS (no load)
DD
wait state from 24 to 36 MHz)
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
PCLK1
= f
HCLK/2
, f
PCLK2
= f
HCLK
The parameters given in Tab l e 1 2 are derived from tests performed under the ambient temperature and V
supply voltage conditions summarized in Tab l e 8 .
DD
Doc ID 15058 Rev 5 33/79
Electrical characteristics STM32F101x4, STM32F101x6
Table 12. Maximum current consumption in Run mode, code with data processing
running from Flash
(1)
Max
Symbol Parameter Conditions f
36 MHz 26
External clock
(2)
, all
peripherals enabled
24 MHz 18
16 MHz 13
HCLK
= 85 °C
T
A
Unit
I
DD
Supply current in Run mode
(2)
External clock
, all
peripherals Disabled
8 MHz 7
mA
36 MHz 19
24 MHz 13
16 MHz 10
8 MHz 6
1. Based on characterization, not tested in production.
2. External clock is 8 MHz and PLL is on when f
Table 13. Maximum current consumption in Run mode, code with data processing
HCLK
> 8 MHz.
running from RAM
(1)
Max
Symbol Parameter Conditions f
External clock
(2)
, all
peripherals enabled
I
DD
Supply current in Run mode
External clock
(2)
all
peripherals disabled
HCLK
= 85 °C
T
A
36 MHz 20
24 MHz 14
16 MHz 10
8 MHz 6
36 MHz 15
24 MHz 10
16 MHz 7
8 MHz 5
Unit
mA
1. Based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
34/79 Doc ID 15058 Rev 5
HCLK
max, f
DD
> 8 MHz.
HCLK
max.
STM32F101x4, STM32F101x6 Electrical characteristics
0
5
10
15
20
25
– 45°C 25 °C 70 °C 85 °C
Temperature (°C)
Consumption (mA)
36 MHz
16 MHz
8 MHz
0
2
4
6
8
10
12
14
16
– 45°C 25 °C 70 °C 85 °C
Temperature (°C)
Consumption (mA)
36 MHz
16 MHz
8 MHz
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled
Doc ID 15058 Rev 5 35/79
Electrical characteristics STM32F101x4, STM32F101x6
Table 14. Maximum current consumption in Sleep mode, code running from Flash
or RAM
(1)
Max
Symbol Parameter Conditions f
36 MHz 14
External clock
(2)
all
peripherals enabled
24 MHz 10
16 MHz 7
HCLK
= 85 °C
T
A
Unit
I
DD
Supply current in Sleep mode
(2)
External clock
, all
peripherals disabled
8 MHz 4
36 MHz 5
24 MHz 4.5
16 MHz 4
8 MHz 3
1. Based on characterization, tested in production at V
2. External clock is 8 MHz and PLL is on when f
Table 15. Typical and maximum current consumptions in Stop and Standby modes
HCLK
Symbol Parameter Conditions
max and f
DD
> 8 MHz.
V
HCLK
DD/VBAT
= 2.0 V
max with peripherals enabled.
(1)
Typ
V
DD
= 2.4 V
/ V
BAT
V
DD/VBAT
= 3.3 V
Regulator in Run mode,
I
DD
Supply current in Stop mode
Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)
Regulator in Low Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)
Low-speed internal RC oscillator and independent watchdog ON
- 21.3 21.7 160
- 11.3 11.7 145
-2.63.4-
Max
T
A
85 °C
=
mA
Unit
(2)
µA
Supply current in Standby mode
Low-speed internal RC oscillator ON, independent watchdog OFF
Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF
I
DD_VBAT
Backup domain supply current
1. Typical values are measured at TA = 25 °C.
2. Based on characterization, not rested in production.
Low-speed oscillator and RTC ON 0.9 1.1 1.4 1.9
36/79 Doc ID 15058 Rev 5
-2.43.2-
- 1.7 2 3.2
STM32F101x4, STM32F101x6 Electrical characteristics
0
0.5
1
1.5
2
2.5
–40 °C 25 °C 70 °C 85 °C 105 °C
Temperature (°C)
Consumption ( µA )
2 V
2.4 V
3 V
3.6 V
ai17351
0
5
10
15
20
25
30
35
40
45
–45 °C 25 °C 85 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
Figure 14. Typical current consumption on V
V
values
BAT
with RTC on versus temperature at different
BAT
Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at V
= 3.3 V and 3.6 V
DD
Doc ID 15058 Rev 5 37/79
Electrical characteristics STM32F101x4, STM32F101x6
0
5
10
15
20
25
30
–45 °C 25 °C 85 °C
Temperature (°C)
Consumption (µA)
3.3 V
3.6 V
0
0.5
1
1.5
2
2.5
3
3.5
–45 °C 25 °C 85 °C
Temperature (°C)
Consumpt ion (µA)
3.3 V
3.6 V
Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at V
= 3.3 V and 3.6 V
DD
Figure 17. Typical current consumption in Standby mode versus temperature at V
= 3.3 V and
DD
3.6 V
38/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
wait state from 24 to 36 MHz)
Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
f
/4
PCLK2
PCLK1
= f
HCLK/4
The parameters given in Tab l e 1 6 are derived from tests performed under the ambient temperature and V
Table 16. Typical current consumption in Run mode, code with data processing
supply voltage conditions summarized in Tab l e 8 .
DD
running from Flash
Symbol Parameter Conditions f
HCLK
All peripherals
36 MHz 17.2 13.8
or VSS (no load)
DD
, f
PCLK2
(1)
Typ
enabled
(2)
= f
HCLK/2
All peripherals
, f
ADCCLK
(1)
Typ
disabled
=
Unit
24 MHz 11.2 8.9
16 MHz 8.1 6.6
8 MHz 5 4.2
External
(3)
clock
4 MHz 3 2.6
2 MHz 2 1.8
1 MHz 1.5 1.4
500 kHz 1.2 1.2
I
DD
Supply current in Run mode
125 kHz 1.05 1
mA
36 MHz 16.5 13.1
24 MHz 10.5 8.2
Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency
16 MHz 7.4 5.9
8 MHz 4.3 3.6
4 MHz 2.4 2
2 MHz 1.5 1.3
1 MHz 1 0.9
500 kHz 0.7 0.65
125 kHz 0.5 0.45
1. Typical values are measures at TA = 25 °C, V
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
DD
HCLK
= 3.3 V.
> 8 MHz.
Doc ID 15058 Rev 5 39/79
Electrical characteristics STM32F101x4, STM32F101x6
Table 17. Typical current consumption in Sleep mode, code running from Flash or
RAM
Symbol Parameter Conditions f
36 MHz 6.7 3.1
24 MHz 4.8 2.3
16 MHz 3.4 1.8
8 MHz 2 1.2
External clock
(3)
4 MHz 1.5 1.1
2 MHz 1.25 1
1 MHz 1.1 0.98
500 kHz 1.05 0.96
I
DD
Supply current in Sleep mode
125 kHz 1 0.95
36 MHz 6.1 2.5
24 MHz 4.2 1.7
Running on High Speed Internal RC (HSI), AHB prescaler used to reduce the frequency
16 MHz 2.8 1.2
8 MHz 1.4 0.55
4 MHz 0.9 0.5
2 MHz 0.7 0.45
1 MHz 0.55 0.42
HCLK
(1)
Typ
All peripherals
enabled
(2)
All peripherals
(1)
Typ
disabled
Unit
mA
500 kHz 0.48 0.4
125 kHz 0.4 0.38
1. Typical values are measures at TA = 25 °C, V
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).
3. External clock is 8 MHz and PLL is on when f
DD
HCLK
= 3.3 V.
> 8 MHz.
40/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Ta bl e 1 8. The MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at V
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature and V
supply voltage conditions summarized in
DD
Ta bl e 5 .
Table 18. Peripheral current consumption
Peripheral Typical consumption at 25 °C Unit
TIM2 0.6
APB1
TIM3 0.6
USART2 0.21
I2C 0.18
GPIO A 0.21
or VSS (no load)
DD
GPIO B 0.21
GPIO C 0.21
APB2
GPIO D 0.21
(1)
ADC
SPI 0.24
USART1 0.35
1. Specific conditions for ADC: f in the ADC_CR2 register is set to 1.
= 28 MHz, f
HCLK

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source
The characteristics given in Tab l e 1 9 result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in Ta bl e 8 .
APB1
= f
HCLK
/2, f
APB2
= f
1.4
HCLK
, f
ADCCLK
= f
/2, ADON bit
APB2
mA
Doc ID 15058 Rev 5 41/79
Electrical characteristics STM32F101x4, STM32F101x6
Table 19. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
t
w(HSE)
t
w(HSE)
t
r(HSE)
t
f(HSE)
C
in(HSE)
DuCy
HSEL
I
User external clock source frequency
(1)
OSC_IN input pin high level voltage 0.7V
OSC_IN input pin low level voltage V
OSC_IN high or low time
OSC_IN rise or fall time
OSC_IN input capacitance
Duty cycle 45 55 %
(HSE)
OSC_IN Input leakage current VSS≤ VIN≤ V
L
(1)
(1)
(1)
DD
1825MHz
DD
SS
5
5pF
V
DD
0.3V
DD
20
±1 µA
ns
1. Guaranteed by design, not tested in production.
Low-speed external user clock generated from an external source
The characteristics given in Tab l e 2 0 result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in Ta bl e 8 .
Table 20. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
f
LSE_ext
V
LSEH
User external clock source frequency
(1)
OSC32_IN input pin high level voltage
0.7V
32.768 1000 kHz
DD
V
DD
V
V
LSEL
t
w(LSE)
t
w(LSE)
t
r(LSE)
t
f(LSE)
C
in(LSE)
DuCy
1. Guaranteed by design, not tested in production.
OSC32_IN input pin low level voltage
OSC32_IN high or low time
OSC32_IN rise or fall time
OSC32_IN input capacitance
Duty cycle 30 70 %
(LSE)
OSC32_IN Input leakage current VSS≤ VIN≤ V
I
L
(1)
(1)
(1)
DD
V
450
SS
5pF
0.3V
DD
50
±1 µA
ns
42/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
ai14127b
OS C _I N
External
STM32F10xxx
clock source
V
HSEH
t
f(HSE)
t
W(HSE)
I
L
90%
10%
T
HSE
t
t
r(HSE)
t
W(HSE)
f
HSE_ext
V
HSEL
Figure 18. High-speed external clock source AC timing diagram
Figure 19. Low-speed external clock source AC timing diagram
V
LSEH
90%
V
LSEL
10%
t
r(LSE)
External clock source
f
LSE_ext
T
LSE
t
f(LSE)
OSC32_IN
t
W(LSE)
I
L
t
W(LSE)
t
STM32F10xxx
ai14140c
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 21 . In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Doc ID 15058 Rev 5 43/79
Electrical characteristics STM32F101x4, STM32F101x6
ai14128b
OSC_OU T
OSC_IN
f
HSE
C
L1
R
F
STM32F10xxx
8 MHz resonator
Resonator with integrated capacitors
Bias
controlled
gain
R
EXT
(1)
C
L2
Table 21. HSE 4-16 MHz oscillator characteristics
(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
f
OSC_IN
R
Oscillator frequency 4 8 16 MHz
Feedback resistor 200 kΩ
F
Recommended load capacitance
C
i
g
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
versus equivalent serial resistance of the crystal (R
HSE driving current
2
Oscillator transconductance Startup 25 mA/V
m
(4)
Startup time VDD is stabilized 2 ms
S
RS = 30 Ω 30 pF
(3)
)
= 3.3 V, VIN = V
V
DD
SS
with 30 pF load
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
1mA
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 20). C
and C
L1
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
L1
microcontrollers” available from the ST website www.st.com.
44/79 Doc ID 15058 Rev 5
Figure 20. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Ta bl e 22 . In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
STM32F101x4, STM32F101x6 Electrical characteristics
resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 22. LSE oscillator characteristics (f
= 32.768 kHz)
LSE
Symbol Parameter Conditions Min Typ Max Unit
(1) (2)
R
F
Feedback resistor 5 MΩ
Recommended load capacitance
C
I
2
g
m
versus equivalent serial resistance of the crystal (R
LSE driving current
)
S
RS = 30 KΩ 15 pF
V
= 3.3 V
DD
VIN = V
SS
1.4 µA
Oscillator transconductance 5 µA/V
TA = 50 °C 1.5
T
= 25 °C 2.5
A
= 10 °C 4
T
A
T
= 0 °C 6
is
(3)
t
SU(LSE)
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
3. t
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Startup time
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
V
DD
stabilized
A
= -10 °C 10
T
A
T
= -20 °C 17
A
= -30 °C 32
T
A
= -40 °C 60
T
A
s
Note: For CL1 and C
it is recommended to use high-quality ceramic capacitors in the 5 pF to
L2
15 pF range selected to match the requirements of the crystal or resonator. C usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C Load capacitance C C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
stray
has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + C
L
L1
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of C
to use a resonator with a load capacitance C capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of C then C
= CL2 = 8 pF.
L1
Doc ID 15058 Rev 5 45/79
and CL2.
and C
L1
and CL2 (15 pF) it is strongly recommended
L1
7 pF. Never use a resonator with a load
L
= 6 pF, and C
L
stray
stray
L2,
where
= 2 pF,
are
Electrical characteristics STM32F101x4, STM32F101x6
ai14129b
OSC32_OU T
OSC32_IN
f
LSE
C
L1
R
F
STM32F10xxx
32.768 KHz resonator
Resonator with integrated capacitors
Bias
controlled
gain
C
L2
Figure 21. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in Tab l e 2 3 are derived from tests performed under the ambient temperature and V
High-speed internal (HSI) RC oscillator
supply voltage conditions summarized in Tab l e 8 .
DD
Table 23. HSI oscillator characteristics
(1)
Symbol Parameter Conditions Min Typ Max Unit
f
HSI
DuCy
ACC
t
su(HSI)
I
DD(HSI)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com.
3. Guaranteed by design, not tested in production.
4. Based on characterization, not tested in production.
Frequency 8 MHz
Duty cycle 45 55 %
(HSI)
Accuracy of the HSI
HSI
oscillator
HSI oscillator
(4)
startup time
HSI oscillator power
(4)
consumption
User-trimmed with the RCC_CR register
Factory­calibrated
(2)
TA = –40 to 105 °C –2 2.5 %
= –10 to 85 °C –1.5 2.2 %
T
A
(4)
T
= 0 to 70 °C –1.3 2 %
A
= 25 °C –1.1 1.8 %
T
A
12µs
80 100 µA
(3)
1
%
46/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
Low-speed internal (LSI) RC oscillator
Table 24. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
(2)
f
LSI
t
su(LSI)
I
DD(LSI)
1. VDD = 3 V, TA = –40 to 85 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Frequency 30 40 60 kHz
(3)
LSI oscillator startup time 85 µs
(3)
LSI oscillator power consumption 0.65 1.2 µA
(1)
Wakeup time from low-power mode
The wakeup times given in Ta bl e 2 5 are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under the ambient temperature and V voltage conditions summarized in Tabl e 8.
Table 25. Low-power mode wakeup timings
Symbol Parameter Typ Unit
t
WUSLEEP
t
WUSTOP
t
WUSTDBY
1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.
(1)

5.3.8 PLL characteristics

The parameters given in Tab l e 2 6 are derived from tests performed under the ambient temperature and V
Table 26. PLL characteristics
Symbol Parameter
f
PLL_IN
f
PLL_OUT
(1)
Wakeup from Sleep mode 1.8 µs
Wakeup from Stop mode (regulator in run mode) 3.6
Wakeup from Stop mode (regulator in low-power mode) 5.4
(1)
Wakeup from Standby mode 50 µs
supply voltage conditions summarized in Tab l e 8 .
DD
Val ue
PLL input clock
(2)
Min
(1)
Typ Max
18.025MHz
(1)
PLL input clock duty cycle 40 60 %
PLL multiplier output clock 16 36 MHz
supply
DD
µs
Unit
Doc ID 15058 Rev 5 47/79
Electrical characteristics STM32F101x4, STM32F101x6
Table 26. PLL characteristics
Val ue
Symbol Parameter
Min
(1)
Typ Max
(1)
Unit
t
LOCK
PLL lock time 200 µs
Jitter Cycle-to-cycle jitter 300 ps
1. Based on device characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f
PLL_OUT
.

5.3.9 Memory characteristics

Flash memory
The characteristics are given at TA = –40 to 85 °C unless otherwise specified.
Table 27. Flash memory characteristics
Symbol Parameter Conditions Min
t
prog
t
ERASE
t
ME
I
DD
V
prog
1. Guaranteed by design, not tested in production.
16-bit programming time TA = –40 to +85 °C 40 52.5 70 µs
Page (1 KB) erase time TA = –40 to +85 °C 20 40 ms
Mass erase time TA = –40 to +85 °C 20 40 ms
Supply current
Programming voltage 2 3.6 V
Read mode f
= 36 MHz with 1 wait
HCLK
state, V
= 3.3 V
DD
Write / Erase modes f
= 36 MHz, VDD = 3.3 V
HCLK
Power-down mode / Halt,
= 3.0 to 3.6 V
V
DD
(1)
Typ Max
20 mA
50 µA
(1)
Unit
5mA
Table 28. Flash memory endurance and data retention
Symbol Parameter Conditions
N
t
1. Based on characterization not tested in production.
2. Cycling performed over the whole temperature range.

5.3.10 EMC characteristics

Endurance TA = –40 °C to 85 °C
END
RET
Data retention
TA = 85 °C, 1 kcycle
T
Susceptibility tests are performed on a sample basis during device characterization.
48/79 Doc ID 15058 Rev 5
= 55 °C, 10 kcycle
A
(2)
(2)
Min
10
30
20
Val ue
(1)
Typ Max
Unit
kcycles
Ye a r s
STM32F101x4, STM32F101x6 Electrical characteristics
Functional EMS (Electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Tab l e 2 9 . They are based on the EMS levels and classes defined in application note AN1709.
Table 29. EMS characteristics
Symbol Parameter Conditions Level/Class
= 3.3 V, TA = +25 °C,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V
SS
pins
to induce a functional disturbance
DD
f
= 36 MHz
HCLK
conforms to IEC 61000-4-2
VDD = 3.3 V, TA = +25 °C, f
= 36 MHz
HCLK
conforms to IEC 61000-4-4
DD
and
2B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Doc ID 15058 Rev 5 49/79
Electrical characteristics STM32F101x4, STM32F101x6
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC61967-2 standard which specifies the test board and the pin loading.
Table 30. EMI characteristics
Symbol Parameter Conditions
Monitored
frequency band
0.1 MHz to 30 MHz 7
= 3.3 V, TA = 25 °C,
V
DD
S
EMI
Peak level
LQFP100 package compliant with IEC 61967-2
130 MHz to 1GHz 13
SAE EMI Level 3.5 -

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.
Table 31. ESD absolute maximum ratings
Symbol Ratings Conditions Class
Max vs. [f
8/36 MHz
HSE/fHCLK
Maximum
value
(1)
]
Unit
dBµV30 MHz to 130 MHz 8
Unit
V
ESD(HBM)
V
ESD(CDM)
1. Based on characterization results, not tested in production.
Electrostatic discharge voltage (human body model)
Electrostatic discharge voltage (charge device model)
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
50/79 Doc ID 15058 Rev 5
These tests are compliant with EIA/JESD 78 IC latch-up standard.
Table 32. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class T
A
TA = +25 °C
conforming to JESD22-A114
TA = +25 °C
conforming to JESD22-C101
2 2000
II 500
= +85 °C conforming to JESD78A II level A
V
STM32F101x4, STM32F101x6 Electrical characteristics

5.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).
The test results are given in Tab l e 3 3
Table 33. I/O current injection susceptibility
Symbol Description
(for standard, 3 V-capable I/O pins) should be avoided during normal product
DD
Functional susceptibility
Negative injection
Positive
injection
Unit
I
INJ
Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13
Injected current on all FT pins -5 +0
-0 +0
mA
Injected current on any other pin -5 +5
Doc ID 15058 Rev 5 51/79
Electrical characteristics STM32F101x4, STM32F101x6

5.3.13 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Ta bl e 3 4 are derived from tests performed under the conditions summarized in Tab l e 8 . All I/Os are CMOS and TTL compliant.
Table 34. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
Standard IO input low level voltage
V
IL
IO FT
(1)
voltage
Standard IO input high level voltage
V
IH
IO FT
(1)
voltage
input low level
input high level
–0.3 0.28*(V
–0.3 0.32*(V
0.41*(V
> 2 V
V
DD
V
2 V 5.2
DD
0.42*(V
-2 V)+1.3 V VDD+0.3 V
DD
-2 V)+1 V
DD
-2 V)+0.8 V V
DD
-2V)+0.75 V V
DD
5.5
Standard IO Schmitt trigger voltage
hys
hysteresis
V
IO FT Schmitt trigger voltage hysteresis
Input leakage current
I
lkg
(2)
(2)
V
(4)
VIN≤ V
SS
Standard I/Os
= 5 V
V
IN
DD
I/O FT
R
R
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
3. With a minimum of 100 mV.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
Weak pull-up equivalent
PU
PD
C
IO
(5)
resistor
Weak pull-down equivalent resistor
(5)
I/O pin capacitance 5 pF
V
= V
IN
SS
V
= V
IN
DD
disabled.
PMOS/NMOS contribution
to the series resistance is minimum (~10% order).
200 mV
DD
(3)
5% V
±1
3
30 40 50 kΩ
30 40 50 kΩ
V
mV
µA
52/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
ai17277b
VDD (V)
1.3
0.8
2 3.6
Input range
not guaranteed
1.59
1
2.7
V
IH
=0.41(V
DD
-2)+1.3
3
0.7
CMOS standard requirement V
IH
=0.65V
DD
3.3
VIH/VIL (V)
CMOS standard requirement V
IL
=0.35V
DD
V
IL
= 0.28(V
DD
–2)+0.8
1.25
1.96
1.71
1.71
1.59
1
1.08
1.08
V
ILmax
V
IHmin
AI

)NPUTRANGE
NOTGUARANTEED
6)(6),6






44,REQUIREMENTS 6)(6
6
)(
6
$$

6
),
6
$$

44,REQUIREMENTS 6),6
6$$6
7
),MAX
7
)(MIN
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 22 and Figure 23 for standard I/Os, and in Figure 24 and Figure 25 for 5 V tolerant I/Os.
Figure 22. Standard I/O input characteristics - CMOS port
Figure 23. Standard I/O input characteristics - TTL port
Doc ID 15058 Rev 5 53/79
Electrical characteristics STM32F101x4, STM32F101x6
6$$


#-/3STANDARDREQUIREMENTS6
)(
6
$$
#-/3STANDARDREQUIRMENT6
),
6
$$





 
 
 
6)(6),6
6$$6
)NPUTRANGE
NOTGUARANTEED
AIB
6
)(
6
$$

6
),
6
$$




NOTGUARANTEED
)NPUTRANGE


44,REQUIREMENT6)(6
6
)(
6
$$

6
),
6
$$

44,REQUIREMENTS6),6
6)(6),6
6$$6
7
),MAX
7
)(MIN
AI
Figure 24. 5 V tolerant I/O input characteristics - CMOS port
Figure 25. 5 V tolerant I/O input characteristics - TTL port
54/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
Output driving current
The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed V
OL/VOH
).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V I
(see Ta bl e 6 ).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V I
(see Ta bl e 6).
VSS
cannot exceed the absolute maximum rating
DD,
cannot exceed the absolute maximum rating
SS
plus the maximum Run
DD,
plus the maximum Run
SS
Output voltage levels
Unless otherwise specified, the parameters given in Ta bl e 3 5 are derived from tests performed under the ambient temperature and V in Ta bl e 8 . All I/Os are CMOS and TTL compliant.
Table 35. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
supply voltage conditions summarized
DD
Output Low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at the same time
Output High level voltage for an I/O pin
(3)
V
OH
V
V
OH
V
V
OH
V
V
OH
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
4. Based on characterization data, not tested in production.
when 8 pins are sourced at the same time
Output low level voltage for an I/O pin
(1)
OL
when 8 pins are sunk at the same time
Output high level voltage for an I/O pin
(3)
when 8 pins are sourced at the same time
Output low level voltage for an I/O pin
(1)
OL
when 8 pins are sunk at the same time
Output high level voltage for an I/O pin
(3)
when 8 pins are sourced at the same time
Output low level voltage for an I/O pin
(1)
OL
when 8 pins are sunk at the same time
Output high level voltage for an I/O pin
(3)
when 8 pins are sourced at the same time
and the sum of I
Table 6 and the sum of I
(I/O ports and control pins) must not exceed I
IO
(I/O ports and control pins) must not exceed I
IO
CMOS port
I
IO
2.7 V < VDD < 3.6 V
TTL port
I
IO
2.7 V < V
I
= +20 mA
IO
2.7 V < VDD < 3.6 V
= +6 mA
I
IO
2 V < VDD < 2.7 V
VSS
= +8 mA,
(2)
= +8 mA
< 3.6 V
DD
.
VDD
(2)
(4)
(4)
,,
.
V
–0.4
DD
2.4
V
–1.3
DD
VDD–0.4
0.4
0.4
1.3
0.4
V
V
V
V
Doc ID 15058 Rev 5 55/79
Electrical characteristics STM32F101x4, STM32F101x6
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 26 and
Ta bl e 3 6, respectively.
Unless otherwise specified, the parameters given in Ta bl e 3 6 are derived from tests performed under the ambient temperature and V in Ta bl e 8 .
Table 36. I/O AC characteristics
MODEx
[1:0] bit
value
10
01
11
Symbol Parameter Conditions Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum Frequency
Output high to low level fall time
Output low to high level rise time
Pulse width of external
-t
EXTIpw
signals detected by the EXTI controller
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 26.
3. Guaranteed by design, not tested in production.
(1)
(2)
(2)
(2)
supply voltage conditions summarized
DD
CL = 50 pF, V
= 50 pF, V
C
L
CL= 50 pF, V
= 50 pF, V
C
L
CL= 30 pF, V
= 50 pF, V
C
L
C
= 50 pF, V
L
CL = 30 pF, V
= 50 pF, V
C
L
CL = 50 pF, VDD = 2 V to 2.7 V 12
C
= 30 pF, V
L
CL = 50 pF, V
CL = 50 pF, V
= 2 V to 3.6 V 2 MHz
DD
(3)
125
= 2 V to 3.6 V
DD
= 2 V to 3.6 V 10 MHz
DD
= 2 V to 3.6 V
DD
= 2.7 V to 3.6 V 50 MHz
DD
= 2.7 V to 3.6 V 30 MHz
DD
= 2 V to 2.7 V 20 MHz
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
125
25
25
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
10 ns
ns
ns
ns
56/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
ai14131
10%
90%
50%
t
r(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum fr equency is achieved if (tr + tf) 2/3) T and if the duty cycle is (45-55%)
10 %
50%
90%
when loaded by 50pF
T
t
r(IO)out
ai14132d
STM32F10x
R
PU
NRST
(2)
V
DD
Filter
Internal reset
0.1 µF
External reset circuit
(1)
Figure 26. I/O AC characteristics definition

5.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Ta bl e 3 7 are derived from tests performed under the ambient temperature and V in Ta bl e 8 .
Table 37. NRST pin characteristics
(see Ta bl e 3 4).
PU
supply voltage conditions summarized
DD
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
V
V
V
NF(NRST)
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
(1)
NRST Input low level voltage –0.5 0.8
(1)
NRST Input high level voltage 2 VDD+0.5
hys(NRST)
R
PU
F(NRST)
the series resistance must be minimum
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent resistor
(1)
NRST Input filtered pulse 100 ns
(1)
NRST Input not filtered pulse 300 ns
(~10% order).
(2)
200 mV
V
IN
= V
30 40 50 kΩ
SS
Figure 27. Recommended NRST pin protection
V
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the V
Table 37. Otherwise the reset will not be taken into account by the device.
Doc ID 15058 Rev 5 57/79
max level specified in
IL(NRST)
Electrical characteristics STM32F101x4, STM32F101x6

5.3.15 TIM timer characteristics

The parameters given in Tab l e 3 8 are guaranteed by design.
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 38. TIMx
Symbol Parameter Conditions Min Max Unit
(1)
characteristics
t
res(TIM)
f
EXT
Res
Timer resolution time
Timer external clock frequency on CH1 to CH4
Timer resolution 16 bit
TIM
16-bit counter clock period
t
COUNTER
when internal clock is selected
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
Maximum possible count

5.3.16 Communications interfaces

I2C interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 3 9 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 8 .
The STM32F101xx Low-density access line I standard I SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V
The I
injection characteristics
(SDA and SCL)
2
C communication protocol with the following restrictions: t
2
C characteristics are described in Ta b le 3 9 . Refer also to
for more details on the input/output alternate function characteristics
.
1
f
0
f
TIMxCLK
TIMxCLK
= 36 MHz
= 36 MHz
27.8 ns
f
TIMxCLK
/2
018MHz
1 65536
f
TIMxCLK
= 36 MHz
0.0278 1820 µs
65536 × 65536
f
= 36 MHz
TIMxCLK
frequency and VDD supply voltage
PCLK1
2
C interface meets the requirements of the
119.2 s
he I/O pins SDA and
is disabled, but is still present.
DD
Section 5.3.12: I/O current
t
TIMxCLK
MHz
t
TIMxCLK
t
TIMxCLK
58/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
Table 39. I2C characteristics
Symbol Parameter
Standard mode I
2C(1)
Fast mode I2C
Min Max Min Max
(1)(2)
Unit
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
Guaranteed by design, not tested in production.
1.
2. f
PCLK1
4 MHz to achieve fast mode I maximum I2C fast mode clock.
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
3. period of SCL signal.
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
4. undefined region of the falling edge of SCL.
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100
SDA data hold time 0
(3)
(4)
0
SDA and SCL rise time 1000 20+0.1Cb300
SDA and SCL fall time 300 300
Start condition hold time 4.0 0.6
Repeated Start condition setup time
4.7 0.6
Stop condition setup time 4.0 0.6 µs
Stop to Start condition time (bus free)
Capacitive load for each bus line 400 400 pF
b
must be higher than 2 MHz to achieve standard mode I2C frequencies. It must be higher than
2
C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz
4.7 1.3 µs
900
µs
(3)
ns
µs
Doc ID 15058 Rev 5 59/79
Electrical characteristics STM32F101x4, STM32F101x6
ai14133d
Start
SDA
100 Ω
4.7kΩ
I²C bus
4.7kΩ
100 Ω
V
DD
V
DD
STM32F10x
SDA
SCL
t
f(SDA)
t
r(SDA)
SCL
t
h(STA)
t
w(SCLH)
t
w(SCLL)
t
su(SDA)
t
r(SCL)
t
f(SCL)
t
h(SDA)
Start repeated
Start
t
su(STA)
t
su(STO)
Stop
t
su(STO:STA)
Figure 28. I2C bus AC waveforms and measurement circuit
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
Table 40. SCL frequency (f
f
(kHz)
SCL
= MHz, VDD = 3.3 V)
PCLK1
400 0x801E
DD
.
(1)(2)
I2C_CCR value
(1)
R
= 4.7 kΩ
P
300 0x8028
200 0x803C
100 0x00B4
50 0x0168
20 0x0384
1. RP = External pull-up resistance, f
2. For speeds around 200 kHz, the tolerance on the achieved speed is of tolerance on the achieved speed components used to design the application.
60/79 Doc ID 15058 Rev 5
= I2C speed,
SCL
±2%. These variations depend on the accuracy of the external
±5%. For other speed ranges, the
STM32F101x4, STM32F101x6 Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Ta bl e 4 1 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 8 .
Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 41. SPI characteristics
Symbol Parameter Conditions Min Max Unit
frequency and VDD supply voltage
PCLKx
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
SPI clock frequency
Master mode 0 18
Slave mode 0 18
SPI clock rise and fall time
(1)
NSS setup time Slave mode 4 t
(1)
NSS hold time Slave mode 73
(1)
SCK high and low time
(1)
Data input setup time
(1)
Master mode
Data input setup time
(1)
Capacitive load: C = 30 pF 8
Master mode, f
= 36 MHz,
PCLK
presc = 4
SPI 1
Slave mode
Data input hold time
(1)
Master mode
Data input hold time
(1)
SPI 1
Slave mode
Slave mode, f
(1)(2)
Data output access time
presc = 4
Slave mode, f
(1)(3)
Data output disable time Slave mode 10
(1)
Data output valid time Slave mode (after enable edge) 25
(1)
Data output valid time
(1)
Data output hold time
(1)
Master mode (after enable edge)
Slave mode (after enable edge) 25
Master mode (after enable
= 36 MHz,
PCLK
= 24 MHz 0 4 t
PCLK
edge)
PCLK
50 60
1
3
055
PCLK
3
4
MHz
ns
1. Based on characterization, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
Doc ID 15058 Rev 5 61/79
Electrical characteristics STM32F101x4, STM32F101x6
ai14134c
SCK Input
CPHA=0
MOSI
INPUT
MISO
OUT PUT
CPHA=0
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT PUT
CPHA=1
MS B O U T
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
t
SU(NSS)
t
c(SCK)
t
h(NSS)
t
a(SO)
t
w(SCKH)
t
w(SCKL)
t
v(SO)
t
h(SO)
t
r(SCK)
t
f(SCK)
t
dis(SO)
t
su(SI)
t
h(SI)
NSS input
Figure 29. SPI timing diagram - slave mode and CPHA = 0
Figure 30. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
DD
.
(1)
62/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
ai14136
SCK Input
CPHA=0
MOSI
OUTUT
MISO
INP UT
CPHA=0
MSBIN
M SB OUT
BIT6 IN
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Input
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
Figure 31. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
DD
.
Doc ID 15058 Rev 5 63/79
Electrical characteristics STM32F101x4, STM32F101x6

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Ta bl e 4 2 are derived from tests performed under the ambient temperature, f conditions summarized in Ta bl e 8 .
Note: It is recommended to perform a calibration after each power-up.
Table 42. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
frequency and V
PCLK2
supply voltage
DDA
V
f
TRIG
R
R
C
t
t
t
STAB
t
CONV
DDA
f
ADC
f
S
V
AIN
AIN
ADC
ADC
CAL
t
lat
latr
t
S
Power supply 2.4 3.6 V
ADC clock frequency 0.6 14 MHz
(1)
Sampling rate 0.05 1 MHz
f
= 14 MHz 823 kHz
(1)
External trigger frequency
Conversion voltage range
(1)
External input impedance
(1)
Sampling switch resistance 1 kΩ
Internal sample and hold
(1)
(2)
ADC
See Equation 1 and
Ta bl e 4 3 for details
0 (V
SSA
or V
tied to ground)
REF-
V
capacitor
f
= 14 MHz 5.9 µs
(1)
Calibration time
ADC
83 1/f
= MHz 0.214 µs
f
Injection trigger conversion
(1)
ADC
latency
= 14 MHz 0.143 µs
f
Regular trigger conversion
(1)
ADC
latency
(1)
Sampling time f
(1)
Power-up time 0 0 1 µs
Total conversion time
(1)
= 14 MHz
ADC
f
= 14 MHz 1 18 µs
ADC
(including sampling time)
0.107 17.1 µs
1.5 239.5 1/f
14 to 252 (t
for sampling +12.5 for
S
successive approximation)
17 1/f
REF+
ADC
V
50 kΩ
8pF
ADC
(3)
3
2
(3)
1/f
1/f
1/f
ADC
ADC
ADC
ADC
1. Guaranteed by design, not tested in production.
2. V
is internally connected to V
REF+
3. For external triggers, a delay of 1/f
DDA
PCLK2
and V
is be internally connected to V
REF-
must be added to the latency specified in Table 42.
64/79 Doc ID 15058 Rev 5
SSA
.
STM32F101x4, STM32F101x6 Electrical characteristics
R
AIN
T
S
f
ADCCADC
2
N2+
()ln××
------------------------------------------------------------- - R
ADC
<
Equation 1: R
max formula:
AIN
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 43. R
Ts (cycles) tS (µs) R
max for f
AIN
= 14 MHz
ADC
(1)
max (kΩ)
AIN
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.5 2.04 25.2
41.5 2.96 37.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Table 44. ADC accuracy - limited test conditions
Symbol Parameter Test conditions Typ Max
(1) (2)
(3)
Unit
ET Total unadjusted error
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
EL Integral linearity error ±0.8 ±1.5
f
= 28 MHz,
PCLK2
f
= 14 MHz, R
ADC
= 3 V to 3.6 V
V
DDA
= 25 °C
T
A
< 10 kΩ,
AIN
Measurements made after ADC calibration
±1.3 ±2
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
INJ(PIN)
and ΣI
in Section 5.3.12 does not
INJ(PIN)
3. Based on characterization, not tested in production.
Doc ID 15058 Rev 5 65/79
Electrical characteristics STM32F101x4, STM32F101x6
E
O
E
G
1LSB
IDEAL
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
T
=Total u nadjusted er ror: maximum deviation
between the actual and the ideal transfer curves.
E
O
=Offset error: deviation between the first actual
transition and the first ideal one.
E
G
=Gain er ror: deviation between the last ideal
transition and the last actual one.
E
D
=Differential linearity error: maximum deviation
between actual steps and the ideal one.
E
L
=Integral linearity error: maximum deviation between any actual transition and the end point correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
1234567
4093 4094 4095 4096
(1)
(2)
E
T
E
D
E
L
(3)
V
DDA
V
SSA
ai15497
V
DDA
4096
[1LSB
IDEAL =
Table 45. ADC accuracy
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
(1) (2) (3)
f
= 28 MHz,
PCLK2
= 14 MHz, R
f
ADC
V
= 2.4 V to 3.6 V
DDA
< 10 kΩ,
AIN
Measurements made after ADC calibration
(4)
±2 ±5
EL Integral linearity error ±1.5 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. Better performance could be achieved in restricted V
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
, frequency and temperature ranges.
DD
INJ(PIN)
and ΣI
in Section 5.3.12 does not
INJ(PIN)
4. Based on characterization, not tested in production.
Figure 32. ADC accuracy characteristics
Unit
LSB
66/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Electrical characteristics
ai14139d
STM32F10xxx
V
DD
AINx
IL±1 µA
0.6 V
V
T
R
AIN
(1)
C
parasitic
V
AIN
0.6 V
V
T
R
ADC
(1)
C
ADC
(1)
12-bit
converter
Sample and hold ADC converter
Figure 33. Typical connection diagram using the ADC
1. Refer to Table 42 for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (roughly 7 pF). A high C this, f
should be reduced.
ADC
AIN
, R
and C
ADC
value will downgrade conversion accuracy. To remedy
parasitic
ADC
.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 34. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 34. Power supply and reference decoupling
1 µF // 10 nF
STM32F10xx4/6
V
DDA
V
SSA
ai15498
Doc ID 15058 Rev 5 67/79
Electrical characteristics STM32F101x4, STM32F101x6

5.3.18 Temperature sensor characteristics

Table 46. TS characteristics
Symbol Parameter Min Typ Max Unit
(1)
T
L
Avg_Slope
(1)
V
25
(2)
t
START
S_temp
(3)(2)
T
V
(1)
Average slope 4.0 4.3 4.6 mV/°C
linearity with temperature
SENSE
Voltage at 25°C 1.34 1.43 1.52 V
Startup time 4 10 µs
ADC sampling time when reading the temperature
1. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
±1 ±2
17.1 µs
°C
68/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Package characteristics

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 15058 Rev 5 69/79
Package characteristics STM32F101x4, STM32F101x6
Seating
Plane
C
A3
A1
A2
A
ddd C
Pin no. 1 ID
R = 0.20
Bottom View
1
48
e
E
L
L
12
13
D2
b
24
25
b
E2
36
37
e
D
V0_ME
0.50
7.30
0.75
5.80
5.80
6.20
6.20
5.60
5.60
13
1
24
37
ai15799
12
48
36
25
0.55
0.30
0.20
Figure 35. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package
outline
(1)
Figure 36. Recommended footprint
(dimensions in mm)
(1)(2)
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.

Table 47. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

millimeters inches
(1)
Symbol
Min Typ Max Min Typ Max
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.020 0.050 0.0008 0.0020
A2 0.650 1.000 0.0256 0.0394
A3 0.250 0.0098
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D2 2.250 4.700 5.250 0.0886 0.1850 0.2067
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E2 2.250 4.700 5.250 0.0886 0.1850 0.2067
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
70/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Package characteristics
Seating plane
ddd C
C
A3
A1
AA2
Pin # 1 ID R = 0.20
ZR_ME
E2
b
19
10
18
27
28
36
19
D2
E
D
e
L
0.30
6.30
0.50
1.00
4.30
4.30
4.80
4.80
4.10
4.10
1
28
9
19
ai14870b
36
27
18
10
0.75
Figure 37. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package
outline
(1)
Figure 38. Recommended footprint
(dimensions in mm)
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.

Table 48. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data

millimeters inches
Symbol
Min Typ Max Min Typ Max
(1)(2)
(1)
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.020 0.050 0.0008 0.0020
A2 0.650 1.000 0.0256 0.0394
A3 0.250 0.0098
b 0.180 0.230 0.300 0.0071 0.0091 0.0118
D 5.875 6.000 6.125 0.2313 0.2362 0.2411
D2 1.750 3.700 4.250 0.0689 0.1457 0.1673
E 5.875 6.000 6.125 0.2313 0.2362 0.2411
E2 1.750 3.700 4.250 0.0689 0.1457 0.1673
e 0.450 0.500 0.550 0.0177 0.0197 0.0217
L 0.350 0.550 0.750 0.0138 0.0217 0.0295
ddd 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15058 Rev 5 71/79
Package characteristics STM32F101x4, STM32F101x6
A
A2
A1
c
L1
L
E
E1
D
D1
e
b
ai14398b
48
3249
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile
quad flat package outline
(1)
Figure 40. Recommended
footprint
(1)(2)
1. Drawing is not to scale.
2. Dimensions are in millimeters.

Table 49. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data

millimeters inches
(1)
Symbol
Min Typ Max Min Typ Max
A1 0.05 0.15 0.0020 0.0059
A2 1.35 1.40 1.45 0.0531 0.0551 0.0571
D1 10.00 0.3937
E1 10.00 0.3937
L1 1.00 0.0394
1. Values in inches are converted from mm and rounded to 4 decimal digits.
72/79 Doc ID 15058 Rev 5
A 1.60 0.0630
b 0.17 0.22 0.27 0.0067 0.0087 0.0106
c 0.09 0.20 0.0035 0.0079
D 12.00 0.4724
E 12.00 0.4724
e 0.50 0.0197
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.0177 0.0236 0.0295
Number of pins
N64
STM32F101x4, STM32F101x6 Package characteristics
D
D1
D3
A1
L1
L
k
c
b
ccc
C
A1
A2A
C
Seating plane
0.25 mm
Gage plane
E3
E1
E
12
13
24
25
48
1
36
37
Pin 1 identification
5B_ME
9.70
5.80
7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911b
1348
Figure 41. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat
package outline
(1)
Figure 42. Recommended
footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.

Table 50. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data

millimeters inches
(1)
Symbol
Min Typ Max Min Typ Max
(1)(2)
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.500 0.2165
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.500 0.2165
e 0.500 0.0197
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
k 0°3.5°7° 0°3.5°7°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15058 Rev 5 73/79
Package characteristics STM32F101x4, STM32F101x6

6.2 Thermal characteristics

The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 8: General operating conditions on page 30.
The maximum chip-junction temperature, T
max, in degrees Celsius, may be calculated
J
using the following equation:
T
max = TA max + (PD max x ΘJA)
J
Where:
T
Θ
P
P
max is the maximum ambient temperature in °C,
A
is the package junction-to-ambient thermal resistance, in °C/W,
JA
max is the sum of P
D
max is the product of I
INT
max and P
INT
and VDD, expressed in Watts. This is the maximum chip
DD
max (PD max = P
I/O
INT
max + P
I/O
max),
internal power.
P
max represents the maximum power dissipation on output pins where:
I/O
P
max = Σ (VOL × IOL) + Σ((V
I/O
taking into account the actual V
OL
– VOH) × IOH),
DD
/ IOL and VOH / I
of the I/Os at low and high level in the
OH
application.

Table 51. Package thermal characteristics

Symbol Parameter Value Unit
Thermal resistance junction-ambient
LQFP 64 - 10 x 10 mm / 0.5 mm pitch
Thermal resistance junction-ambient
LQFP 48 - 7 x 7 mm / 0.5 mm pitch
Θ
JA
Thermal resistance junction-ambient
VFQFPN 48 - 7 x 7 mm / 0.5 mm pitch
Thermal resistance junction-ambient
VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch
45
55
16
18
°C/W

6.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.
74/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Package characteristics
0
100
200
300
400
500
600
700
65 75 85 95 105 115
TA (°C)
P
D
(mW)
Suffix 6

6.2.2 Evaluating the maximum junction temperature for an application

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 52: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. Here, only temperature range 6 is available (–40 to 85 °C).
The following example shows how to calculate the temperature range needed for a given application, making it possible to check whether the required temperature range is compatible with the STM32F101xx junction temperature range.
Example: high-performance application
Assuming the following application conditions:
Maximum ambient temperature T I
= 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
DDmax
level with I mode at low level with I
P
INTmax =
P
IOmax =
This gives: P
P
Dmax =
Thus: P
Dmax
= 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
OL
= 20 mA, VOL= 1.3 V
OL
50 mA × 3.5 V= 175 mW
20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
= 175 mW and P
INTmax
175 + 272 = 447 mW
= 447 mW
Using the values obtained in Tab le 5 1 T
For LQFP64, 45 °C/W
T
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C
Jmax
This is within the junction temperature range of the STM32F101xx (–40 < T
= 82 °C (measured according to JESD51-2),
Amax
= 272 mW
IOmax
is calculated as follows:
Jmax
< 105 °C).
J
Figure 43. LQFP64 P
max vs. T
D
A
Doc ID 15058 Rev 5 75/79
Ordering information scheme STM32F101x4, STM32F101x6

7 Ordering information scheme

Table 52. Ordering information scheme

Example: STM32 F 101 C 4 T 6 A xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
101 = access line
Pin count
T = 36 pins C = 48 pins R = 64 pins
Flash memory size
4 = 16 Kbytes of Flash memory 6 = 32 Kbytes of Flash memory
Package
T = LQFP U = VFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
Internal code
“A” or blank
(1)
Options
xxx = programmed parts TR = tape and real
1. For STM32F101x6 devices with a blank internal code, please refer to the STM32F103x6/8/B datasheet available from the ST website: www.st.com.
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.
76/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Revision history

8 Revision history

Table 53. Document revision history

Date Revision Changes
23-Sep-2008 1 Initial release.
I/O information clarified on page 1. Figure 7: Memory map modified. In Table 4: Low-density STM32F101xx pin definitions: PB4, PB13, PB14,
PB15, PB3/TRACESWO moved from Default column to Remap column.
is not available in the offered packages: Figure 1: STM32F101xx
V
REF-
Low-density access line block diagram, Figure 10: Power supply scheme
and Figure 34: Power supply and reference decoupling updated,
07-Apr-2009 2
24-Sep-2009 3
Figure 30: Power supply and reference decoupling (V to V
) removed.
DDA
Note modified in Table 12: Maximum current consumption in Run mode,
code with data processing running from Flash and Table 14: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 15, Figure 16 and Figure 17 show typical curves.
ACC
max values modified in Table 23: HSI oscillator characteristics.
HSI
Small text changes.
Note 5 updated and Note 4 added in Table 4: Low-density STM32F101xx pin definitions.
RERINT
and T
V
voltage. Typical I
added to Table 11: Embedded internal reference
Coeff
DD_VBAT
value added in Table 15: Typical and maximum
current consumptions in Stop and Standby modes. Figure 14: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added.
f
min modified in Table 19: High-speed external user clock
HSE_ext
characteristics.
and CL2 replaced by C in Table 21: HSE 4-16 MHz oscillator
C
L1
characteristics and Table 22: LSE oscillator characteristics (fLSE =
32.768 kHz), notes modified and moved below the tables. Note 1 modified below Figure 20: Typical application with an 8 MHz
crystal. Table 23: HSI oscillator characteristics modified. Conditions removed
from Table 25: Low-power mode wakeup timings.
Figure 27: Recommended NRST pin protection modified.
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.10: EMC characteristics on page 48.
Jitter added to Table 26: PLL characteristics.
and R
C
ADC
R
max values modified in Table 43: RAIN max for fADC = 14 MHz.
AIN
parameters modified in Table 42: ADC characteristics.
AIN
Small text changes.
not connected
REF+
Doc ID 15058 Rev 5 77/79
Revision history STM32F101x4, STM32F101x6
Table 53. Document revision history (continued)
Date Revision Changes
Added VFQFPN48 package. Updated note 2 below Table 39: I2C characteristics
20-May-2010 4
19-Apr-2011 5
Updated Figure 28: I2C bus AC waveforms and measurement circuit(1) Updated Figure 27: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics
Updated footnotes below Table 5: Voltage characteristics on page 29 and Table 6: Current characteristics on page 30
Updated tw min in Table 19: High-speed external user clock
characteristics on page 42
Updated startup time in Table 22: LSE oscillator characteristics (fLSE =
32.768 kHz) on page 45
Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics
78/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 15058 Rev 5 79/79
Loading...