ST STM32F101C4, STM32F101R4, STM32F101T4, STM32F101C6, STM32F101R6 User Manual

...
Low-density access line, ARM-based 32-bit MCU with
LQFP48
7 x 7 mm
LQFP64
10 x 10 mm
VFQFPN36
6 × 6 mm
VFQFPN48
7 × 7 mm
16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
Features
Core: ARM 32-bit Cortex™-M3
– 36 MHz maximum frequency,
1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access
– Single-cycle multiplication and hardware
division
Memories
– 16 to 32 Kbytes of Flash memory – 4 to 6 Kbytes of SRAM
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR and programmable voltage
detector (PVD) – 4-to-16 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC – PLL for CPU clock – 32 kHz oscillator for RTC with calibration
Low power
– Sleep, Stop and Standby modes –V
Debug mode
– Serial wire debug (SWD) and JTAG
DMA
– 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs,
1 × 12-bit, 1 µs A/D converter (up to 16
channels) – Conversion range: 0 to 3.6 V – Temperature sensor
Up to 51 fast I/O ports
– 26/37/51 I/Os, all mappable on 16 external
supply for RTC and backup registers
BAT
interfaces
2
I
Cs and USARTs
interrupt vectors and almost all 5 V-tolerant
CPU
STM32F101x4 STM32F101x6
Up to 5 timers
– Up to two16-bit timers, each with up to 4
IC/OC/PWM or pulse counter
– 2 watchdog timers (Independent and
Window)
– SysTick timer: 24-bit downcounter
Up to 4 communication interfaces
– 1 x I – Up to 2 USARTs (ISO 7816 interface, LIN,
– 1 × SPI (18 Mbit/s)
CRC calculation unit, 96-bit unique ID
ECOPACK

Table 1. Device summary

STM32F101x4
STM32F101x6
2
C interface (SMBus/PMBus)
IrDA capability, modem control)
®
packages
Reference Part number
STM32F101C4, STM32F101R4, STM32F101T4
STM32F101C6, STM32F101R6, STM32F101T6
April 2011 Doc ID 15058 Rev 5 1/79
www.st.com
1
Contents STM32F101x4, STM32F101x6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15
2.3.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15
2.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.9 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18
2.3.15 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.16 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.17 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.18 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.19 I
²
C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . 19
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Contents
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 31
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 31
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 50
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Evaluating the maximum junction temperature for an application . . . . . 75
Doc ID 15058 Rev 5 3/79
Contents STM32F101x4, STM32F101x6
7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Low-density STM32F101xx device features and peripheral counts . . . . . . . . . . . . . . . . . . 11
Table 3. STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Low-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 8. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 9. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 10. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 11. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 12. Maximum current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. Maximum current consumption in Run mode, code with data processing
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Maximum current consumption in Sleep mode, code running from Flash
or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 15. Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 36
Table 16. Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 40
Table 18. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 19. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 20. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 21. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 22. LSE oscillator characteristics (f
Table 23. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 24. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 25. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 26. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 27. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 28. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 29. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 30. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 31. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 32. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 33. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 34. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 35. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 36. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 37. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 38. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 39. I Table 40. SCL frequency (f
Table 41. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
= MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
PCLK1
Table 42. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 43. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ADC
Table 44. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LSE
Doc ID 15058 Rev 5 5/79
List of tables STM32F101x4, STM32F101x6
Table 45. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 46. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 47. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 70
Table 48. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 71
Table 49. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 72
Table 50. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 73
Table 51. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 52. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 53. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 List of figures
List of figures
Figure 1. STM32F101xx Low-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F101xx Low-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4. STM32F101xx Low-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. STM32F101xx Low-density access line VFQPFN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 35
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 35
Figure 14. Typical current consumption on V
V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
BAT
Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus
temperature at V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DD
Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus
temperature at V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
DD
Figure 17. Typical current consumption in Standby mode versus temperature at V
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 19. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 22. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 23. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 24. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 25. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 26. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 27. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 28. I
2
C bus AC waveforms and measurement circuit
Figure 29. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 30. SPI timing diagram - slave mode and CPHA = 1 Figure 31. SPI timing diagram - master mode
Figure 32. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 34. Power supply and reference decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 35. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline Figure 36. Recommended footprint (dimensions in mm) Figure 37. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline Figure 38. Recommended footprint (dimensions in mm)
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 72
Figure 40. Recommended footprint
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 41. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
with RTC on versus temperature at different
BAT
= 3.3 V and
DD
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Doc ID 15058 Rev 5 7/79
List of figures STM32F101x4, STM32F101x6
Figure 42. Recommended footprint Figure 43. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F101x4 and STM32F101x6 low-density access line microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2:
Full compatibility throughout the family.
The Low-density STM32F101xx datasheet should be read in conjunction with the low-, medium- and high-density STM32F10xxx reference manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
Doc ID 15058 Rev 5 9/79
Description STM32F101x4, STM32F101x6

2 Description

The STM32F101x4 and STM32F101x6 Low-density access line family incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory of 16 to 32 Kbytes and SRAM of 4 to 6 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (one I USARTs), one 12-bit ADC and up to two general-purpose 16-bit timers.
The STM32F101xx Low-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.
The STM32F101xx Low-density access line family includes devices in three different packages ranging from 36 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
These features make the STM32F101xx Low-density access line microcontroller family suitable for a wide range of applications such as application control and user interface, medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and HVACs.
2
C, one SPI, and two
10/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description

2.1 Device overview

Figure 1 shows the general block diagram of the device family.

Table 2. Low-density STM32F101xx device features and peripheral counts

Peripheral
Flash - Kbytes 16 32 16 32 16 32
SRAM - Kbytes 464646
General-purpose 222222
Timers
SPI 111111
2
I
C 111111
USART 222222
Communication
12-bit synchronized ADC
number of channels
STM32F101Tx STM32F101Cx STM32F101Rx
1
10 channels
1
10 channels
1
16 channels
GPIOs 26 37 51
CPU frequency 36 MHz
Operating voltage 2.0 to 3.6 V
Operating temperatures
Packages VFQFPN36
Ambient temperature: –40 to +85 °C (see Ta b l e 8 ) Junction temperature: –40 to +105 °C (see Ta bl e 8 )
LQFP48,
VFQFPN48
LQFP64
Doc ID 15058 Rev 5 11/79
Description STM32F101x4, STM32F101x6
Temp sensor
PA[15: 0]
EXTI
W W D G
NVIC
12bit ADC
SWD
16AF
JTDI
JTCK/ SWCLK
JTMS/SWDIO
NJTRST
JTDO
NRST
V
DD
= 2 to 3.6 V
80AF
PB[15: 0]
PC[15:0 ]
AHB2
SRAM
WAKEUP
GPIOA
GPIOB
GPIOC
F
max
: 3 6 MHz
V
SS
GP DMA
TIM2
TIM3
XTAL OSC
4-16 MHz
XTAL 32 kHz
OSC_IN OSC_OUT
OSC32_OUT
OSC32_IN
PLL &
APB1 : F
max
=24 / 36 MHz
PCLK1
HCLK
CLOCK MANAG T
PCLK 2
VOLT. REG.
3.3V TO 1.8V
POWER
Backu p i nterf ace
as AF
6 KB
RTC
RC 8 MHz
Cortex M3 CPU
USART1
USART2
7 channels
Back up
reg
SCL,SDA ,SMBA
I2C
as AF
PD[3:0]
GPIOD
AHB: F
max
=36 MHz
4 Chann els
4 Chann els
FCLK
RC 42 kHz
Stand by
IWDG
@VDD
@VBAT
POR / PDR
SUPPLY
@VDDA
VDDA
VSSA
@VDDA
V
BAT
RX,TX, CTS, RTS, Smartcard as AF
RX,TX, CTS, RTS,
APB2 : F
max
= 36 MHz
NVIC
SPI
MOSI,MISO,
SCK,NSS as AF
IF
int erface
@VDDA
SUPERVISION
PVD
Rst
Int
@VDD
AHB2
APB2
APB1
AWU
TAMPER-RTC
Flash 32 KB
BusM atrix
64 bit
Interface
Ibus
Dbus
pbus
obl
Flash
Trace
controller
System
ai15173c
TRACECLK TRACED[0:3]
as AS
SW/JTAG
TPIU
Trace/trig
CK, SmartCard as AF

Figure 1. STM32F101xx Low-density access line block diagram

1. AF = alternate function on I/O port pin.
= –40 °C to +85 °C (junction temperature up to 105 °C).
2. T
A
12/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description
HSE OSC
4-16 MHz
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
LSE OSC
32.768 kHz
HSI RC
8 MHz
LSI RC 40 kHz
to Independent Watchdog (IWDG)
PLL
x2, x3, x4
PLLMUL
Legend:
MCO
Clock Output
Main
PLLXTPRE
/2
..., x16
AHB Prescaler /1, 2..512
/2
PLLCLK
HSI
HSE
APB1
Prescaler
/1, 2, 4, 8, 16
ADC Prescaler /2, 4, 6, 8
ADCCLK
PCLK1
HCLK
PLLCLK
to AHB bus, core, memory and DMA
to TIM2, TIM3
to ADC
LSE
LSI
HSI
/128
/2
HSI
HSE
peripherals
to APB1
Peripheral Clock
Enable (13 bits)
Enable (3 bits)
P
eripheral Clock
APB2
Prescaler
/1, 2, 4, 8, 16
PCLK2
peripherals
to APB2
Peripheral Clock
Enable (11 bits)
36 MHz max
36 MHz max
to RTC
PLLSRC
SW
MCO
CSS
to Cortex System timer
/8
Clock
Enable (3 bits)
SYSCLK
RTCCLK
RTCSEL[1:0]
TIMXCLK
IWDGCLK
SYSCLK
FCLK Cortex free running clock
TIM2, TIM3 If (APB1 prescaler =1) x1 else x2
HSE = high-speed external clock signal HSI = high-speed internal clock signal LSI = low-speed internal clock signal LSE = low-speed external clock signal
ai15174
36 MHz max
36 MHz max

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.
Doc ID 15058 Rev 5 13/79
Description STM32F101x4, STM32F101x6

2.2 Full compatibility throughout the family

The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices.
Low- and high-density devices are an extension of the STM32F101x8/B devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Low­density devices feature lower Flash memory and RAM capacities and a timer less. High­density devices have higher Flash memory and RAM capacities, and additional peripherals like FSMC and DAC, while remaining fully compatible with the other members of the STM32F101xx family. The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.
Moreover, the STM32F101xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

Table 3. STM32F101xx family

Memory size
Low-density devices Medium-density devices High-density devices
Pinout
16 KB
Flash
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM
144
100
64
2 × USARTs 2 × 16-bit timers
48
1 × SPI, 1 × I2C 1 × ADC
36
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.
32 KB
Flash
(1)
64 KB
Flash
3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, 1 × ADC
128 KB
Flash
256 KB
Flash
32 KB
RAM
384 KB
Flash
48 KB
RAM
512 KB
Flash
48 KB
RAM
5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I
2
Cs, 1 × ADC,
2 × DACs, FSMC (100 and 144 pins)
14/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description

2.3 Overview

2.3.1 ARM® Cortex™-M3 core with embedded Flash and SRAM

The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The STM32F101xx Low-density access line family having an embedded ARM core, is therefore compatible with all ARM tools and software.

2.3.2 Embedded Flash memory

16 or 32 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

2.3.4 Embedded SRAM

Up to 6 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 Nested vectored interrupt controller (NVIC)

The STM32F101xx Low-density access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
Doc ID 15058 Rev 5 15/79
Description STM32F101x4, STM32F101x6

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 36 MHz. See Figure 2 for details on the clock tree.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.3.9 Power supply schemes

V
V
V
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.
= 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
= 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs
DDA
and PLL (minimum voltage to be applied to V V
and V
DDA
BAT
SSA
= 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when V

2.3.10 Power supply supervisor

The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V external reset circuit.
pins.
DD
must be connected to V
is below a specified threshold, V
DD
DD
DD
is 2.4 V when the ADC is used).
DDA
and VSS, respectively.
is not present.
POR/PDR
, without the need for an
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V
16/79 Doc ID 15058 Rev 5
power supply and compares it to the V
DD/VDDA
drops below the V
PVD
threshold. An interrupt can be
PVD
threshold and/or when VDD/V
DDA
is higher
STM32F101x4, STM32F101x6 Description
than the V
threshold. The interrupt service routine can then generate a warning
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 10: Embedded reset and power control block characteristics for the values of V
POR/PDR
and V
PVD
.

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop mode
Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

The STM32F101xx Low-density access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.
Doc ID 15058 Rev 5 17/79
Description STM32F101x4, STM32F101x6
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I
2
C, USART, general purpose timers
TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V
supply when present or through the V
DD
registers used to store 20 bytes of user application data when V
The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
pin. The backup registers are ten 16-bit
BAT
power is not present.
DD

2.3.15 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

2.3.16 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.3.17 SysTick timer

This timer is dedicated for OS, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

2.3.18 General-purpose timers (TIMx)

There areup to two synchronizable general-purpose timers embedded in the STM32F101xx Low-density access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture,
18/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Description
output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. The general-purpose timers can work together via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

2.3.19 I²C bus

The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes.
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.

2.3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability.
The USART interfaces can be served by the DMA controller.

2.3.21 Serial peripheral interface (SPI)

The SPI interface is able to communicate up to 18 Mbit/s in slave and master modes in full­duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
The SPI interface can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller.
Doc ID 15058 Rev 5 19/79
Description STM32F101x4, STM32F101x6
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

2.3.24 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V
< 3.6 V. The temperature sensor is internally
DDA
connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.25 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
20/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Pinouts and pin description
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA 1 5
PA 14
VDD_2 VSS_2 PA 1 3 PA 1 2 PA 1 1 PA 1 0 PA 9 PA 8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA 3
VSS_4
VDD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai14387b
PC13-TAMPER-RTC
44 43 42 41 40 39 38 37
36
35 34
33 32 31 30 29 28 27 26 25
24
23
12
13 14 15 16 17 18
19 20 21 22
1 2 3 4 5 6 7 8 9 10 11
48 47 46 45
LQFP48
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VDD_2 VSS_2 PA1 3 PA1 2 PA1 1 PA1 0 PA9 PA8 PB15 PB14 PB13 PB12
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST VSSA VDDA
PA 0- W K UP
PA 1 PA 2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA 1 5
PA 14
ai14378d
PC13-TAMPER-RTC

3 Pinouts and pin description

Figure 3. STM32F101xx Low-density access line LQFP64 pinout

Figure 4. STM32F101xx Low-density access line LQFP48 pinout

Doc ID 15058 Rev 5 21/79
Pinouts and pin description STM32F101x4, STM32F101x6
ai18300
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VBAT
PC13-TAMPER-RTC
PC14-OSC32_IN
PC15-OSC32_OUT
PD0-OSC_IN
PD1-OSC_OUT
NRST VSSA VDDA
PA0-WKUP
PA 1 PA 2
VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA 9 PA 8 PB15 PB14 PB13 PB12
48
VFQFPN48
47 46
45 444342 41
40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
13
14 15
16 171819 20
21 22 23 24
1
2
3
4
5
6
7
8
9
10
11
12
V
SS_3
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
36 35 34 33 32 31 30 29 28
V
DD_3
1
27
V
DD_2
OSC_IN/PD0
2
26
V
SS_2
OSC_OUT/PD1
3
25
PA13
NRST
4
QFN36
24
PA12
V
SSA
5
23 PA11
V
DDA
6
22
PA10
PA0-WKUP
7
21
PA 9
PA 1
8
20
PA 8
PA 2 9
19
V
DD_1
10 11 12 13 14 15 16 17 18
PA 3
PA 4
PA 5
PA 6
PA 7
PB0
PB1
PB2
V
SS_1
ai14654

Figure 5. STM32F101xx Low-density access line VFQPFN48 pinout

Figure 6. STM32F101xx Low-density access line VFQPFN36 pinout

22/79 Doc ID 15058 Rev 5
STM32F101x4, STM32F101x6 Pinouts and pin description

Table 4. Low-density STM32F101xx pin definitions

Pins
Pin name
(1)
Type
LQFP64
LQFP48/
VFQFPN48
11- V
2 2 - PC13-TAMPER-RTC
3 3 - PC14-OSC32_IN
4 4 - PC15-OSC32_OUT
VFQFPN36
BAT
SV
(5)
I/O PC13
(5)
I/O PC14
(5)
I/O PC15
5 5 2 OSC_IN I OSC_IN
6 6 3 OSC_OUT O OSC_OUT
7 7 4 NRST I/O NRST
- 8 - PC0 I/O PC0 ADC_IN10
- 9 - PC1 I/O PC1 ADC_IN11
- 10 - PC2 I/O PC2 ADC_IN12
- 11 - PC3 I/O PC3 ADC_IN13
8125 V
9136 V
SSA
DDA
SV
SV
10 14 7 PA0-WKUP I/O PA0
11 15 8 PA1 I/O PA1
12 16 9 PA2 I/O PA2
13 17 10 PA3 I/O PA3
-18- V
-19- V
SS_4
DD_4
SV
SV
14 20 11 PA4 I/O PA4
15 21 12 PA5 I/O PA5 SPI_SCK
16 22 13 PA6 I/O PA6
17 23 14 PA7 I/O PA7
- 24 PC4 I/O PC4 ADC_IN14
- 25 PC5 I/O PC5 ADC_IN15
18 26 15 PB0 I/O PB0 ADC_IN8/TIM3_CH3
19 27 16 PB1 I/O PB1 ADC_IN9/TIM3_CH4
(2)
I / O level
Main
function
(3)
(after reset)
BAT
(6)
(6)
(6)
SSA
DDA
SS_4
DD_4
Alternate functions
Default Remap
TAMPER-RTC
OSC32_IN
OSC32_OUT
WKUP/USART2_CTS/
ADC_IN0/
TIM2_CH1_ETR
(7)
USART2_RTS/
ADC_IN1/TIM2_CH2
USART2_TX/
ADC_IN2/TIM2_CH3
USART2_RX/
ADC_IN3/TIM2_CH4
(7)
SPI_NSS
/ADC_IN4
USART2_CK
(7)
/ADC_IN5
SPI_MISO
SPI_MOSI
(7)
/ADC_IN6/
TIM3_CH1
(7)
/ADC_IN7/
TIM3_CH2
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(3)(4)
Doc ID 15058 Rev 5 23/79
Pinouts and pin description STM32F101x4, STM32F101x6
Table 4. Low-density STM32F101xx pin definitions (continued)
Pins
LQFP64
LQFP48/
VFQFPN48
Pin name
VFQFPN36
(1)
(2)
Typ e
Main
function
(3)
(after reset)
I / O level
Alternate functions
Default Remap
20 28 17 PB2 I/O FT PB2/BOOT1
21 29 - PB10 I/O FT PB10 TIM2_CH3
22 30 - PB11 I/O FT PB11 TIM2_CH4
23 31 18 V
24 32 19 V
SS_1
DD_1
SV
SV
SS_1
DD_1
25 33 - PB12 I/O FT PB12
26 34 - PB13 I/O FT PB13
27 35 - PB14 I/O FT PB14
28 36 - PB15 I/O FT PB15
- 37 - PC6 I/O FT PC6 TIM3_CH1
38 - PC7 I/O FT PC7 TIM3_CH2
39 - PC8 I/O FT PC8 TIM3_CH3
- 40 - PC9 I/O FT PC9 TIM3_CH4
29 41 20 PA8 I/O FT PA8 USART1_CK/MCO
30 42 21 PA9 I/O FT PA9 USART1_TX
31 43 22 PA10 I/O FT PA10 USART1_RX
(7)
(7)
32 44 23 PA11 I/O FT PA11 USART1_CTS
33 45 24 PA12 I/O FT PA12 USART1_RTS
34 46 25 PA13 I/O FT JTMS-SWDIO PA13
35 47 26 V
36 48 27 V
SS_2
DD_2
SV
SV
SS_2
DD_2
37 49 28 PA14 I/O FT JTCK/SWCLK PA14
38 50 29 PA15 I/O FT JTDI
-51 PC10 I/OFT PC10
-52 PC11 I/OFT PC11
-53 PC12 I/OFT PC12
552 PD0 I/OFTOSC_IN
6 6 3 PD1 I/O FT OSC_OUT
54 - PD2 I/O FT PD2 TIM3_ETR
(8)
(8)
39 55 30 PB3 I/O FT JTDO
(3)(4)
TIM2_CH1_ETR/
PA15 / SPI_NSS
TIM2_CH2 / PB3
TRACESWO
SPI_SCK
24/79 Doc ID 15058 Rev 5
Loading...
+ 55 hidden pages