Datasheet STA339BW Datasheet (ST)

2.1-channel high-efficiency digital audio system
Features
Wide voltage supply range
– 5 V to 26 V (operating range) – 30 V (absolute maximum rating)
– 2 channels of ternary PWM (stereo mode)
(2 x 20 W into 8 at 18 V)
– 3 channels - left, right using binary and LFE
using ternary PWM (2.1 mode) (2 x 9 W + 1x20W into 2x4Ω, 1 x 8 at 18 V)
– 2 channels of ternary PWM (2 x 20 W) +
stereo lineout ternary
2.1 channels of 24-bit FFX
dynamic range
Selectable 32 to 192 kHz input sample rates
2
I
C control with selectable device address
Digital gain/attenuation +48 dB to -80 dB with
0.5 dB/step resolution
Soft volume update with programmable ratio
Individual channel and master gain/attenuation
Two independent DRC configurable as a
dual-band anti-clipper (B independent limiters/compressors
EQ-DRC for DRC based on filtered signals
Dedicated LFE processing for bass boosting
with 0.5 dB/step resolution
Audio presets:
– 15 preset crossover filters – 5 preset anti-clipping modes – Preset night-time listening mode
Individual channel and master soft/hard mute

Table 1. Device summary

®
100 dB SNR and
2
DRC) or as
STA339BW
PowerSSO-36 (slug down)
Independent channel volume and DSP bypass
Automatic zero-detect mute
Automatic invalid input-detect mute
2-channel I
Input and output channel mapping
Up to 8 user-programmable biquads per
channel with 28-bit resolution
3 coefficient banks for EQ presets storing with
fast recall via I
Bass/treble tones and de-emphasis control
Selectable high-pass filter for DC blocking
Advanced AM interference frequency
switching and noise suppression modes
Selectable high- or low-bandwidth
noise-shaping topologies
Variable max power correction for lower
full-power THD
Selectable clock input ratio
96 kHz internal processing sample rate, 24 to
28-bit precision
Thermal overload and short-circuit protection
embedded
Video apps: 576 * f
Fully compatible with STA339BWS.
2
S input data interface
2
C interface
input mode supported
S
Order code Package Packaging
STA339BW PowerSSO-36 slug down Tube
STA339BWTR PowerSSO-36 slug down Tape and reel
August 2010 Doc ID 15251 Rev 5 1/77
www.st.com
77
Contents STA339BW
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 15
3.5 Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 16
3.6 Power on/off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7.1 Functional pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5I
2
C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/77 Doc ID 15251 Rev 5
STA339BW Contents
5.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.5 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.6 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.3 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.4 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.5 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.1 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.2 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.3 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.4 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.5 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.1 FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.2 FFX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.3 Overcurrent warning detect adjustment bypass . . . . . . . . . . . . . . . . . . . 34
6.4 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.1 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.2 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.3 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.4 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.5 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.6 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 35
6.4.7 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.8 Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.1 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.2 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.3 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5.4 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5.5 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5.6 Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 15251 Rev 5 3/77
Contents STA339BW
6.5.7 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5.8 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.6 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6.1 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6.2 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.6.3 Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . 44
6.6.4 LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.6.5 Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.6.6 IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.6.7 External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.7 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 45
6.7.1 Mute/line output configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.7.2 Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.7.3 Channel 1 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.7.4 Channel 2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.7.5 Channel 3 / line output volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.8 Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 47
6.8.1 Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.8.2 Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.8.3 AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.8.4 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.9 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 49
6.9.1 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.9.2 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.9.3 Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.9.4 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.9.5 Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.9.6 Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.10 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.10.1 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.11 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 51
6.11.1 Limiter 1 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.11.2 Limiter 1 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.11.3 Limiter 2 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.11.4 Limiter 2 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.11.5 Limiter 1 Extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 55
4/77 Doc ID 15251 Rev 5
STA339BW Contents
6.11.6 Limiter 1 Extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 55
6.11.7 Limiter 2 Extended attack threshold (addr 0x34 . . . . . . . . . . . . . . . . . . ) 56
6.11.8 Limiter 2 Extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 56
6.12 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 56
6.12.1 Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.12.2 Coefficient b1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.12.3 Coefficient b1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.12.4 Coefficient b1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.12.5 Coefficient b2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.6 Coefficient b2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.7 Coefficient b2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.8 Coefficient a1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.9 Coefficient a1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.10 Coefficient a1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.11 Coefficient a2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.12.12 Coefficient a2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12.13 Coefficient a2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12.14 Coefficient b0 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12.15 Coefficient b0 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12.16 Coefficient b0 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.12.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12.19 Prescale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12.20 Postscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.12.21 Overcurrent postscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.13 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 63
6.14 Variable distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . 63
6.15 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 64
6.16 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.17 EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 65
6.18 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 65
6.18.1 Dual-band DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.18.2 EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.18.3 Extended post scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.18.4 Extended attack rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.18.5 Extended BIQUAD selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Doc ID 15251 Rev 5 5/77
Contents STA339BW
6.19 EQ soft volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . 69
6.20 DRC RMS filter coefficients (addr 0x39 - 0x3E) . . . . . . . . . . . . . . . . . . . . 70
7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1 Application scheme for power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 PLL filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3 Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6/77 Doc ID 15251 Rev 5
STA339BW List of figures
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4. Power-off sequence for pop-free turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Test circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. Test circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Left and right processing part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. Processing part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10. Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 11. OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 12. OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 13. OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 14. OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 15. Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 16. 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 17. 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 18. 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 19. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 20. B
Figure 21. EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 22. Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 23. Output configuration for stereo BTL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 24. Double-layer PCB with 2 copper ground areas and 16 via holes . . . . . . . . . . . . . . . . . . . 73
Figure 25. PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 26. PowerSSO-36 slug down outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2
DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Doc ID 15251 Rev 5 7/77
List of tables STA339BW
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. Functional pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 9. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 12. Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 13. IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 14. Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 15. Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16. Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 17. Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 18. Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 19. Supported serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . 30
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 31
Table 21. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 22. Channel input mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 23. FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 24. Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 25. FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 26. Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 27. Overcurrent warning bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 28. High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 29. De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 30. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 31. Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 32. Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 33. Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 34. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 35. Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 36. Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 37. Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 38. Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 39. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 40. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 41. Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 42. Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 43. Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 44. Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 45. Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 46. Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 47. Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 48. LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8/77 Doc ID 15251 Rev 5
STA339BW List of tables
Table 49. Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 50. IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 51. External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 52. Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 53. Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 54. Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 55. Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 47
Table 56. AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 57. Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 58. Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 59. Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 60. Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 61. EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 62. Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 63. Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 64. Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 65. Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 66. Limiter attack rate as a function of LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 67. Limiter release rate as a function of LxR bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 68. Limiter attack threshold as a function of LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . 54
Table 69. Limiter release threshold as a function of LxRT bits (AC mode). . . . . . . . . . . . . . . . . . . . . 54
Table 70. Limiter attack threshold as a function of LxAT bits (DRC mode) . . . . . . . . . . . . . . . . . . . . 55
Table 71. Limiter release threshold as a as a function of LxRT bits (DRC mode) . . . . . . . . . . . . . . . 55
Table 72. RAM block for biquads, mixing, scaling and bass management. . . . . . . . . . . . . . . . . . . . . 62
Table 73. Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 74. EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 75. Anti-clipping and DRC preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 76. Anti-clipping selection for AMGC[3:2] = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 77. Post scale setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 78. Extended attack rate setup for limiter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 79. Extended attack rate setup for limiter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 80. De-emphasis filter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 81. Bass filter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 82. Treble filter setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 83. Soft volume (increasing) setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 84. Soft volume (decreasing) setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 85. PowerSSO-36 slug down dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 86. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Doc ID 15251 Rev 5 9/77
Description STA339BW

1 Description

The STA339BW is an integrated solution of digital audio processing, digital amplifier control, and FFX-power output stage, thereby creating a high-power single-chip FFX comprising high-quality, high-efficiency, all digital amplification.
STA339BW is based on FFX (fully flexible amplification) processor, a STMicroelectronics proprietary technology. FFX is the evolution and the enlargement of the ST ternary technology: the new processor can be configured to work in ternary, binary, binary differential and phase shift PWM modulation schemes.
STA339BW contains the ternary, binary and binary differential implementations, a subset of the full capability of the FFX processor.
The STA339BW is part of the Sound Terminal™ family that provides full digital audio streaming to the speaker, offering cost effectiveness, low power dissipation and sound enrichment.
The STA339BW power section consists of four independent half bridges. These can be configured via digital control to operate in different modes. 2.1 channels can be provided by two half bridges and a single full bridge, providing up to 2 x 9 W + 1 x 20 W of power output. Two channels can be provided by two full bridges, providing up to 2 x 20 W of power. The IC can also be configured as 2.1 channels with 2 x 20 W provided by the device and external power for FFX power drive.
Also provided in the STA339BW are a full assortment of digital processing features. This includes up to 8 programmable 28-bit biquads (EQ) per channel and bass/treble tone control. Available presets enable a time-to-market advantage by substantially reducing the amount of software development needed for certain functions. This includes audio preset volume loudness, preset volume curves and preset EQ settings. There are also new advanced AM radio interference reduction modes. Dual band DRC dynamically equalizes the system to provide speaker linear frequency response regardless output power level. This feature independently processes the two bands, controlling, dynamically, the output power level in each band and so providing a better sound quality.
The serial audio data input interface accepts all possible formats, including the popular I format. Three channels of FFX processing are provided. This high-quality conversion from PCM audio to FFX PWM switching waveform provides over 100 dB SNR and dynamic range.
®
solution
2
S
10/77 Doc ID 15251 Rev 5
STA339BW Description

1.1 Block diagram

Figure 1. Block diagram

I2S
interface
Vol um e
control
PLL
FFX
I2C
Powe r control
Protection
current/thermal
Logic
Regulators
Bias
Channel
1A
Channel
1B
Channel
2A
Channel
2B
PowerDigital DSP
Doc ID 15251 Rev 5 11/77
Pin connections STA339BW

2 Pin connections

2.1 Connection diagram

Figure 2. Pin connection PowerSSO-36 (top view)

GND_SUB
SA
TEST_MODE
VSS
VCC_REG
OUT2B
GND2
VCC2
OUT2A
OUT1B
VCC1
GND1
OUT1A
GND_REG
VDD
CONFIG
OUT3B / FFX3B
OUT3A / FFX3A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
D05AU1638
VDD_DIG
GND_DIG
SCL
SDA
INT_LINE
RESET
SDI
LRCKI
BICKI
XTI
GND_PLL
FILTER_PLL
VDD_PLL
PWRDN
GND_DIG
VDD_DIG
TWARN / OUT4A
EAPD / OUT4B

2.2 Pin description

Table 2. Pin description

Pin Type Name Description
1 GND GND_SUB Substrate ground
2I SA I
3 I TEST_MODE This pin must be connected to ground (pull-down)
4 I/O VSS Internal reference at V
5 I/O VCC_REG Internal V
6 O OUT2B Output half bridge 2B
7 GND GND2 Power negative supply
8 Power VCC2 Power positive supply
9 O OUT2A Output half bridge 2A
10 O OUT1B Output half bridge 1B
12/77 Doc ID 15251 Rev 5
2
C select address (pull-down)
reference
CC
CC
- 3.3 V
STA339BW Pin connections
Table 2. Pin description (continued)
Pin Type Name Description
11 Power VCC1 Power positive supply
12 GND GND1 Power negative supply
13 O OUT1A Output half bridge 1A
14 GND GND_REG Internal ground reference
15 Power VDD Internal 3.3 V reference voltage
16 I CONFIG Paralleled mode command
17 O OUT3B / FFX3B PWM out Ch3B / external bridge driver
18 O OUT3A / FFX3A PWM out Ch3A / external bridge driver
19 O EAPD / OUT4B Power down for external bridge / PWM out Ch4B
20 I/O TWARN / OUT4A
21 Power VDD_DIG Digital supply voltage
22 GND GND_DIG Digital ground
23 I PWRDN Power down (pull-up)
24 Power VDD_PLL Positive supply for PLL
Thermal warning from external bridge (pull-up when input) / PWM out Ch4A
25 I FILTER_PLL Connection to PLL filter
26 GND GND_PLL Negative supply for PLL
27 I XTI PLL input clock
2
28 I BICKI I
29 I LRCKI I
30 I SDI I
S serial clock
2
S left/right clock
2
S serial data channels 1 and 2
31 I RESET Reset (pull-up)
32 O INT_LINE Fault interrupt
2
33 I/O SDA I
34 I SCL I
C serial data
2
C serial clock
35 GND GND_DIG Digital ground
36 Power VDD_DIG Digital supply voltage
Doc ID 15251 Rev 5 13/77
Electrical specifications STA339BW

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol Parameter Min Typ Max Unit
V
CC
VDD_DIG Digital supply voltage -0.3 - 4 V
VDD_PLL PLL supply voltage -0.3 - 4 V
Operating junction temperature -20 - 150 °C
T
op
Storage temperature -40 - 150 °C
T
stg
Power supply voltage (VCCxA, VCCxB) -0.3 - 30 V
Warning: Stresses beyond those listed in Tabl e 3 above may cause
permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “Recommended operating conditions” are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supplies with nominal values rated within the recommended operating conditions, may experience some rising beyond the maximum operating conditions for a short time when no or very low current is sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum ratings are not exceeded.

3.2 Thermal data

Table 4. Thermal data

Parameter Min Typ Max Unit
R
th j-case
R
th j-amb
T
th-sdj
T
th-w
T
th-sdh
1. See Section 8: Package thermal characteristics on page 73 for details.
14/77 Doc ID 15251 Rev 5
Thermal resistance junction-case (thermal pad) - - 1.5 °C/W
Thermal resistance junction-ambient
Thermal shut-down junction temperature - 150 - °C
Thermal warning temperature - 130 - °C
Thermal shut-down hysteresis - 20 - °C
(1)
---°C/W
STA339BW Electrical specifications

3.3 Recommended operating conditions

Table 5. Recommended operating condition

Symbol Parameter Min Typ Max Unit
V
CC
Power supply voltage (VCCxA, VCCxB) 5 - 26 V
VDD_DIG Digital supply voltage 2.7 3.3 3.6 V
VDD_PLL PLL supply voltage 2.7 3.3 3.6 V
Ambient temperature -20 - 70 °C
T
amb

3.4 Electrical specifications for the digital section

Table 6. Electrical specifications - digital section

Symbol Parameter Conditions Min Typ Max Unit
I
il
I
ih
V
il
V
ih
V
ol
V
oh
I
pu
R
pu
Low-level input current without pull-up/down device
High-level input current without pull-up/down device
Low-level input voltage - - -
High-level input voltage -
Low-level output voltage Iol = 2 mA - -
High-level output voltage Ioh = 2 mA
Pull-up/down current - 25 66 125 µA
Equivalent pull-up/down resistance
Vi = 0 V -10 1 10 µA
Vi = VDD_DIG = 3.6 V
-10 1 10 µA
0.8 *
VDD_DIG
0.8 *
VDD_DIG
--V
--V
--50-k
0.2 *
VDD_DIG
0.4 *
VDD_DIG
V
V
Doc ID 15251 Rev 5 15/77
Electrical specifications STA339BW

3.5 Electrical specifications for the power section

The specifications given in this section are valid for the operating conditions: VCC=18V, f=1kHz, f

Table 7. Electrical specifications - power section

Symbol Parameter Conditions Min Typ Max Unit
= 384 kHz, T
sw
= 25° C and RL = 8 Ω, unless otherwise specified.
amb
Output power BTL
W
THD = 10% - 20 -
Po
THD = 1% - 4 -
THD = 1% - 16 -
Output power SE
W
THD = 10% - 5 -
R
dsON
Power Pchannel/Nchannel MOSFET (total bridge)
l
= 1.5 A - 180 250 m
d
gP Power Pchannel RdsON matching ld = 1.5 A 95 - - %
gN Power Nchannel RdsON matching l
Idss Power Pchannel/Nchannel leakage V
I
LDT
I
HDT
t
r
t
f
V
CC
Low current dead time (static) Resistive load
High current dead time (dynamic) Iload = 1.5 A
Rise time Resistive load
Fall time Resistive load
Supply voltage operating voltage - 5 - 26 V
= 1.5 A 95 - - %
d
= 20 V - - 10 µA
CC
(1)
(1)
(1)
(1)
- 8 15 ns
- 15 30 ns
- 10 18 ns
- 10 18 ns
Supply current from VCC in power down PWRDN = 0 - 0.1 1 mA
PCM Input signal = -
I
vcc
Supply current from V
in operation
CC
60 dBfs, Switching frequency
- 52 60 mA
= 384 kHz, No LC filters
I
I
I
vdd
lim
sc
Supply current FFX processing (reference only)
Overcurrent limit
Short circuit protection Hi-Z output 3.8 4.8 - A
Internal clock =
49.152 MHz
(2)
-5570mA
3.03.84.0A
UVL Undervoltage protection - - 3.5 4.3 V
t
min
Output minimum pulse width No load 20 30 60 ns
DR Dynamic range - - 100 - dB
SNR
Signal to noise ratio, ternary mode A-weighted - 100 - dB
Signal to noise ratio binary mode - - 90 - dB
FFX stereo mode, <5 kHz
PSSR Power supply rejection ratio
V
RIPPLE
= 1 V RMS
Audio input = dither only
16/77 Doc ID 15251 Rev 5
-80-dB
STA339BW Electrical specifications
Table 7. Electrical specifications - power section (continued)
Symbol Parameter Conditions Min Typ Max Unit
FFX stereo mode,
THD+N Total harmonic distortion + noise
X
TA LK
Crosstalk
Peak efficiency, FFX mode
η
Peak efficiency,binary modes
1. Refer to Figure 5: Test circuit 1.
2. Limit current if the register (OCRB par 6.1.3.3) overcurrent warning detect adjustment bypass is enabled. When disabled refer to the Isc.
Po = 1 W f=1kHz
FFX stereo mode, <5 kHz
One channel driven at 1 W
Other channel measured
Po = 2 x 20 W into 8
Po = 2 x 9 W into 4 + 1 x 20 W into 8
-0.2-%
-80-dB
-90-
%
-87-
Doc ID 15251 Rev 5 17/77
Electrical specifications STA339BW

3.6 Power on/off sequence

Figure 3. Power-on sequence

VCC
VCC
VCC
VCC
VCC
VDD_Dig
VDD_Dig
VDD_Dig
VDD_Dig
VDD_Dig
XTI
XTI
XTI
XTI
XTI
Reset
Reset
Reset
Reset
Reset
2
2
2
2
2
C
C
C
C
C
I
I
I
I
I
PWDN
PWDN
PWDN
PWDN
PWDN
Note: no specific VCC and VDD_DIG turn is required
Dont care
Don’t care
Don’t care
Don’t care
Don’t care
Don’t care
Don’t care
on sequence
TR
TR
TR
TR
TR
Don’t care
Don’t care
Don’t care
Don’t care
Don’t care
TC
TC
TC
TC
TC
CMD0 CMD1 CMD2
CMD0 CMD1 CMD2
CMD0 CMD1 CMD2
CMD0 CMD1 CMD2
CMD0 CMD1 CMD2
TR = minimum time between XTI master clock stable and Reset removal: 1 ms TC = minimum time between Reset removal and I
Note: The definition of a stable clock is when f
Section 6.2.3 on page 30 gives information on setting up the I

Figure 4. Power-off sequence for pop-free turn-off

VCC
VCC
VDD_Dig
VDD_Dig
XTI
XTI
Soft Mute
Soft Mute
Reg. 0x07
Reg. 0x07 Data 0xFE
Data 0xFE
Soft EAPD
Soft EAPD
Reg. 0x05
Reg. 0x05 Bit 7 = 0
Bit 7 = 0
Dont care
Don’t care
2
C program, sequence start: 1ms
- f
max
< 1 MHz.
min
FE
FE
2
S interface.
Note: no specific VCC and VDD_DIG turn is required
Dont care
Don’t care
Dont care
Don’t care
off sequence
Don’t care
Don’t care
Don’t care
Don’t care
18/77 Doc ID 15251 Rev 5
STA339BW Electrical specifications

3.7 Testing

3.7.1 Functional pin definition

Table 8. Functional pin definition
Pin name Number Logic value IC status
PWRDN 23
0 Low consumption
1 Normal operation
0
TWARN 20
1 Normal operation
0
EAPD 19
1 Normal operation
Figure 5. Test circuit 1
Low current dead time = MAX(DTr, DTf)
Duty cycle = 50%
INxY
A temperature warning is indicated by the external power stage
Low consumption for power stage All internal regulators are switched off
+Vcc
OUTxY
OUTxY
DTr DTf
Rload = 8
+
-
Vcc
(3/4)Vcc
(1/2)Vcc
(1/4)Vcc
t
vdc = Vcc/2
gnd
Figure 6. Test circuit 2
High current dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+V
CC
Duty cycle=A Duty cycle=B
DTin(A)
INxA
Duty cycle A and B: Fixed to have DC output current of Iout in the direction shown in figure
DTout(A)
Q1
OUTxA
Q3
Iout
Rload = 4
470nF
DTout(B) DTin(B)
10µ10µ
Iout
470nF470nF
Q2
OUTxB
Q4
D06AU1651_00
Doc ID 15251 Rev 5 19/77
INxB
Processing data paths STA339BW

4 Processing data paths

The whole processing chain is composed of two consecutive sections. In the first one dual-channel processing is implemented, as described below. Then each channel is fed into the post-mixing block where there is a choice of processing, either the dual-band DRC is disabled or it is enabled. When B output configuration and with cross-over filters enabled, is used. When B the 2.0 output configuration with cross-over filters for defining the cutoff frequency of the two bands is used.
The first section, Figure 7, begins with a 2x oversampling FIR filter allowing a 2 * fs audio processing. Then a selectable high-pass filter removes the DC level (enabled if HFB = 0).
The channel 1 and 2 processing chain can include up to 8 filters, depending on the selected configuration (bits BQL, BQ5, BQ6, BQ7 and XO[3:0]).
By default, four independent filters per channel are enabled, plus the preconfigured de­emphasis, bass and treble controls (BQL = 0, BQ5 = 0, BQ6 = 0, BQ7 = 0).
If the coefficient sets are linked (BQL = 1) then it is possible to use the de-emphasis, bass and treble filter in a user defined configuration (provided the relevant BQx bits are set to 1). In other words both channels use the same processing coefficients and can have up to 7 filters each. Note that if BQL = 0 the BQx bits are ignored and the 5th, 6th and 7th filters are configured as de-emphasis, bass and treble controls, respectively.
2
DRC is disabled a third channel, typically used in 2.1
2
DRC is enabled
Moreover the common 8th filter, from the subsequent processing section, can be available on both channels (provided the pre-defined cross-over frequencies are not used, XO[3:0] = 0, and the dual-band DRC is not used).
In the second section, mixing and crossover filters are available. If B (lower schematic in Figure 8) they are fully user-programmable and allow a third channel (2.1 outputs) to be generated. Alternatively, in B
2
DRC mode (upper schematic in Figure 8),
2
DRC is not enabled
those blocks will be used to split the sub-band and define the cutoff frequencies of the two bands. A prescaler and a final post scaler allow full control over the signal dynamics before and after, respectively, the filtering stages. A mixer function is also available.

Figure 7. Left and right processing part 1

Sampling
Sampling frequency = fs
frequency = fs
From
From
2
2
S input
S input
I
I interface
interface
sampling
sampling
sampling
sampling
x2
x2
FIR
FIR
x2
x2
over
over
FIR
FIR over
over
x2
x2
FIR
FIR
x2
x2
over
over
FIR
FIR over
over
Sampling
Sampling frequency = 2 * fs
frequency = 2 * fs
Hi-pass
Hi-pass
PreScale
Pre-scale
PreScale
Pre-scale
If HPB=0
If HPB=0
Hi-pass
Hi-pass
PreScale
Pre-scale
PreScale
Pre-scale
Pass
Pass
filter
filter
Filter
Filter
Pass
Pass
Filter
filter
Filter
filter
Biquad#1Biquad#2Biquad#3Biquad
Biquad#1Biquad#2Biquad#3Biquad
Biquad#1Biquad#2Biquad#3Biquad
Biquad#1Biquad#2Biquad#3Biquad
User-defined filters
User-defined filters
If DSPB=0 and C1EQBP=0
If DSPB=0 and C1EQBP=0
Biquad#1Biquad#2Biquad#3Biquad
Biquad#1Biquad#2Biquad#3Biquad
Biquad#1Biquad#2Biquad#3Biquad
Biquad#1Biquad#2Biquad#3Biquad
#4
#4
#4
#4
#4
#4
#4
#4
If BQ5=1
If BQ5=1
and BQL=1
and BQL=1
Biquad
Biquad
#5
#5
De-Emph.
De-Emph.
If DEMP=0
If DEMP=0
If BQ5=1
If BQ5=1
and BQL=1
and BQL=1
Biquad
Biquad
#5
#5
De-Emph.
De-Emph.
If BQ6=1
IF BQ7=1
If BQ6=1
IF BQ7=1
and BQL=1
and BQL=1
and BQL=1
and BQL=1
Biquad
Biquad
Biquad
Biquad
#6
#6
Bass Treble
Bass Treble
If C1TCB=0
If C1TCB=0 BTC: bass boost/cut
BTC: bass boost/cut TTC: treble bo ost/cut
TTC: treble bo ost/cut
If BQ6=1
IF BQ7=1
If BQ6=1
IF BQ7=1
and BQL=1
and BQL=1
and BQL=1
and BQL=1
Biquad
Biquad
Biquad
Biquad
#6
#6
Bass Treble
Bass Treble
#7
#7
L
L
L
L
#7
#7
L
L
R
R
If HPB=0
If HPB=0
User-defined filters
User-defined filters
If DSPB=0 and C2EQBP=0
If DSPB=0 and C2EQBP=0
20/77 Doc ID 15251 Rev 5
If DEMP=0
If DEMP=0
If C2TCB=0
If C2TCB=0 BTC: bass boost/cut
BTC: bass boost/cut TTC: treble bo ost/cut
TTC: treble bo ost/cut
STA339BW Processing data paths

Figure 8. Processing part 2

Ch3
Dual-band DRC enabled
L
L
L
L
R
R
R
R
User-defined mix coeffici ents
User-defined mix coeffici ents
C1Mx1
C1Mx1 =
C1Mx1
C1Mx1 = 0x7FFFFF
0x7FFFFF
C1Mx2 =
C1Mx2 =
C1Mx2
C1Mx2
0x00000
0x00000
C2Mx1
C2Mx1
C2Mx1=
C2Mx1= 0x000000
0x000000
C2Mx2
C2Mx2 =
C2Mx2
C2Mx2 = 0x7FFFFF
0x7FFFFF
C3Mx1
C3Mx1 =
C3Mx1
C3Mx1 = 0x40000
0x40000
C3Mx2
C3Mx2 =
C3Mx2
C3Mx2 = 0x400000
0x400000
Hi-Pass XO
Hi-Pass XO
B2DRC
B2DRC
Filter
+
+
+
+
+
+
+
+
+
+
+
+
Filter
Hi-pass
Hi-pass
filter
filter
Hi-Pass XO
Hi-Pass XO
B2DRC
B2DRC
Filter
Filter
Hi-pass
Hi-pass
filter
filter
Crossover frequency det ermined by XO setting
Crossover frequency det ermined by XO setting User-defined if XO = 0000
User-defined if XO = 0000
-
-+­+
+
-
-+­+
+
Ch3
Volume
Volume
Ch1
Ch1
Volume
Volume
Ch2
Ch2
Volume
Volume
Ch3
Ch3
Volume
Volume
DRC2
DRC2
Vol
Vol And
And
DRC1
DRC1
Limiter
Limiter
DRC1
DRC1
DRC2
DRC2
+
+
+
+
B2DRC Enabled
B2DRC Enabled
Post scale
Post scale Post-scale
Post-scale
Post scale
Post-scale
Post scale
Post-scale
Dual-band DRC disabled
C1Mx1
C1Mx1
C1Mx1
L
L
L
L
R
R
R
R
C1Mx1
+
+
+
+
C1Mx2
C1Mx2
C1Mx2
C1Mx2
Channel 1/2
Channel 1/2 Hi-Pass XO
Hi-Pass XO
Biquad #5
Biquad #5
Filter
Filter
--------------
--------------
Hi-pass XO
Hi-pass XO
filter
filter
Vol
Volume
Vol
Volume
And
and
And
and
Limiter
Limiter
Limiter
Limiter
Post scale
Post-scale
Post scale
Post-scale
C2Mx1
C2Mx1
C2Mx1
C2Mx1
+
+
+
+
C2Mx2
C2Mx2
C2Mx2
C2Mx2
C3Mx1
C3Mx1
C3Mx1
C3Mx1
+
+
+
+
C3Mx2
C3Mx2
C3Mx2
C3Mx2
User-defined mix coefficients
User-defined mix coefficients
Crossover f requency determined by XO setting
Crossover f requency determined by XO setting User defined if XO = 0000
User defined if XO = 0000
Channel 1/2
Channel 1/2
Hi-Pass XO
Hi-Pass XO
Biquad #5
Biquad #5
Filter
Filter
--------------
--------------
Hi-pass XO
Hi-pass XO
filter
filter
Channel 3
Channel 3
Lo-Pass XO
Lo-Pass XO
Biquad
Biquad
Filter
Filter
--------------
--------------
Low-pass XO
Low-pass XO
filter
filter
Vol
Volume
Vol
Volume
And
and
And
and
Limiter
Limiter
Limiter
Limiter
Vol
Volume
Vol
Volume
And
and
And
and
Limiter
Limiter
Limiter
Limiter
Post scale
Post-scale
Post scale
Post-scale
Post scale
Post-scale
Post scale
Post-scale
B2DRC Disabled
B2DRC Disabled
Doc ID 15251 Rev 5 21/77
I2C bus specification STA339BW

5 I2C bus specification

The STA339BW supports the I2C protocol via the input ports SCL and SDA_IN (master to slave) and the output port SDA_OUT (slave to master). This protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as a receiver. The device that controls the data transfer is known as the master and the other as the slave. The master always starts the transfer and provides the serial clock for synchronization. The STA339BW is always a slave device in all of its communications. It can operate at up to 400 kb/s (fast-mode bit rate). The STA339BW I

5.1 Communication protocol

5.1.1 Data transition or change

Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a START or STOP condition.

5.1.2 Start condition

START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must precede any command for data transfer.
2
C interface is a slave only interface.

5.1.3 Stop condition

STOP is identified by low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A STOP condition terminates communication between STA339BW and the bus master.

5.1.4 Data input

During the data input the STA339BW samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low.

5.2 Device addressing

To start communication between the master and the STA339BW, the master must initiate with a start condition. Following this, the master sends onto the SDA line 8-bits (MSB first) corresponding to the device select address and read or write mode.
The seven most significant bits are the device address identifiers, corresponding to the I bus definition. In the STA339BW the I the SA port configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The eighth bit (LSB) identifies read or write operation RW, this bit is set to 1 in read mode and to 0 for write mode. After a START condition the STA339BW identifies on the bus the device address and if a match is found, acknowledges the identification on the SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address.
2
C interface has two device addresses depending on
2
C
22/77 Doc ID 15251 Rev 5
STA339BW I2C bus specification

5.3 Write operation

Following the START condition the master sends a device select code with the RW bit set to 0. The STA339BW acknowledges this and the writes for the byte of internal address. After receiving the internal byte address the STA339BW again responds with an acknowledgement.

5.3.1 Byte write

In the byte write mode the master sends one data byte, this is acknowledged by the STA339BW. The master then terminates the transfer by generating a STOP condition.

5.3.2 Multi-byte write

The multi-byte write modes can start from any internal address. The master generating a STOP condition terminates the transfer.

5.4 Read operation

5.4.1 Current address byte read

Following the START condition the master sends a device select code with the RW bit set to 1. The STA339BW acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.

5.4.2 Current address multi-byte read

The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA339BW. The master acknowledges each data byte read and then generates a STOP condition terminating the transfer.

5.4.3 Random address byte read

Following the START condition the master sends a device select code with the RW bit set to 0. The STA339BW acknowledges this and then the master writes the internal address byte. After receiving, the internal byte address the STA339BW again responds with an acknowledgement. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA339BW acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.

5.4.4 Random address multi-byte read

The multi-byte read modes could start from any internal address. Sequential data bytes are read from sequential addresses within the STA339BW. The master acknowledges each data byte read and then generates a STOP condition terminating the transfer.
Doc ID 15251 Rev 5 23/77
I2C bus specification STA339BW
A
A
A
A
A

5.4.5 Write mode sequence

Figure 9. Write mode sequence
BYTE
WRITE
DEV-ADDR
START
MULTIBYTE
WRITE
DEV-ADDR
START

5.4.6 Read mode sequence

Figure 10. Read mode sequence
RW= HIGH
ACK
RW
ACK
RW
ACK
ACK
RW
CURRENT
ADDRESS
READ
RANDOM ADDRESS
READ
SEQUENTIAL
CURRENT
READ
SEQUENTIAL
RANDOM
READ
DEV-ADDR
START
DEV-ADDR
START
DEV-ADDR
START
DEV-ADDR
START
RW
RW
DATA
SUB-ADDR
DATA
SUB-ADDR
ACK
ACK
NO ACK
ACK
ACK
ACK
SUB-ADDR
SUB-ADDR
STOP
START RW
START RW
ACK
ACK
DEV-ADDR
DATA
DEV-ADDR
DATA IN
CK
STOP
DATA IN
CK
DATA IN
CK
STOP
ACK
ACK
ACK
DATA
DATA
DATA
NO ACK
NO ACK
CK
STOP
STOP
DATA
CK NO ACK
DATA
STOP
24/77 Doc ID 15251 Rev 5
STA339BW Register description

6 Register description

Table 9. Register summary

Addr Name D7 D6 D5 D4 D3 D2 D1 D0
0x00 CONFA
0x01 CONFB
0x02 CONFC
0x03 CONFD
0x04 CONFE
0x05 CONFF
0x06 MUTE/LOC
0x07 MVOL
0x08 C1VOL
0x09 C2VOL
0x0A C3VOL
0x0B AUTO1
0x0C AUTO2
0x0D AUTO3
0x0E C1CFG
0x0F C2CFG
0x10 C3CFG
0x11 TONE
0x12 L1AR
0x13 L1ATRT
0x14 L2AR
0x15 L2ATRT
0x16 CFADDR
0x17 B1CF1
0x18 B1CF2
0x19 B1CF3
0x1A B2CF1
0x1B B2CF2
0x1C B2CF3
0x1D A1CF1
0x1E A1CF2
0x1F A1CF3
FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
OCRB Reserved CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
SME ZDE DRC BQL PSL DSPB DEMP HPB
SVE ZCE DCCV PWMS AME NSBW MPC MPCV
EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
LOC1 LOC0 Reserved C3M C2M C1M MMUTE
MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
Reserved AMGC1 AMGC0 Reserved
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
Reserved
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
Doc ID 15251 Rev 5 25/77
Register description STA339BW
Table 9. Register summary (continued)
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
0x20 A2CF1
0x21 A2CF2
0x22 A2CF3
0x23 B0CF1
0x24 B0CF2
0x25 B0CF3
0x26 CFUD
0x27 MPCC1
0x28 MPCC2
0x29 DCC1
0x2A DCC2
0x2B FDRC1
0x2C FDRC2
0x2D STATUS
0x2E Reserved
0x2F Reserved
0x30 Reserved
0x31 EQCFG
0x32 EATH1
0x33 ERTH1
0x34 EATH2
0x35 ERTH2
0x36 CONFX
0x37 SVCA
0x38 SVCB
0x39 RMS0A
0x3A RMS0B
0x3B RMS0C
0x3C RMS1A
0x3D RMS1B
0x3E RMS1C
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
Reserved RA R1 WA W1
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8
DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
PLLUL FAULT UVFAULT OVFAULT OCFAULT OCWARN TFAULT TWARN
Rese rved RO1BACT R5BACT R4BACT R3BACT R2BACT R1BACT
Reserved R01BEND R5BEND R4BEND R3BEND R2BEND R1BEND
Reserved R5BBAD R4BBAD R3BBAD R2BBAD R1BBAD
XOB Reserved AMGC3 AMGC2 Reserved SEL1 SEL0
E ATH E N 1 EAT H 1 [6 ] E ATH 1 [5 ] E AT H 1[ 4 ] E AT H1 [ 3] E AT H1 [ 2] E ATH 1 [ 1] E ATH 1 [0 ]
ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
E ATH E N 2 EAT H 2 [6 ] E ATH 2 [5 ] E AT H 2[ 4 ] E AT H2 [ 3] E AT H2 [ 2] E ATH 2 [ 1] E ATH 2 [0 ]
ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
MDRC[1] MDRC[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0]
Reserved SVDWE SVDW[4] SVDW[3] SVDW[2] SVDW[1] SVDW[0]
R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16]
R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8]
R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0]
R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16]
R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8]
R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0]
26/77 Doc ID 15251 Rev 5
STA339BW Register description

6.1 Configuration register A (addr 0x00)

D7 D6 D5 D4 D3 D2 D1 D0
FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
01100011

6.1.1 Master clock select

Table 10. Master clock select
Bit R/W RST Name Description
0R/W1 MCS0
1R/W1 MCS1
Selects the ratio between the input I frequency and the input clock.
2
S sample
2R/W0 MCS2
The STA339BW supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:
z 32.768 MHz for 32 kHz
z 45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
z 49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin must be a multiple of the input sample frequency (f
).
s
The relationship between the input clock and the input sample rate is determined by both the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor generating the internal clock and the IR bit determines the oversampling ratio used internally.
Table 11. Input sampling rates
Input sample rate
fs (kHz)
- - 101 100 011 010 001 000
IR MCS[2:0]
32, 44.1, 48 00 576 * fs 128 * fs 256 * fs 384 * fs 512 * fs 768 * fs
88.2, 96 01 NA 64 * fs 128 * fs 192 * fs 256 * fs 384 * fs
176.4, 192 1X NA 32 * fs 64 * fs 96 * fs 128 * fs 192 * fs
Doc ID 15251 Rev 5 27/77
Register description STA339BW

6.1.2 Interpolation ratio select

Table 12. Internal interpolation ratio
Bit R/W RST Name Description
4:3 R/W 00 IR [1:0]
Selects internal interpolation ratio based on input I sample frequency
The STA339BW has variable interpolation (oversampling) settings such that internal processing and FFX output rates remain consistent. The first processing block interpolates by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The oversampling ratio of this interpolation is determined by the IR bits.
Table 13. IR bit settings as a function of input sample rate
Input sample rate fs (kHz) IR 1st stage interpolation ratio
32 00 2 times oversampling
44.1 00 2 times oversampling
48 00 2 times oversampling
88.2 01 Pass-through
96 01 Pass-through
176.4 10 2 times downsampling
192 10 2 times downsampling
2
S

6.1.3 Thermal warning recovery bypass

Table 14. Thermal warning recovery bypass
Bit R/W RST Name Description
5R/W1 TWRB
0: Thermal warning recovery enabled 1: Thermal warning recovery disabled
If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning recovery determines if the -3 dB output limit is removed when thermal warning is negative.
If TWRB = 0 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit is removed and the gain is added back to the system. If TWRB = 1 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit remains until TWRB is changed to zero or the device is reset.

6.1.4 Thermal warning adjustment bypass

Table 15. Thermal warning adjustment bypass
Bit R/W RST Name Description
6R/W1 TWAB
The on-chip STA339BW power output block provides feedback to the digital controller using inputs to the power control block. Input TWARN is used to indicate a thermal warning
0: Thermal warning adjustment enabled 1: Thermal warning adjustment disabled
28/77 Doc ID 15251 Rev 5
STA339BW Register description
condition. When TWARN is asserted (set to 0) for a period of time greater than 400 ms, the power control block forces a -3 dB output limit (determined by TWOCL in the coefficient RAM) to the modulation limit in an attempt to eliminate the thermal warning condition. Once the thermal warning output limit adjustment is applied, it remains in this state until reset, unless FDRB = 0.

6.1.5 Fault detect recovery bypass

Table 16. Fault detect recovery bypass
Bit R/W RST Name Description
7 R/W 0 FDRB
0: fault detect recovery enabled 1: fault detect recovery disabled
The on-chip STA339BW power output block provides feedback to the digital controller using inputs to the power control block. The FAULT input is used to indicate a fault condition (either overcurrent or thermal). When FAULT is asserted (set to 0), the power control block attempts a recovery from the fault by asserting the tri-state output (setting it to 0 which directs the power output block to begin recovery), holds it at 0 for period of time in the range of 0.1 ms to 1 second as defined by the fault-detect recovery constant register (FDRC registers 0x2B­0x2C), then toggles it back to 1. This sequence is repeated as log as the fault indication exists. This feature is enabled by default but can be bypassed by setting the FDRB control bit to 1.

6.2 Configuration register B (addr 0x01)

D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000

6.2.1 Serial audio input interface format

Table 17. Serial audio input interface
Bit R/W RST Name Description
0R/W0 SAI0
1R/W0 SAI1
2R/W0 SAI2
3R/W0 SAI3
Doc ID 15251 Rev 5 29/77
Determines the interface format of the input serial digital audio interface.
Register description STA339BW

6.2.2 Serial data interface

The STA339BW audio serial input was designed to interface with standard digital audio components and to accept a number of serial data formats. STA339BW always acts as slave when receiving audio input from standard digital audio components. Serial data for two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data 1 and 2 SDI12.
The SAI bits (D3 to D0) and the SAIFB bit (D4) are used to specify the serial data format. The default serial data format is I and figure that follow.

6.2.3 Serial data first bit

Table 18. Serial data first bit
SAIFB Format
0 MSB-first
1 LSB-first
Table 19. Supported serial audio input formats for MSB-first (SAIFB = 0)
BICKI SAI [3:0] SAIFB Interface format
32 * fs
48 * fs
64 * fs
2
S, MSB-first. Available formats are shown in the tables
0000 0 I
2
S 15-bit data
0001 0 Left/right-justified 16-bit data
0000 0 I2S 16 to 23-bit data
0001 0 Left-justified 16 to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
2
0000 0 I
S 16 to 24-bit data
0001 0 Left-justified 16 to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
30/77 Doc ID 15251 Rev 5
STA339BW Register description
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1)
BICKI SAI [3:0] SAIFB Interface format
32 * fs
1100 1 I
1110 1 Left/right-justified 16-bit data
0100 1 I
0100 1 I
1000 1 I
1100 1 LSB first I
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
48 * fs
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
2
S 15-bit data
2
S 23-bit data
2
S 20-bit data
2
S 18-bit data
2
S 16-bit data
0000 1 I2S 24-bit data
2
0100 1 I
1000 1 I
1100 1 LSB first I
S 20-bit data
2
S 18-bit data
2
S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
64 * fs
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
To make the STA339BW work properly, the serial audio interface LRCKI clock must be synchronous to the PLL output clock. It means that:
the frequency of PLL clock / frequency of LRCKI = N ±4 cycles,
where N depends on the settings in Table 13 on page 28
the PLL must be locked.
If these two conditions are not met, and bit IDE of register address 0x05 is set to 1, the STA339BW immediately mutes the I
2
S PCM data out (provided to the processing block) and
it freezes any active processing task.
To avoid any audio side effects (like pop noise), it is strongly recommended to soft mute any audio streams flowing into STA339BW data path before the desynchronization event
Doc ID 15251 Rev 5 31/77
Register description STA339BW
happens. At the same time any processing related to the I2C configuration should be issued only after the serial audio interface and the internal PLL are synchronous again.
Note: Any mute or volume change causes some delay in the completion of the I
2
C operation due to the soft volume feature. The soft volume phase change must be finished before any clock desynchronization.

6.2.4 Delay serial clock enable

Table 21. Delay serial clock enable
Bit R/W RST Name Description
0: No serial clock delay
5 R/W 0 DSCKE
1: Serial clock delay by 1 core clock cycle to tolerate anomalies in some I2S master devices

6.2.5 Channel input mapping

Table 22. Channel input mapping
Bit R/W RST Name Description
6R/W0 C1IM
7R/W1 C2IM
0: Processing channel 1 receives Left I 1: Processing channel 1 receives Right I2S Input
0: Processing channel 2 receives Left I 1: Processing channel 2 receives Right I
2
S Input
2
S Input
2
S Input
Each channel received via I2S can be mapped to any internal processing channel via the Channel Input Mapping registers. This allows for flexibility in processing. The default settings of these registers map each I
2
S input channel to its corresponding processing
channel.
32/77 Doc ID 15251 Rev 5
STA339BW Register description

6.3 Configuration register C (addr 0x02)

D7 D6 D5 D4 D3 D2 D1 D0
OCRB Reserved CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
10011111

6.3.1 FFX power output mode

Table 23. FFX power output mode
Bit R/W RST Name Description
0R/W1 OM0
Selects configuration of FFX output.
1R/W1 OM1
The FFX power output mode selects how the FFX output timing is configured.
Different power devices use different output modes.
Table 24. Output modes
OM[1,0] Output stage mode
00 Drop compensation
01 Discrete output stage - tapered compensation
10 Full power mode
11 Variable drop compensation (CSZx bits)

6.3.2 FFX compensating pulse size register

Table 25. FFX compensating pulse size bits
Bit R/W RST Name Description
2R/W1 CSZ0
3R/W1 CSZ1
4R/W1 CSZ2
5R/W0 CSZ3
Table 26. Compensating pulse size
When OM[1,0] = 11, this register determines the size of the FFX compensating pulse from 0 clock ticks to 15 clock periods.
CSZ[3:0] Compensating pulse size
0000 0 ns (0 tick) compensating pulse size
0001 20 ns (1 tick) clock period compensating pulse size
……
1111 300 ns (15 tick) clock period compensating pulse size
Doc ID 15251 Rev 5 33/77
Register description STA339BW

6.3.3 Overcurrent warning detect adjustment bypass

Table 27. Overcurrent warning bypass
Bit R/W RST Name Description
7 R/W 1 OCRB
0: overcurrent warning adjustment enabled 1: overcurrent warning adjustment disabled
The OCWARN input is used to indicate an overcurrent warning condition. When OCWARN is asserted (set to 0), the power control block forces an adjustment to the modulation limit (default is -3 dB) in an attempt to eliminate the overcurrent warning condition. Once the overcurrent warning volume adjustment is applied, it remains in this state until reset is applied. The level of adjustment can be changed via the TWOCL (thermal warning / overcurrent limit) setting which is address 0x37 of the user defined coefficient RAM.

6.4 Configuration register D (addr 0x03)

D7 D6 D5 D4 D3 D2 D1 D0
SME ZDE DRC BQL PSL DSPB DEMP HPB
01000000

6.4.1 High-pass filter bypass

Table 28. High-pass filter bypass
Bit R/W RST Name Description
0R/W0 HPB
Setting of one bypasses internal AC coupling digital high-pass filter
The STA339BW features an internal digital high-pass filter for the purpose of AC coupling. The purpose of this filter is to prevent DC signals from passing through a FFX amplifier. DC signals can cause speaker damage. When HPB = 0, this filter is enabled.

6.4.2 De-emphasis

Table 29. De-emphasis
Bit R/W RST Name Description
1R/W0 DEMP
0: No de-emphasis 1: Enable de-emphasis on all channels

6.4.3 DSP bypass

Table 30. DSP bypass
Bit R/W RST Name Description
2 R/W 0 DSPB
Setting the DSPB bit bypasses the EQ function of the STA339BW.
34/77 Doc ID 15251 Rev 5
0: Normal operation 1: Bypass of biquad and bass/treble functions
STA339BW Register description

6.4.4 Post-scale link

Table 31. Post-scale link
Bit R/W RST Name Description
3R/W0 PSL
0: Each channel uses individual post-scale value 1: Each channel uses channel 1 post-scale value
Post-scale functionality can be used for power-supply error correction. For multi-channel applications running off the same power-supply, the post-scale values can be linked to the value of channel 1 for ease of use and update the values faster.

6.4.5 Biquad coefficient link

Table 32. Biquad coefficient link
Bit R/W RST Name Description
4R/W0 BQL
0: Each channel uses coefficient values 1: Each channel uses channel 1 coefficient values
For ease of use, all channels can use the biquad coefficients loaded into the Channel-1 coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to be performed once.

6.4.6 Dynamic range compression/anti-clipping bit

Table 33. Dynamic range compression/anti-clipping bit
Bit R/W RST Name Description
5 R/W 0 DRC
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression. When used in anti-clipping mode the limiter threshold values are constant and dependent on the limiter settings. In dynamic range compression mode the limiter threshold values vary with the volume settings allowing a nighttime listening mode that provides a reduction in the dynamic range regardless of the volume level.

6.4.7 Zero-detect mute enable

Table 34. Zero-detect mute enable
Bit R/W RST Name Description
6 R/W 1 ZDE Setting of 1 enables the automatic zero-detect mute
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at the data for each processing channel at the output of the crossover (bass management) filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then that individual channel is muted if this function is enabled.
0: Limiters act in anti-clipping mode 1: Limiters act in dynamic range compression mode
Doc ID 15251 Rev 5 35/77
Register description STA339BW

6.4.8 Submix mode enable

Table 35. Submix mode enable
Bit R/W RST Name Description
7R/W0 SME
0: Sub Mix into Left/Right disabled 1: Sub Mix into Left/Right enabled

6.5 Configuration register E (addr 0x04)

D7 D6 D5 D4 D3 D2 D1 D0
SVE ZCE DCCV PWMS AME NSBW MPC MPCV
11000010

6.5.1 Max power correction variable

Table 36. Max power correction variable
Bit R/W RST Name Description
0R/W0 MPCV

6.5.2 Max power correction

Table 37. Max power correction
Bit R/W RST Name Description
0: Use standard MPC coefficient 1: Use MPCC bits for MPC coefficient
1R/W1 MPC
Setting of 1 enables Power Bridge correction for THD reduction near maximum power output.
Setting the MPC bit turns on special processing that corrects the STA339BW power device at high power. This mode should lower the THD+N of a full FFX system at maximum power output and slightly below. If enabled, MPC is operational in all output modes except tapered (OM[1,0] = 01) and binary. When OCFG = 00, MPC will not effect channels 3 and 4, the line­out channels.

6.5.3 Noise-shaper bandwidth selection

Table 38. Noise-shaper bandwidth selection
Bit R/W RST Name Description
2 R/W 0 NSBW
36/77 Doc ID 15251 Rev 5
1: Third order NS 0: Fourth order NS
STA339BW Register description

6.5.4 AM mode enable

Table 39. AM mode enable
Bit R/W RST Name Description
3R/W0 AME
0: Normal FFX operation. 1: AM reduction mode FFX operation
STA339BW features aFFX processing mode that minimizes the amount of noise generated in frequency range of AM radio. This mode is intended for use when FFX is operating in a device with an AM tuner active. The SNR of the FFX processing is reduced to approximately 83 dB in this mode, which is still greater than the SNR of AM radio.

6.5.5 PWM speed mode

Table 40. PWM speed mode
Bit R/W RST Name Description
4R/W0 PWMS
0: Normal speed (384 kHz) all channels 1: Odd speed (341.3 kHz) all channels

6.5.6 Distortion compensation variable enable

Table 41. Distortion compensation variable enable
Bit R/W RST Name Description
5 R/W 0 DCCV
0: Use preset DC coefficient 1: Use DCC coefficient

6.5.7 Zero-crossing volume enable

Table 42. Zero-crossing volume enable
Bit R/W RST Name Description
6R/W1 ZCE
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital zero-crossings no clicks are audible.

6.5.8 Soft volume update enable

Table 43. Soft volume update enable
Bit R/W RST Name Description
7 R/W 1 SVE
Doc ID 15251 Rev 5 37/77
1: Volume adjustments only occur at digital zero­crossings
0: Volume adjustments occur immediately
1: Volume adjustments ramp according to SVR settings 0: Volume adjustments occur immediately
Register description STA339BW

6.6 Configuration register F (addr 0x05)

D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
01011100

6.6.1 Output configuration

Table 44. Output configuration
Bit R/W RST Name Description
0 R/W 0 OCFG0
Selects the output configuration
1 R/W 0 OCFG1
Table 45. Output configuration engine selection
OCFG[1:0] Output configuration Config pin
2 channel (full-bridge) power, 2 channel data-out: 1A/1B 1A/1B
00
2A/2B 2A/2B LineOut1 3A/3B
0
LineOut2 4A/4B Line Out Configuration determined by LOC register
2(Half-Bridge).1(Full-Bridge) On-Board Power: 1A 1A Binary 0 °
01
2A 1B Binary 90° 3A/3B 2A/2B Binary 45°
0
1A/B 3A/B Binary 0° 2A/B 4A/B Binary 90°
2 Channel (Full-Bridge) Power, 1 Channel FFX: 1A/1B 1A/1B
10
2A/2B 2A/2B
0 3A/3B 3A/3B EAPDEXT and TWARNEXT Active
1 Channel Mono-Parallel: 3A 1A/1B w/ C3BO 45°
11
3B 2A/2B w/ C3BO 45°
1 1A/1B 3A/3B 2A/2B 4A/4B
Note: To the left of the arrow is the processing channel. When using channel output mapping, any
of the three processing channel outputs can be used for any of the three inputs.
38/77 Doc ID 15251 Rev 5
STA339BW Register description
Figure 11. OCFG = 00 (default value)
OUT1A
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1B
OUT2A
OUT2B
Channel 1
Channel 2
Figure 12. OCFG = 01
Figure 13. OCFG = 10
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT3A
OUT3B
OUT4A
OUT4B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
EAPD
OUT1A
OUT1B
OUT2A
OUT2B
Power Device
LPF
LPF
Channel 1
Channel 2
LineOut 1
LineOut 2
Channel 1
Channel 2
Channel 3
Channel 3
Doc ID 15251 Rev 5 39/77
Register description STA339BW
Figure 14. OCFG = 11
OUT1A
Half
Bridge
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
OUT1B
Channel 3
OUT2A
Channel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
The STA339BW can be configured to support different output configurations. For each PWM output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds length. The PWM slot define the maximum extension for PWM rise and fall edge, that is, rising edge as far as the falling edge cannot range outside PWM slot boundaries.
Figure 15. Output mapping scheme
FFX1A
FFX
FFX ™
modulator
modulator
FFX1A
FFX1 B
FFX1 B
FFX2 A
FFX2 A
FFX 2B
FFX 2B
FFX3 A
FFX3 A
FFX3B
FFX3B
OUT1A
OUT1A
OUT1B
OUT1B
OUT2A
OUT2A
Power
Power
Bridge
Bridge
OUT1A
OUT1A
OUT1B
OUT1B
OUT2A
OUT2A
FFX4 A
FFX4 A
FFX 4B
FFX 4B
REMAP
REMAP
For each configuration the PWM signals from the digital driver are mapped in different ways to the power stage:
40/77 Doc ID 15251 Rev 5
OUT2B
OUT2B
OUT3A
OUT3A
OUT3B
OUT3B
OUT4A
OUT4A
OUT4B
OUT4B
OUT2B
OUT2B
STA339BW Register description
2.0 channels, two full bridges (OCFG = 00)
z FFX1A -> OUT1A
z FFX1B -> OUT1B
z FFX2A -> OUT2A
z FFX2B -> OUT2B
z FFX3A -> OUT3A
z FFX3B -> OUT3B
z FFX4A -> OUT4A
z FFX4B -> OUT4B
z FFX1A/1B configured as ternary
z FFX2A/2B configured as ternary
z FFX3A/3B configured as lineout ternary
z FFX4A/4B configured as lineout ternary
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this configuration, volume control or EQ have no effect on channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 16.
Figure 16. 2.0 channels (OCFG = 00) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
Doc ID 15251 Rev 5 41/77
Register description STA339BW
2.1 channels, two half bridges + one full bridge (OCFG = 01)
z FFX1A -> OUT1A
z FFX2A -> OUT1B
z FFX3A -> OUT2A
z FFX3B -> OUT2B
z FFX1A -> OUT3A
z FFX1B -> OUT3B
z FFX2A -> OUT4A
z FFX2B -> OUT4B
z FFX1A/1B configured as binary
z FFX2A/2B configured as binary
z FFX3A/3B configured as binary
z FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4 channels the channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 17.
Figure 17. 2.1 channels (OCFG = 01) PWM slots
OUT1A
OUT1A
OUT1B
OUT1B
OUT2A
OUT2A
OUT2B
OUT2B
OUT3A
OUT3A
OUT3B
OUT3B
OUT4A
OUT4A
OUT4B
OUT4B
42/77 Doc ID 15251 Rev 5
STA339BW Register description
2.1 channels, two fullbridge + one external full bridge (OCFG = 10)
z FFX1A -> OUT1A
z FFX1B -> OUT1B
z FFX2A -> OUT2A
z FFX2B -> OUT2B
z FFX3A -> OUT3A
z FFX3B -> OUT3B
z EAPD -> OUT4A
z TWARN -> OUT4B
z FFX1A/1B configured as ternary
z FFX2A/2B configured as ternary
z FFX3A/3B configured as ternary
z FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the external bridge control signals are muxed.
In this configuration the PWM slot phase is the following as shown in Figure 18.
Figure 18. 2.1 channels (OCFG = 10) PWM slots
OUT1A
OUT1A
OUT1B
OUT1B
OUT2A
OUT2A
OUT2B
OUT2B
OUT3A
OUT3A
OUT3B
OUT3B
Doc ID 15251 Rev 5 43/77
Register description STA339BW

6.6.2 Invalid input detect mute enable

Table 46. Invalid input detect mute enable
Bit R/W RST Name Description
2R/W1 IDE
Setting of 1 enables the automatic invalid input detect mute
Setting the IDE bit enables this function, which looks at the input I2S data and automatically mutes if the signals are perceived as invalid.

6.6.3 Binary output mode clock loss detection

Table 47. Binary output mode clock loss detection
Bit R/W RST Name Description
3 R/W 1 BCLE Binary output mode clock loss detection enable
Detects loss of input MCLK in binary mode and will output 50% duty cycle.

6.6.4 LRCK double trigger protection

Table 48. LRCK double trigger protection
Bit R/W RST Name Description
4 R/W 1 LDTE LRCLK double trigger protection enable
Actively prevents double trigger of LRCLK.

6.6.5 Auto EAPD on clock loss

Table 49. Auto EAPD on clock loss
Bit R/W RST Name Description
5 R/W 0 ECLE Auto EAPD on clock loss
When active, issues a power device power down signal (EAPD) on clock loss detection.

6.6.6 IC power down

Table 50. IC power down
Bit R/W RST Name Description
7R/W1 PWDN
The PWDN register is used to place the IC in a low-power state. When PWDN is written as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted to power down the power-stage, then the master clock to all internal hardware expect the
2
I
C block is gated. This places the IC in a very low power consumption state.
44/77 Doc ID 15251 Rev 5
0: IC power down low-power condition 1: IC normal operation
STA339BW Register description

6.6.7 External amplifier power down

Table 51. External amplifier power down
Bit R/W RST Name Description
7R/W0 EAPD
0: External power stage power down active 1: Normal operation
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed on a low-power state (disabled). This register also controls the FFX4B/EAPD output pin when OCFG = 10.

6.7 Volume control registers (addr 0x06 - 0x0A)

6.7.1 Mute/line output configuration register

D7 D6 D5 D4 D3 D2 D1 D0
LOC1 LOC0 Reserved C3M C2M C1M MMUTE
00000000
Table 52. Line output configuration
LOC[1:0] Line output configuration
00 Line output fixed - no volume, no EQ
01 Line output variable - CH3 volume effects line output, no EQ
10 Line output variable with EQ - CH3 volume effects line output
Line output is only active when OCFG = 00. In this case LOC determines the line output configuration. The source of the line output is always the channel 1 and 2 inputs.

6.7.2 Master volume register

D7 D6 D5 D4 D3 D2 D1 D0
MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
11111111

6.7.3 Channel 1 volume

D7 D6 D5 D4 D3 D2 D1 D0
C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
01100000

6.7.4 Channel 2 volume

D7 D6 D5 D4 D3 D2 D1 D0
C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
01100000
Doc ID 15251 Rev 5 45/77
Register description STA339BW

6.7.5 Channel 3 / line output volume

D7 D6 D5 D4 D3 D2 D1 D0
C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
01100000
The Volume structure of the STA339BW consists of individual volume registers for each channel and a master volume register that provides an offset to each channels volume setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB to ­80 dB.
As an example if C3V = 0x00 or +48 dB and MV = 0x18 or -12 dB, then the total gain for channel 3 = +36 dB.
The master mute, when set to 1, mutes all channels at once, whereas the individual channel mutes (CxM) mutes only that channel. Both the master mute and the channel mutes provide a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (approximately 96 kHz).
A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) to any channel volume register or the master volume register. When volume offsets are provided via the master volume register any channel whose total volume is less than -80 dB is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E
(addr 0x04) on page 36) on a per channel basis as this creates the smoothest possible
volume transitions. When ZCE = 0, volume updates occur immediately.
Table 53. Master volume offset as a function of MV[7:0]
MV[7:0] Volume offset from channel value
00000000 (0x00) 0 dB
00000001 (0x01) -0.5 dB
00000010 (0x02) -1 dB
……
01001100 (0x4C) -38 dB
……
11111110 (0xFE) -127.5 dB
11111111 (0xFF) Hard master mute
Table 54. Channel volume as a function of CxV[7:0]
CxV[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01011111 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
46/77 Doc ID 15251 Rev 5
STA339BW Register description
Table 54. Channel volume as a function of CxV[7:0] (continued)
CxV[7:0] Volume
01100001 (0x61) -0.5 dB
……
11010111 (0xD7) -59.5 dB
11011000 (0xD8) -60 dB
11011001 (0xD9) -61 dB
11011010 (0xDA) -62 dB
……
11101100 (0xEC) -80 dB
11101101 (0xED) Hard channel mute
……
11111111 (0xFF) Hard channel mute

6.8 Audio preset registers (addr 0x0B and 0x0C)

6.8.1 Audio preset register 1 (addr 0x0B)

D7 D6 D5 D4 D3 D2 D1 D0
Reserved AMGC[1] AMGC[0] Reserved
00000000
Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured to properly fit application specific configurations. AMGC[3:2] is defined in register EQ
coefficients and DRC configuration register (addr 0x31) on page 65.
The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2]. When this value is 00 then bits AMGC[1:0] are defined below in Tab le 5 5 .
Table 55. Audio preset gain compression/limiters selection for AMGC[3:2] = 00
AMGC[1:0] Mode
00 User programmable GC
01 AC no clipping 2.1
10 AC limited clipping (10%) 2.1
11 DRC night-time listening mode 2.1

6.8.2 Audio preset register 2 (addr 0x0C)

D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
00000000
Doc ID 15251 Rev 5 47/77
Register description STA339BW

6.8.3 AM interference frequency switching

Table 56. AM interference frequency switching bits
Bit R/W RST Name Description
Audio preset AM enable
0 R/W 0 AMAME
Table 57. Audio preset AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz
0: switching frequency determined by PWMS setting 1: switching frequency determined by AMAM settings

6.8.4 Bass management crossover

Table 58. Bass management crossover
Bit R/W RST Name Description
4R/W0 XO0
5R/W0 XO1
6R/W0 XO2
7R/W0 XO3
Table 59. Bass management crossover frequency
XO[3:0] Crossover frequency
0000 User-defined
0001 80 Hz
0010 100 Hz
0011 120 Hz
0100 140 Hz
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
Selects the bass-management crossover frequency. A 1st-order hign-pass filter (channels 1 and 2) or a 2nd-order low-pass filter (channel 3) at the selected frequency is performed.
1001 240 Hz
48/77 Doc ID 15251 Rev 5
STA339BW Register description
Table 59. Bass management crossover frequency (continued)
XO[3:0] Crossover frequency
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz

6.9 Channel configuration registers (addr 0x0E - 0x10)

D7 D6 D5 D4 D3 D2 D1 D0
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB
01000000
D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved
10000000

6.9.1 Tone control bypass

Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2.
Table 60. Tone control bypass
CxTCB Mode
0 Perform tone control on channel x - normal operation
1 Bypass tone control on channel x

6.9.2 EQ bypass

EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis, bass, treble in any combination) are bypassed for that channel.
Table 61. EQ bypass
CxEQBP Mode
0 Perform EQ on channel x - normal operation
1 Bypass EQ on channel x
Doc ID 15251 Rev 5 49/77
Register description STA339BW

6.9.3 Volume bypass

Each channel contains an individual channel volume bypass. If a particular channel has volume bypassed via the CxVBP = 1 register then only the channel volume setting for that particular channel affects the volume setting, the master volume setting will not affect that channel.

6.9.4 Binary output enable registers

Each individual channel output can be set to output a binary PWM stream. In this mode output A of a channel is considered the positive output and output B is negative inverse.
Table 62. Binary output enable registers
CxBO Mode
0 FFX 3-state output - normal operation
1 Binary output

6.9.5 Limiter select

Limiter selection can be made on a per-channel basis according to the channel limiter select bits.
.
Table 63. Channel limiter mapping as a function of CxLS bits
CxLS[1:0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2

6.9.6 Output mapping

Output mapping can be performed on a per channel basis according to the CxOM channel output mapping bits. Each input into the output configuration engine can receive data from any of the three processing channel outputs.
.
Table 64. Channel output mapping as a function of CxOM bits
CxOM[1:0] Channel x output source from
00 Channel1
01 Channel 2
10 Channel 3
50/77 Doc ID 15251 Rev 5
STA339BW Register description

6.10 Tone control register (addr 0x11)

D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111

6.10.1 Tone control

Table 65. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0] Boost/Cut
0000 -12 dB
0001 -12 dB
……
0111 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1101 +12 dB
1110 +12 dB
1111 +12 dB

6.11 Dynamic control registers (addr 0x12 - 0x15)

6.11.1 Limiter 1 attack/release rate

D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010

6.11.2 Limiter 1 attack/release threshold

D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001

6.11.3 Limiter 2 attack/release rate

D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
Doc ID 15251 Rev 5 51/77
Register description STA339BW

6.11.4 Limiter 2 attack/release threshold

D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001
The STA339BW includes two independent limiter blocks. The purpose of the limiters is to automatically reduce the dynamic range of a recording to prevent the outputs from clipping in anti-clipping mode or to actively reduce the dynamic range for a better listening environment such as a night-time listening mode which is often needed for DVDs. The two modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 36. Each channel can be mapped to either limiter or not mapped, meaning that channel will clip when 0 dBfs is exceeded. Each limiter looks at the present value of each channel that is mapped to it, selects the maximum absolute value of all these channels, performs the limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels in unison.
The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set to 0 else the thresholds are determined by EATHx[6:0] . It is recommended in anti-clipping mode to set this to 0 dBfs, which corresponds to the maximum unclipped output power of a FFX amplifier. Since gain can be added digitally within the STA339BW it is possible to exceed 0 dBfs or any other LxAT setting, when this occurs, the limiter, when active, automatically starts reducing the gain. The rate at which the gain is reduced when the attack threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain reduction occurs on a peak-detect algorithm. Setting EATHx[7] bits to 1 selects the anti-clipping mode.
The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set to 0 else the thresholds are determined by ERTHx[6:0]. Settings to 1 ERTHx[7] bits the anti-clipping mode is selected automatically. The release of limiter, when the gain is again increased, is dependent on a RMS-detect algorithm. The output of the volume/limiter block is passed through a RMS filter. The output of this filter is compared to the release threshold, determined by the Release Threshold register. When the RMS filter output falls below the release threshold, the gain is again increased at a rate dependent upon the Release Rate register. The gain can never be increased past its set value and, therefore, the release only occurs if the limiter has already reduced the gain. The release threshold value can be used to set what is effectively a minimum dynamic range, this is helpful as over-limiting can reduce the dynamic range to virtually zero and cause program material to sound “lifeless”.
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode, the attack threshold is set relative to the maximum volume setting of the channels mapped to that limiter and the release threshold is set relative to the maximum volume setting plus the attack threshold.
52/77 Doc ID 15251 Rev 5
STA339BW Register description
Figure 19. Basic limiter and volume flow diagram
Table 66. Limiter attack rate as a function
of LxA bits
LxA[3:0] Attack Rate dB/ms LxR[3:0] Release Rate dB/ms
Table 67. Limiter release rate as a
function of LxR bits
0000 3.1584
0001 2.7072 0001 0.1370
Fast
0000 0.5116
0010 2.2560 0010 0.0744
0011 1.8048 0011 0.0499
0100 1.3536 0100 0.0360
0101 0.9024 0101 0.0299
0110 0.4512 0110 0.0264
0111 0.2256 0111 0.0208
1000 0.1504 1000 0.0198
1001 0.1123 1001 0.0172
1010 0.0902 1010 0.0147
1011 0.0752 1011 0.0137
1100 0.0645 1100 0.0134
1101 0.0564 1101 0.0117
1110 0.0501 1110 0.0110
Slow
1111 0.0451 1111 0.0104
Fast
Slow
Doc ID 15251 Rev 5 53/77
Register description STA339BW
Anti-clipping mode
Table 68. Limiter attack threshold as a
function of LxAT bits (AC mode)
LxAT[3:0] AC (dB relative to fs) LxRT[3:0] AC (dB relative to fs)
0000 -12 0000 -
0001 -10 0001 -29 dB
0010 -8 0010 -20 dB
0011 -6 0011 -16 dB
0100 -4 0100 -14 dB
0101 -2 0101 -12 dB
0110 0 0110 -10 dB
0111 +2 0111 -8 dB
1000 +3 1000 -7 dB
1001 +4 1001 -6 dB
1010 +5 1010 -5 dB
Table 69. Limiter release threshold as a
function of LxRT bits (AC mode)
1011 +6 1011 -4 dB
1100 +7 1100 -3 dB
1101 +8 1101 -2 dB
1110 +9 1110 -1 dB
1111 +10 1111 -0 dB
54/77 Doc ID 15251 Rev 5
STA339BW Register description
Dynamic range compression mode
Table 70. Limiter attack threshold as a
function of LxAT bits (DRC mode)
Table 71. Limiter release threshold as a
as a function of LxRT bits (DRC mode)
LxAT[3:0] DRC (dB relative to Volume) LxRT[3:0]
DRC (db relative to Volume +
0000 -31 0000 -
0001 -29 0001 -38 dB
0010 -27 0010 -36 dB
0011 -25 0011 -33 dB
0100 -23 0100 -31 dB
0101 -21 0101 -30 dB
0110 -19
0110 -28 dB
0111 -17 0111 -26 dB
1000 -16 1000 -24 dB
1001 -15 1001 -22 dB
1010 -14 1010 -20 dB
1011 -13 1011 -18 dB
1100 -12 1100 -15 dB
1101 -10 1101 -12 dB
1110 -7 1110 -9 dB
1111 -4 1111 -6 dB
LxAT)

6.11.5 Limiter 1 Extended attack threshold (addr 0x32)

D7 D6 D5 D4 D3 D2 D1 D0
EATHEN1EATH1[6]EATH1[5]EATH1[4]EATH1[3]EATH1[2]EATH1[1]EATH1[0]
TBDTBDTBDTBDTBDTBDTBDTBD
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH1 / 4

6.11.6 Limiter 1 Extended release threshold (addr 0x33)

D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
TBDTBDTBDTBDTBDTBDTBDTBD
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH1 / 4
Doc ID 15251 Rev 5 55/77
Register description STA339BW

6.11.7 Limiter 2 Extended attack threshold (addr 0x34)

D7 D6 D5 D4 D3 D2 D1 D0
EATHEN2EATH2[6]EATH2[5]EATH2[4]EATH2[3]EATH2[2]EATH2[1]EATH2[0]
TBDTBDTBDTBDTBDTBDTBDTBD
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH2 / 4

6.11.8 Limiter 2 Extended release threshold (addr 0x35)

D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
TBDTBDTBDTBDTBDTBDTBDTBD
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH2 / 4
Note: Attack/release threshold step is 0.125 dB in the range -12 dB and 0 dB.

6.12 User-defined coefficient control registers (addr 0x16 - 0x26)

6.12.1 Coefficient address register

D7 D6 D5 D4 D3 D2 D1 D0
Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
0 000000

6.12.2 Coefficient b1 data register bits 23:16

D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000

6.12.3 Coefficient b1 data register bits 15:8

D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000

6.12.4 Coefficient b1 data register bits 7:0

D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000
56/77 Doc ID 15251 Rev 5
STA339BW Register description

6.12.5 Coefficient b2 data register bits 23:16

D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000

6.12.6 Coefficient b2 data register bits 15:8

D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000

6.12.7 Coefficient b2 data register bits 7:0

D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000

6.12.8 Coefficient a1 data register bits 23:16

D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000

6.12.9 Coefficient a1 data register bits 15:8

D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000

6.12.10 Coefficient a1 data register bits 7:0

D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000

6.12.11 Coefficient a2 data register bits 23:16

D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000
Doc ID 15251 Rev 5 57/77
Register description STA339BW

6.12.12 Coefficient a2 data register bits 15:8

D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000

6.12.13 Coefficient a2 data register bits 7:0

D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000

6.12.14 Coefficient b0 data register bits 23:16

D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000

6.12.15 Coefficient b0 data register bits 15:8

D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000

6.12.16 Coefficient b0 data register bits 7:0

D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000

6.12.17 Coefficient write/read control register

D7 D6 D5 D4 D3 D2 D1 D0
Reserved RA R1 WA W1
0 0000
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled internally in the STA339BW via RAM. Access to this RAM is available to the user via an I register interface. A collection of I coefficient base address, five sets of three store the values of the 24-bit coefficients to be written or that were read, and one contains bits used to control the write/read of the coefficient(s) to/from RAM.
2
C registers are dedicated to this function. One contains a
2
C
Three different RAM banks are embedded in STA339BW. The three banks are managed in paging mode using EQCFG register bits. They can be used to store different EQ settings. For speaker frequency compensation, a sampling frequency independent EQ must be implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and downloading them into the three RAM banks, it is possible to select the suitable RAM block depending from the incoming frequency with a simple I
58/77 Doc ID 15251 Rev 5
2
C write operation on register 0x31.
STA339BW Register description
For example, in case of different input sources (different sampling rates), the three different sets of coefficients can be downloaded once at the start up, and during the normal play it is possible to switch among the three RAM blocks allowing a faster operation, without any additional download from the microcontroller.
To write the coefficients in a particular RAM bank, this bank must be selected first writing bit 0 and bit 1 in register 0x31. Then the write procedure below can be used.
Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to the coefficients stored in the active RAM block.
Note: The read and write operation on RAM coefficients works only if LRCKI (pin 29) is switching.
Reading a coefficient from RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of address to I
3. Write 1 to R1 bit in I
4. Read top 8 bits of coefficient in I
5. Read middle 8 bits of coefficient in I
6. Read bottom 8 bits of coefficient in I
2
C register 0x16.
2
C address 0x26.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
Reading a set of coefficients from RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of address to I
3. Write 1 to RA bit in I
4. Read top 8 bits of coefficient in I
5. Read middle 8 bits of coefficient in I
6. Read bottom 8 bits of coefficient in I
7. Read top 8 bits of coefficient b2 in I
8. Read middle 8 bits of coefficient b2 in I
9. Read bottom 8 bits of coefficient b2 in I
10. Read top 8 bits of coefficient a1 in I
11. Read middle 8 bits of coefficient a1 in I
12. Read bottom 8 bits of coefficient a1 in I
13. Read top 8 bits of coefficient a2 in I
14. Read middle 8 bits of coefficient a2 in I
15. Read bottom 8 bits of coefficient a2 in I
16. Read top 8 bits of coefficient b0 in I
17. Read middle 8 bits of coefficient b0 in I
18. Read bottom 8 bits of coefficient b0 in I
2
C register 0x16.
2
C address 0x26.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
2
C address 0x1A.
2
C address 0x1B.
2
C address 0x1C.
2
C address 0x1D.
2
C address 0x1E.
2
C address 0x1F.
2
C address 0x20.
2
C address 0x21.
2
C address 0x22.
2
C address 0x23.
2
C address 0x24.
2
C address 0x25.
Doc ID 15251 Rev 5 59/77
Register description STA339BW
Writing a single coefficient to RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of address to I
3. Write top 8 bits of coefficient in I
4. Write middle 8 bits of coefficient in I
5. Write bottom 8 bits of coefficient in I
6. Write 1 to W1 bit in I
2
C register 0x16.
2
C address 0x17.
2
C address 0x26.
2
C address 0x18.
2
C address 0x19.
Writing a set of coefficients to RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of starting address to I
3. Write top 8 bits of coefficient b1 in I
4. Write middle 8 bits of coefficient b1 in I
5. Write bottom 8 bits of coefficient b1 in I
6. Write top 8 bits of coefficient b2 in I
7. Write middle 8 bits of coefficient b2 in I
8. Write bottom 8 bits of coefficient b2 in I
9. Write top 8 bits of coefficient a1 in I
10. Write middle 8 bits of coefficient a1 in I
11. Write bottom 8 bits of coefficient a1 in I
12. Write top 8 bits of coefficient a2 in I
13. Write middle 8 bits of coefficient a2 in I
14. Write bottom 8 bits of coefficient a2 in I
15. Write top 8 bits of coefficient b0 in I
16. Write middle 8 bits of coefficient b0 in I
17. Write bottom 8 bits of coefficient b0 in I
18. Write 1 to WA bit in I
2
C address 0x26.
2
C register 0x16.
2
C address 0x17.
2
C address 0x18.
2
C address 0x19.
2
C address 0x1A.
2
C address 0x1B.
2
C address 0x1C.
2
C address 0x1D.
2
C address 0x1E.
2
C address 0x1F.
2
C address 0x20.
2
C address 0x21.
2
C address 0x22.
2
C address 0x23.
2
C address 0x24.
2
C address 0x25.
The mechanism for writing a set of coefficients to RAM provides a method of updating the five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the STA339BW generates the RAM addresses as offsets from this base value to write the complete set of coefficient data.
60/77 Doc ID 15251 Rev 5
STA339BW Register description

6.12.18 User-defined EQ

The STA339BW can be programmed for four EQ filters (biquads) per each of the two input channels. The biquads use the following equation:
Y[n] = 2 * (b
= b
/ 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
0
* X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
0
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF (0.9999998808).
Coefficients stored in the user defined coefficient RAM are referenced in the following manner:
CxHy0 = b
CxHy1 = b
1
2
/ 2
CxHy2 = -a1 / 2
CxHy3 = -a
2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C2H41 is the b coefficient in the fourth biquad for channel 2.
Additionally, the STA339BW can be programmed for a high-pass filter (processing channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass-management crossover when the XO setting is 000 (user-defined). Both of these filters when defined by the user (rather than using the preset crossover filters) are second order filters that use the biquad equation given above. They are loaded into the C12H0-4 and C3Hy0-4 areas of RAM noted in Tab le 7 2 .
By default, all user-defined filters are pass-through where all coefficients are set to 0, except the b
/2 coefficient which is set to 0x400000 (representing 0.5)
0
2

6.12.19 Prescale

The STA339BW provides a multiplication for each input channel for the purpose of scaling the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiplication is loaded into RAM using the same I coefficients and the bass management. All channels can use the channel-1 prescale factor by setting the Biquad link bit. By default, all prescale factors are set to 0x7FFFFF.

6.12.20 Postscale

The STA339BW provides one additional multiplication after the last interpolation stage and the distortion compensation on each channel. This postscaling is accomplished by using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor for this multiply is loaded into RAM using the same I coefficients and the bass management. This postscale factor can be used in conjunction with an ADC equipped microcontroller to perform power-supply error correction. All channels can use the channel-1 postscale factor by setting the postscale link bit. By default, all postscale factors are set to 0x7FFFFF. When line output is being used, channel-3 postscale will affect both channels 3 and 4.
2
C registers as the biquad
2
C registers as the biquad
Doc ID 15251 Rev 5 61/77
Register description STA339BW

6.12.21 Overcurrent postscale

The STA339BW provides a simple mechanism for reacting to overcurrent detection in the power block. When the ocwarn input is asserted, the overcurrent postscale value is used in place of the normal postscale value to provide output attenuation on all channels. The default setting provides 3 dB of output attenuation when ocwarn is asserted.
The amount of attenuation to be applied in this situation can be adjusted by modifying the Overcurrent postscale value. As with the normal postscale, this scaling value is a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, the overcurrent postscale factor is set to applied, it remains until the device is reset.
Table 72. RAM block for biquads, mixing, scaling and bass management
Index (decimal) Index (hex) RAM block setting Coefficient Default
0x5A9DF7. Once the overcurrent attenuation is
0 0x00
1 0x01 C1H11(b2) 0x000000
2 0x02 C1H12(a1/2) 0x000000
3 0x03 C1H13(a2) 0x000000
4 0x04 C1H14(b0/2) 0x400000
5 0x05 Channel 1 - Biquad 2 C1H20 0x000000
……
19 0x13 Channel 1 - Biquad 4 C1H44 0x400000
20 0x14
21 0x15 C2H11 0x000000
……
39 0x27 Channel 2 - Biquad 4 C2H44 0x400000
40 0x28
41 0x29 C12H1(b2) 0x000000
42 0x2A C12H2(a1/2) 0x000000
43 0x2B C12H3(a2) 0x000000
44 0x2C C12H4(b0/2) 0x400000
45 0x2D
46 0x2E C3H1(b2) 0x000000
47 0x2F C3H2(a1/2) 0x000000
48 0x30 C3H3(a2) 0x000000
49 0x31 C3H4(b0/2) 0x400000
50 0x32 Channel 1 - Prescale C1PreS 0x7FFFFF
51 0x33 Channel 2 - Prescale C2PreS 0x7FFFFF
Channel 1 - Biquad 1
Channel 2 - Biquad 1
Channel 1/2 - Biquad 5 for XO = 000 High-pass 2 for XO≠000
Channel 3 - Biquad for XO = 000 Low-pass 2 for XO≠000
nd
order filter
nd
order filter
C1H10(b1/2) 0x000000
C2H10 0x000000
C12H0(b1/2) 0x000000
C3H0(b1/2) 0x000000
52 0x34 Channel 1 - Postscale C1PstS 0x7FFFFF
53 0x35 Channel 2 - Postscale C2PstS 0x7FFFFF
62/77 Doc ID 15251 Rev 5
STA339BW Register description
Table 72. RAM block for biquads, mixing, scaling and bass management (continued)
Index (decimal) Index (hex) RAM block setting Coefficient Default
54 0x36 Channel 3 - Postscale C3PstS 0x7FFFFF
55 0x37 TWARN/OC - Limit TWOCL 0x5A9DF7
56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - Mix 2 C1MX2 0x000000
58 0x3A Channel 2 - Mix 1 C2MX1 0x000000
59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - Mix 1 C3MX1 0x400000
61 0x3D Channel 3 - Mix 2 C3MX2 0x400000
62 0x3E Unused - -
63 0x3F Unused - -

6.13 Variable max power correction registers (addr 0x27 - 0x28)

D7 D6 D5 D4 D3 D2 D1 D0
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
00011010
D7 D6 D5 D4 D3 D2 D1 D0
MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
11000000
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is used in place of the default coefficient when MPCV = 1.
6.14 Variable distortion compensation registers (addr 0x29 ­0x2A)
D7 D6 D5 D4 D3 D2 D1 D0
DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8
11110011
D7 D6 D5 D4 D3 D2 D1 D0
DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0
00110011
DCC bits determine the 16 MSBs of the Distortion compensation coefficient. This coefficient is used in place of the default coefficient when DCCV = 1.
Doc ID 15251 Rev 5 63/77
Register description STA339BW

6.15 Fault detect recovery constant registers (addr 0x2B - 0x2C)

D7 D6 D5 D4 D3 D2 D1 D0
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted, the TRISTATE output is immediately asserted low and held low for the time period specified by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The default value of 0x000C gives approximately 0.1 ms.

6.16 Device status register (addr 0x2D)

D7 D6 D5 D4 D3 D2 D1 D0
PLLUL FAULT UVFAULT OVFAULT OCFAULT OCWARN TFAULT TWARN
This read-only register provides fault- and thermal-warning status information from the power control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault or warning has been detected on the power bridge. The PLLUL = 1 means that the PLL is not locked.

Table 73. Status register bits

Bit R/W RST Name Description
0:
7 R - PLLUL
6R - FAULT
5R - UVFAULT
4R - OVFAULT
PLL locked
1: PLL not locked
0: fault detected on power bridge 1: normal operation
0: VCCxX internally detected 1: undervoltage threshold
0: VCCxX internally detected 1: overvoltage threshold
3 R - OCFAULT 0: overcurrent fault detected
2 R - OCWARN 0: overcurrent warning
1 R - TFAULT 0: thermal fault, junction temperature over limit
0R - TWARN
0: thermal warning, junction temperature is close to fault condition
64/77 Doc ID 15251 Rev 5
STA339BW Register description

6.17 EQ coefficients and DRC configuration register (addr 0x31)

D7 D6 D5 D4 D3 D2 D1 D0
XOB Reserved AMGC[3] AMGC[2] Reserved SEL[1] SEL[0]
00000000

Table 74. EQ RAM select

SEL[1:0] EQ RAM bank selected
00/11 Bank 0 activated
01 Bank 1 activated
10 Bank 2 activated
Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Ta b l e 7 5 below.

Table 75. Anti-clipping and DRC preset

AMGC[3:2] Anti-clipping and DRC preset selected
00 DRC/Anti-clipping behavior described in Table 55 on page 47 (default).
01 DRC/Anti-clipping behavior is described in Ta b le 7 6 below
10/11 Reserved, do not use
When AMGC[3:2] = 01 then the bits 1:0 are defined as given here in Ta bl e 7 6 .

Table 76. Anti-clipping selection for AMGC[3:2] = 01

AMGC[1:0] Mode
00 AC0, stereo anticlipping 0 dB limiter
01 AC1, stereo anticlipping +1.25 dB limiter
10 AC2, stereo anticlipping +2 dB limiter
11 Reserved do not use
AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at the minimum any audio artefacts introduced by typical anti-clipping/DRC algorithms. More detailed information is available in the applications notes “Configurable output power rate using STA335BW” and “STA335BWS vs STA335BW”.
Bit XOB can be used to bypass the crossover filters. Logic 1 means that the function is not active. In this case, high pass crossover filter works as a passtrough on the data path (b0 = 1, all the other coefficients at logic 0) while the low pass filter is configured to have zero signal on channel-3 data processing (all the coefficients are at logic 0).

6.18 Extended configuration register (addr 0x36)

D7 D6 D5 D4 D3 D2 D1 D0
Mdrc[1] Mdrc[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
00000000
Extended configuration register provides access to B2DRC and biquads 5, 6 and 7.
Doc ID 15251 Rev 5 65/77
Register description STA339BW

6.18.1 Dual-band DRC

The STA339BW provides a dual-band DRC (B2DRC) on the left- and right-channel data path, as depicted in Figure 20. Dual-band DRC is activated by setting MDRC[1:0] = 1x.
Figure 20. B
L
L
L
L
R
R
R
R
2
DRC scheme
Pass XO
Pass XO
B2DRC
B2DRC
Filter
Filter
Hi-pass
Hi-pass
filter
filter
Pass XO
Pass XO B2DRC
B2DRC
Filter
Filter
Hi-pass
Hi-pass
filter
filter
Ch1
Ch1
Volume
Volume
Ch3
-
-
-
-
Ch3
Volume
Volume
Ch2
Ch2
Volume
Volume
Ch3
Ch3
Volume
Volume
VolAndLimiter
VolAndLimiter
DRC1
DRC1
VolAndLimiter
VolAndLimiter
DRC2
DRC2
DRC1
DRC1
VolAndLimiter
VolAndLimiter
DRC2
DRC2
+
+
+
+
The low-frequency information (LFE) is extracted from the left and right channels by removing the high frequencies with a programmable Biquad filter, so that, using the original signal, the difference signal can be computed. Limiter 1 (DRC1) is then used to control the left and right high-frequency component amplitudes while limiter 2 (DRC2) is used to control the low-frequency components (see Chapter 6.11).
The cutoff frequency of the high-pass filters can be user defined, XO[3:0] = 0, or selected from the pre-defined values.
DRC1 and DRC2 are then used to independently limit the left- and right-channel high frequencies and the LFE-channel amplitude (see Chapter 6.11) as well as their volume control. Note that, in this configuration, the dedicated channel-3 volume control can actually be used as a bass boost enhancer as well (0.5 dB/step resolution).
The processed LFE channel is then recombined with the L and R channels in order to reconstruct the 2.0 output signal.
Sub band decomposition
The sub band decomposition for B2DRC can be configured specifying the cutoff frequency. The cut off frequency can be programmed in two ways, using XO bits in register 0x0C, or using “user programmable” mode (coefficients stored in RAM adresses 0x28 to 0x31).
For the user programmable mode, use the formulae below to compute the high pass filters:
b0 = (1 + alpha) / 2 a0 = 1
b1 = -(1 + alpha) / 2 a1 = -alpha
b2 = 0 a2 = 0
where alpha = (1-sin(ω0))/cos(ω0), and ω0 is the cutoff frequency.
66/77 Doc ID 15251 Rev 5
STA339BW Register description
A first-order filter is suggested to guarantee that for every ω0 the corresponding low-pass filter obtained as difference (as shown in Figure 20) will have a symmetric (relative to HP filter) frequency response, and the corresponding recombination after the DRC has low ripple. Second-order filters can be used as well, but in this case the filter shape must be carefully choosen to provide good low pass response and minimum ripple recombination. For second-order is not possible to give a closed formula to get the best coefficients, but empirical adjustment should be done.
DRC settings
The DRC blocks used by B2DRC are the same as those described in Chapter 6.11. B2DRC configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are configured by registers 0x12 and 0x14.
Band downmixing
The low-frequency band is down-mixed to the left and right channels at the B2DRC output. Channel volume can be used to weight the bands recombination to fine tune the overall frequency response.

6.18.2 EQ DRC mode

Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path (side chain). Using EQDRC the peak detector input can be shaped in frequency using the programmable biquad. For example if a +2 dB bass boost is applied (using a low shelf filter for example), the effect is that the EQDRC out will limit bass frequencies to -2 dB below the selected attack treshold.
Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a compressed sinusoid at the output will be TH - X, where TH is the selected attack threshold.
Note: EQDRC works only if the biquad frequency response magnitude is >= 0 dB for every
frequency.
Figure 21. EQDRC scheme
EQDRC
EQDRC
Atten
Atten
Attenuation
Channel in
Channel in
BIQUAD
BIQUAD
Peak
Peak
detector
detector
Standard DRC
Standard DRC
Attenuation
calculator
calculator
Atten
Atten
Channel in
Channel in
Attenuation
Peak
Peak
detector
detector
Attenuation
calculator
calculator
Doc ID 15251 Rev 5 67/77
Register description STA339BW

6.18.3 Extended post scale range

Table 77. Post scale setup
PS48DB Mode
0 Postscale value is applied as defined in coefficient RAM
1
Postscale value is applied with +48-dB offset with respect to the coefficient RAM value
Post scale is an attenuation by default. When PS48DB is set to 1, a 48-dB offset is applied to the configured word, so postscale can act as a gain too.

6.18.4 Extended attack rate

The attack rate shown in Ta bl e 6 6 can be extended to provide up to 8 dB/ms attack rate on both limiters.
Table 78. Extended attack rate setup for limiter 1
XAR1 Mode
0 Limiter1 attack rate is configured using Ta b l e 6 6
1 Limiter1 attack rate is 8 dB/ms
Table 79. Extended attack rate setup for limiter 2
XAR2 Mode
0 Limiter2 attack rate is configured using Ta b l e 6 6
1 Limiter2 attack rate is 8 dB/ms
68/77 Doc ID 15251 Rev 5
STA339BW Register description

6.18.5 Extended BIQUAD selector

De-ephasis filter as well as bass and treble controls can be configured as user defined filters when equalization coefficients link is activated (BQL = 1) and the corresponding BQx bit is set to 1.
Table 80. De-emphasis filter setup
BQ5 Mode
0 Preset de-emphasis filter selected
1 User defined biquad 5 coefficients are selected
Table 81. Bass filter setup
BQ6 Mode
0 Preset bass filter selected as per Ta bl e 6 5
1 User defined biquad 6 coefficients are selected
Table 82. Treble filter setup
BQ7 Mode
0 Preset treble filter selected as per Ta bl e 6 5
1 User defined biquad 7 coefficients are selected
When filters from 5th to 7th are configured as user-programmable, the corresponding coefficients are stored respectively in addresses 0x20-0x24 (BQ5), 0x25-0x29 (BQ6), 0x2A­0x2E (BQ7) as in Ta bl e 7 2 .
Note: BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for
BQ6 and BQ7).

6.19 EQ soft volume configuration registers (addr 0x37 - 0x38)

D7 D6 D5 D4 D3 D2 D1 D0
Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved SVDWE SVDW4] SVDW[3] SVDW[2] SVDW[1] SVDW[0]
00000000
Soft volume update has a fixed rate by default. Using register 0x37 and 0x38 it is possible to override the default behavior allowing different volume change rates.
It is also possible to independently define the fade-in (volume is increased) and fade-out (volume is decreased) rates according to the desired behavior.
Doc ID 15251 Rev 5 69/77
Register description STA339BW

Table 83. Soft volume (increasing) setup

SVUPE Mode
0 When volume is increased, use the default rate
1 When volume is increased, use the rates defined by SVUP[4:0] .
When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the formula:
Fade-in rate = 48 / (SVUP[4:0] + 1) dB/ms.

Table 84. Soft volume (decreasing) setup

SVDWE Mode
0 When volume is decreased, use the default rate
1 When volume is decreased, use the rates defined by SVDW[4:0] .
When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the formula:
Fade-in rate = 48 / (SVDW[4:0] + 1) dB/ms.

6.20 DRC RMS filter coefficients (addr 0x39 - 0x3E)

D7 D6 D5 D4 D3 D2 D1 D0
R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16]
00000001
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8]
11101110
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0]
11111111
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16]
01111110
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8]
11000000
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0]
00100110
Signal level detection in DRC algorithm is computed usign the following formula:
y(t) = c0 * abs(x(t)) + c1 * y(t-1)
where x(t) represents the audio signal applied to the limiter, and y(t) the measured level.
70/77 Doc ID 15251 Rev 5
STA339BW Application

7 Application

7.1 Application scheme for power supplies

Here in Figure 22 below is the typical application diagram for STA339BW showing the power supply decoupling. Particular care has to be taken with the layout of the PCB. In particular the 3.3 resistors on the digital supplies (VDD_DIG) have to be placed as close as possible to the device. This helps to prevent unwanted oscillation in the digital part of the device due to the inductive tracks of the PCB. The same rule also applies to all the decoulpling capacitors in order to limit spikes on all the supplies.

Figure 22. Application diagram

7.2 PLL filter

It is recommended to use the above scheme and values for the PLL filter to achieve the best performance from the device in general applications. Note that the ground of this filter circuit has to be connected to the ground of the PLL without any resistive path.
Concerning the component values, remember that the greater is the filter bandwidth, the less is the lock time but the higher is the PLL output jitter.
Doc ID 15251 Rev 5 71/77
Application STA339BW

7.3 Typical output configuration

Here after the typical output configuration used for BTL stereo mode. Please refer to the application note for all the other possible output configuration recommended schematics.

Figure 23. Output configuration for stereo BTL mode

22uH
22uH
22
22
22
330pF
330pF
330pF
22uH
22uH
22uH
22uH
6.2
6.2
6.2
6.2
6.2
6.2
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
470nF
470nF
470nF
LEFT
LEFT
LEFT
OUT1A
OUT1A
OUT1A
OUT1B
OUT1B
OUT1B
OUT2A
OUT2A
OUT2A
OUT2B
OUT2B
OUT2B
22
22
22
330pF
330pF
330pF
22uH
22uH
22uH
22uH
22uH
22uH
6.2
6.2
6.2
6.2
6.2
6.2
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
100nF
470nF
470nF
470nF
RIGHT
RIGHT
RIGHT
72/77 Doc ID 15251 Rev 5
STA339BW Package thermal characteristics

8 Package thermal characteristics

Using a double-layer PCB the thermal resistance junction to ambient with 2 copper ground areas of 3 x 3 cm
2
and with 16 via holes (see Figure 24) is 24 °C/W in natural air convection.
The dissipated power within the device depends primarily on the supply voltage, load impedance and output modulation level.
Thus, the maximum estimated dissipated power for the STA339BW is:
2 x 20 W @ 8 Ω, 18 V Pd max ~ 4 W
2 x 10 W + 1 x 20 W @ 4 , 8 Ω, 18 V Pd max < 5 W

Figure 24. Double-layer PCB with 2 copper ground areas and 16 via holes

Figure 25 shows the power derating curve for the PowerSSO-36 slug-down package on
PCBs with copper areas of 2 x 2 cm
2
and 3 x 3 cm2.

Figure 25. PowerSSO-36 power derating curve

Pd (W)
Pd (W)
8
8
8
8
8
8
7
7
7
7
7
7
Copper Area 3x3 cm
6
6
6
6
6
6
5
5
5
5
5
5
4
4
4
4
4
4
3
3
3
3
3
3
Copper Area 2x2 cm
2
2
2
2
2
2
1
1
1
1
1
1
0
0
0
0
0
0
Copper Area 2x2 cm and via holes
and via holes
0 20 40 60 80 100 120 140 160
0 20 40 60 80 100 120 140 160
0 20 40 60 80 100 120 140 160
0
0 20 40 60 80 100 120 140 160
0 20 40 60 80 100 120 140 160
Copper Area 3x3 cm and via holes
and via holes
Tamb ( °C)
Tamb ( °C)
STA339BW
STA339BW
STA339BW PSSO36
PSSO36
PowerSSO-36
Doc ID 15251 Rev 5 73/77
Package mechanical data STA339BW

9 Package mechanical data

Figure 26 shows the package outline and Ta bl e 8 5 gives the dimensions of the
PowerSSO-36 package with exposed pad (slug) down (EPD).

Table 85. PowerSSO-36 EPD dimensions

Dimensions in mm Dimensions in inches
Symbol
Min Typ Max Min Typ Max
A 2.15 - 2.47 0.085 - 0.097
A2 2.15 - 2.40 0.085 - 0.094
a1 0 - 0.10 0 - 0.004
b 0.18 - 0.36 0.007 - 0.014
c 0.23 - 0.32 0.009 - 0.013
D 10.10 - 10.50 0.398 - 0.413
E 7.40 - 7.60 0.291 - 0.299
e - 0.5 - - 0.020 -
e3 - 8.5 - - 0.335 -
F - 2.3 - - 0.091 -
G- - 0.10 - - 0.004
H 10.10 - 10.50 0.398 - 0.413
h- - 0.40 - - 0.016
k 0 - 8 degrees - - 8 degrees
L 0.60 - 1.00 0.024 - 0.039
M - 4.30 - - 0.169 -
N - - 10 degrees - 10 degrees
O - 1.20 - - 0.047 -
Q - 0.80 - - 0.031 -
S - 2.90 - - 0.114 -
T - 3.65 - - 0.144 -
U - 1.00 - - 0.039 -
X 4.10 - 4.70 0.161 - 0.185
Y 4.90 - 7.10 0.193 - 0.280
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
www.st.com.
74/77 Doc ID 15251 Rev 5
Doc ID 15251 Rev 5 75/77

Figure 26. PowerSSO-36 EPD outline drawing

STA339BW Package mechanical data
h x 45°
Revision history STA339BW

10 Revision history

Table 86. Document revision history

Date Revision Changes
09-Dec-2008 1 Initial release
16-Feb-2009 2
01-Apr-2009 3
15-May-2009 4
04-Aug-2010 5
Updated names/descriptions for pins 17-20 in Chapter 2 on page 12
2
Added cross reference to I
S interface setup in Section 3.6: Power
on/off sequence on page 18
Updated text and Figure 22: Application diagram on page 71 Updated Section 7.2: PLL filter on page 71
Updated Y dimension in Table 85: PowerSSO-36 EPD dimensions
on page 74
Updated Chapter 1 on page 10 to “8 programmable 28-bit biquads” Updated I
and Iih in Table 6: Electrical specifications - digital section
il
on page 15
Updated I
and Isc in Table 7: Electrical specifications - power
lim
section on page 16
Updated register FDRC addresses in Section 6.1.5: Fault detect
recovery bypass on page 29
Updated bits 4 and 5 in Table 73: Status register bits on page 64.
Updated order code in Table 1: Device summary on page 1 Updated name of Chapter 9 on page 74 to Package mechanical data
76/77 Doc ID 15251 Rev 5
STA339BW
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 15251 Rev 5 77/77
Loading...