ST STA321 User Manual

4-channel digital audio system with FFX™ driver

Features

High efficiency FFX™ class-D modulator
100-dB dynamic range
interface
16-bit stereo ADC input with PGA and
microphone biasing
Analog and digital muxing/mixing capability
4-channel input sample rate converter
(8 kHz to 192 kHz)
Four channels of 24-bit audio processing
Flexible channel mapping and routing
Output configurations:
–2.0 –2.1 –4.0 –Mono
Embedded CMOS bridge: up to 0.5 W/channel
pfStart™ for pop-free single-ended operations
Play and record simultaneous operation
Pre and post mix stages
Individual channel and master gain/attenuation

Table 1. Device summary

2
S input/output data
STA321
LQFP-64 package with exposed pad down (EPD)
Digital gain/attenuation -105 dB to +36 dB in
0.5-dB steps
Soft volume update and muting
DC-blocking selectable high-pass filter
Selectable de-emphasis filter
Up to 13 28-bit user programmable biquads
(EQ) per channel
Bass/treble tone control
Ternary, binary or phase shift modulation
PWM output
Headphone output with jack detector
2
I
C control.
Order code Temperature range Package Packaging
STA321 0 to 70 °C LQFP-64 EPD Tray
STA321TR 0 to 70 °C LQFP-64 EPD Tape and reel
October 2009 Doc ID 15351 Rev 3 1/157
www.st.com
1
Contents STA321

Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Embedded crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Embedded DC regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Power-up and power-down sequences . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Software power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Hardware power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Mild power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Full power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 System clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Peripheral clock manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Fractional PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 PLL block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Output frequency computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 Digital processing stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1 Signal processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Sampling rate converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Pre-EQ mix 1 and post-EQ mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.1 Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Pre scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2/157 Doc ID 15351 Rev 3
STA321 Contents
6.4.1 Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Equalization, tone control and effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.6 Biquads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.1 Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.7 High-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.8 Deemphasis filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.9 Bass and treble control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.9.1 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.10 Programmable delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.10.1 Presets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.11 Volume and mute control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.12 Limiter (clamping) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.13 FFX channel re-mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.14 Memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.14.1 Writing one coefficient/location to RAM . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.14.2 Writing a set of five coefficients/locations to RAM . . . . . . . . . . . . . . . . . 45
6.14.3 Reading a set of five coefficients/locations from RAM . . . . . . . . . . . . . . 46
6.14.4 RAM mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 FFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2 Modulation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 PWM shift feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Ternary mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5 Minimum pulse limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.6 Headphone modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.7 pfStart™ operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.8 PWM00 output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8 CMOS power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9 Fault detection and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.1 External amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 CMOS bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Doc ID 15351 Rev 3 3/157
Contents STA321
10 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.2 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.2.1 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.1 Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.2 Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.3 Serial formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.3.1 Right justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.3.2 Left justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.3.3 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.3.4 I
11.3.5 PCM/IF (non-delayed mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.3.6 PCM/IF (delayed mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.4 Invalid detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12 Headphone detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
12.1 Applications circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.2 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13 I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.1 Data transition and change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.5 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.6 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1.7 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
14 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
15 I2C disabled (microless) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
16 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4/157 Doc ID 15351 Rev 3
STA321 Contents
17 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
18 Trademarks and other acknowledgements . . . . . . . . . . . . . . . . . . . . . 155
19 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Doc ID 15351 Rev 3 5/157
List of tables STA321

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Power supply pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6. Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 7. Oscillator specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. Power-up signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. Startup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 10. Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 11. Registers for power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Example configurations for power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Frequently used signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14. Clock control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 15. Clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 16. Register setup to provide sys_clk from MCLK to PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 17. Input division factor (IDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 18. Loop division factor (LDF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 19. Channel mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 20. EQ control signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 21. Selecting EQ curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 22. RAM mapping for processing stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. Modulation type with register programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 24. CMOS bridge signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 25. Power output (at 1% THD) in headphone mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 26. Logic circuit at bridge input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 27. Example register settings for ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 28. Timing parameters for master mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 29. Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 30. Headphone 1 detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 31. Headphone 2 detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 32. Headphone detection configuration sequence for binary SE . . . . . . . . . . . . . . . . . . . . . . . 74
Table 33. Headphone detection configuration sequence for binary headphone . . . . . . . . . . . . . . . . 74
Table 34. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 35. Bass/treble filter gains used in register addresses 0x78 - 0x7F . . . . . . . . . . . . . . . . . . . . 115
Table 36. LQFP-64L EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 37. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6/157 Doc ID 15351 Rev 3
STA321 List of figures

List of figures

Figure 1. STA321 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. Oscillator configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. Equivalent circuit of crystal and external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. Embedded DC regulator scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7. Startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. Hardware power-done sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Hardware powerdown sequence (mild mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 10. Hardware power-down sequence (full mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. Clock management scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 13. Processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 14. Processing data multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 15. SAI_out data multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 16. Sample rate converter block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 17. Mixers block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 18. EQ/tone block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 19. Biquad coefficient selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20. Biquad filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 21. High-pass filter frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 22. Deemphasis filter frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 23. Frequency responses of treble control at 1-dB gain steps . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 24. Frequency responses of bass control at 1-dB gain steps . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 25. FFX re-mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 26. Writing RAM location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 27. Writing five contiguous RAM locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 28. Reading five contiguous RAM locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 29. FFX processing schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 30. PWM modes for outputs A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 31. Modulation waveforms corresponding to Table 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 32. New phase shift modulation with shift feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 33. Ternary modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 34. Modulation for headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 35. Digital pop-free ramp implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 36. CMOS half bridge block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 37. Analog pop-free schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 38. Analog pop-free start-up and switch-off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 39. ADC front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 40. Typical connections for power supplies and inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 41. SAI typical sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 42. Timing diagram for master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 43. Timing diagram for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 44. Right justified serial format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 45. Left justified serial format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 46. DSP serial format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 47. I
Figure 48. PCM (non-delayed) serial format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2
S serial format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Doc ID 15351 Rev 3 7/157
List of figures STA321
Figure 49. PCM (delayed) serial format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 50. Invalid input detection schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 51. Headphone detection circuit for single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 52. Headphone detection circuit for binary HP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 53. I Figure 54. I
2
C write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2
C read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 55. Microless mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 56. LQFP-64L EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8/157 Doc ID 15351 Rev 3
STA321 Overview

1 Overview

The STA321 is a single chip solution for digital audio processing applications of up to
4.0 channels.
The STA321 is part of the Sound Terminal™ family that together with the digital power stage provides full digital audio streaming to the speaker, offering cost effectiveness, low energy dissipation and sound enrichment.
The STA321 input section consists of two multiplexed stereo analog inputs, a 16-bit ADC and two independent digital input interfaces. The serial audio data input interface accepts all possible formats, including the popular I by the ADC or by the digitally processed signals.
The device has a full assortment of digital processing features. This includes sample rate converter, pre and post mixing, up to 13 programmable 28-bit biquads (EQ) per channel, bass/treble tone control and DRC. The embedded headphone detector indicates when headphone jack is inserted.
The STA321 provides four independent channels of FFX™ output capabilities. In conjunction with a power device, it provides high-quality, high-efficiency, all digital amplification.
2
S format. There is also a digital output interface fed
The embedded CMOS bridge supplies up to 0.5 W into an 8- load and 70 mW into a 16- load for the headphones output.

Figure 1. STA321 block diagram

SDATAO1
BICLKO
LRCLKO
SDATAO2
Serial audio
Osc
interface
4-channel SRC
XTI
XTO
PLL
pre mixer
MCLK
V_BIAS
VCM
VHI
VLO
BICLKI1
LRCLKI1
SDATAI1
BICLKI2
LRCLKI2
SDATAI2
INL1
INL2 INR1 INR2
HPDET
Bias
Serial audio interface
Serial audio interface
PGA
PGA
HP detection
.
ADC
RSTN
Pre scaler
Divider
CLKOUT
STBY
Equalizer
TM
EAFTN
EATSN
EAPDN
Delay
13 biquad filters
Post mixer
Volume control and
saturation
FFX™ modulator
CMOS headphone bridge
EAPWM4
EAPWM3
EAPWM2
EAPWM1
OUT1 OUT2
OUT3
PWM00
I2C interface
SCL
MUTE
SDA
I2CDIS
ACLK
REG_BYP
Doc ID 15351 Rev 3 9/157
Pin description STA321

2 Pin description

Figure 2. Pin out

BICLKO
BICLKI1
BICLKI2
LRCLKO
LRCLKI1
LRCLKI2
SDATAO1
SDATAO2
SDATAI1
SDATAI2
MCLK
XTI
XTO
NC
PGND
PVDD
64
63
62
61
SCL VCC1 OUT1
GND1 GND2
OUT2 VCC2 VCC3 OUT3
GND3
NC
PWM00
NC HPDET GND33
VCC33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
605958
19
20
21
57
56
STA321
22
23
24
25
55
54
53
52
51
50
49
48
TM
47
VDDIO2
46
VDD_REG2
45
DGND2
44
I2CDIS
43
ACLK
42
EAPDN
41
EATSN
40
EAFTN
39
EAPWM1
38
EAPWM2
37
EAPWM3
36
EAPWM4
35
STBY
34
RSTN
33
26
27
28
29
30
31
32
INL1
SDA
MUTE
CLKOUT

Table 2. Pin list

Pin Pull Name Type Description
1 - SCL In (digital), schmitt tr I
3 - OUT1 Out (analog) HP/line-out PWM 1
6 - OUT2 Out (analog) HP/line-out PWM 2
9 - OUT3 Out (analog) HP/line-out PWM 3
11 - NC - Not connected
10/157 Doc ID 15351 Rev 3
12 - PWM00 Out (digital) Auxiliary PWM
13 - NC - Not connected
14 - HPDET In (analog) Headphone detection
DGND1
REG_BYP
VDD_REG1
AGND
V_BIAS
VDDIO1
VHI
VLO
2
C serial clock, schmitt trigger input
AVDD
INR1
VCM
INR2
INL2
STA321 Pin description
Table 2. Pin list (continued)
Pin Pull Name Type Description
17 - CLKOUT Out (digital) Buffered clock output
18 - SDA In/Out (digital) I
19 H MUTE In (digital) Mute (active high)
21 - REG_BYPASS In (analog)
24 - BIAS In/Out (analog) ADC microphone bias voltage
26 - VLO In (analog) ADC low reference voltage
27 - VHI In (analog) ADC high reference voltage
29 - INR1 In/Out (analog) ADC right channel line input1
30 - INR2 In/Out (analog) ADC right channel line input2
31 - VCM In/Out (analog) ADC common mode voltage
32 - INL2 In (analog) ADC left channel line input2 or microphone input2
33 - INL1 In (analog) ADC left channel line input1 or microphone input1
2
C serial data
DC regulator bypass: 0: normal operation, regulator enabled
1: regulator bypassed
Reset:
34 H RSTN In (digital)
0: reset state 1: normal operation
Standby mode:
35 - STBY In (digital)
0: normal operation 1: power-down
36 - EAPWM4 Out (digital) External amplifier PWM 4B
37 - EAPWM3 Out (digital) External amplifier PWM 4A
38 - EAPWM2 Out (digital) External amplifier PWM 3B
39 - EAPWM1 Out (digital) External amplifier PWM 3A
External power fault signal:
40 H EAFTN Out (digital)
0: fault 1: normal operational mode
External amplifier control:
41 - EATSN Out (digital)
0: active 1: 3-state
42 - EAPDN Out (digital) External amplifier powerdown (active low)
43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground
2
C disable:
I
44 L I2CDIS In (digital)
2
C enabled
0: I 1: I2C disabled
48 L TM In (digital)
Test mode: 0: normal operation
51 - NC - Not connected
Doc ID 15351 Rev 3 11/157
Pin description STA321
Table 2. Pin list (continued)
Pin Pull Name Type Description
52 - XTO Out (digital), 1.8 V Crystal output
53 - XTI In (digital), 1.8 V Crystal input or master clock input
54 - MCLK In (digital), schmitt tr Master clock input 3.3-V compatible, schmitt input
55 - SDATAI2 In (digital) Input serial audio interface data
56 - SDATAI1 In (digital) Input serial audio interface data
57 - SDATAO2 Out (digital) Output serial audio interface data
58 - SDATAO1 Out (digital) Output serial audio interface data
59 - LRCLKI2 In/Out (digital) Input serial audio interface L/R-clock
60 - LRCLKI1 In/Out (digital) Input serial audio interface L/R-clock
61 - LRCLKO In/Out (digital)
62 - BICLKI2 In/Out (digital) Input serial audio interface bit clock
63 - BICLKI1 In/Out (digital) Input serial audio interface bit clock
64 - BICLKO In/Out (digital)
Output serial audio interface L/R-clock (volume DOWN when I2CDIS=1)
Output serial audio interface bit clock (volume UP when I2CDIS=1)

Table 3. Power supply pin list

Number Name Type Description
2 VCC1 Supply CMOS bridge channel 1 supply
4 GND1 Ground CMOS bridge channel 1 ground
5 GND2 Ground CMOS bridge channel 2 ground
7 VCC2 Supply CMOS bridge channel 2 supply
8 VCC3 Supply CMOS bridge channel 3 supply
10 GND3 Ground CMOS bridge channel 3 ground
15 GND33 Ground CMOS bridge level shifter ground
16 VCC33 Supply CMOS bridge level shifter supply
20 DGND1 Ground Digital ground
22 VDD_REG1 Supply DC regulator unit supply
23 VDDIO1 Supply 3.3-V IO supply
25 AGND Ground ADC analog ground
28 AVDD Supply ADC analog supply
45 DGND2 Ground Digital ground
46 VDD_REG2 Supply DC regulator unit supply
47 VDDIO2 Supply 3.3-V IO supply
49 PVDD Supply PLL analog supply
50 PGND Ground PLL analog ground
12/157 Doc ID 15351 Rev 3
STA321 Electrical specifications

3 Electrical specifications

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Pin name/Symbol Parameter Negative Positive Unit
VDD_REG1, VDD_REG2
Digital supply voltage -0.3 4.0 V
VDDIO1, VDDIO2 Digital IO supply voltage -0.3 4.0 V
PVDD PLL analog supply voltage -0.3 4.0 V
AVDD ADC analog supply voltage -0.3 4.0 V
VCC1, VCC2, VCC3 CMOS bridge supply voltage -0.3 4.0 V
VCC33 CMOS bridge level shifter power supply -0.3 4.0 V
T
T
STG
OP
Storage temperature -40 150 °C
Operating junction temperature -20 125 °C
Note: All grounds must always be within 0.3 V of each other.

3.2 Recommended operating conditions

Table 5. Recommended operating conditions

Symbol Parameter Min Typ Max Unit
V
VDD_REG1
V
VDD_REG2
V
PVDD
V
AVD D
V
VCC1
V
VCC3
V
VCC33
V
VDDIO1
V
IH
V
IL
T
amb
, V
VCC2
, V
,
,
VDDIO2
Digital supply voltage 2.5 3.3 3.6 V
PLL analog supply voltage 2.5 3.3 3.6 V
ADC analog supply voltage 1.8 3.3 3.6 V
CMOS bridge supply voltage 1.55 - 3.3 V
CMOS bridge level shifter power supply. Ensure that V
VCC33
<= V
3.3-V IO supply 2.7 3.3 3.6 V
High input voltage, 1.8-V pads 1.3 - -
High input voltage, 3.3-V pads 2.0 - -
Low input voltage, 1.8-V pads - - 0.6
Low input voltage, 3.3-V pads - - 0.8
Ambient temperature 0 - 70 °C
VCCx
always
1.55 - 3.3 V
V
V
Doc ID 15351 Rev 3 13/157
Electrical specifications STA321

3.3 Electrical characteristics

Unless otherwise specified, the results in Table 6 below are given for the operating conditions V to default conditions.

Table 6. Electrical specifications

Symbol Parameter Test conditions Min Typ Max Unit
General
V
OH
V
OL
V
hys
R
UP
R
DN
I
STBYIO
High output voltage, 1.8-V pads - 1.4 - -
High output voltage, 3.3-V pads -
Low output voltage, 1.8-V pads IOL = 2 mA --0.15
Low output voltage, 3.3-V pads I
Schmitt trigger hysteresis, 3.3-V IO - - 0.4 - V
Pull-up resistance - - 50 - k
Pull-down resistance - - 50 - k
Standby current, pins VDDIO1,2
=3.3 V, RL = 32 Ω, f
CC
= 12.288 MHz, Tamb = 25 °C and with the PLL set
MCLK
V
VDDIO
- 0.15
= 2 mA --0.15
OL
Pin STBY = 3.3 V CLKOUT disabled
-450A
--
V
V
I
DDIO
I
STBYL0
I
STBYL1
I
DDL1
I
STBYPD
Operating current, pins VDDIO1,2 - - 3 - mA
Standby current, pins VDD_REG1,2
Standby current, pins VDD_REG1,2
Operating current, pins VDD_REG1,2
Pre-drive supply current in standby, pin VCC33
Deep power-down, V
VDD_REG1,2
= 3.3 V
Mild power-down, V
VDD_REG1,2
f
MCLK
= 3.3 V
= 12.288 MHz, Play from SAI to CMOS bridge and EAPWM, f on SAI_out, V V
VDD_REG1,2
ADC
AVD D
= 3.3 V
= 48 kHz = 3.3 V,
- - 4.7 - µA
-450A
-2-mA
-45-mA
14/157 Doc ID 15351 Rev 3
STA321 Electrical specifications
Table 6. Electrical specifications (continued)
Symbol Parameter Test conditions Min Typ Max Unit
Amplifier (CMOS bridge)
η Output power efficiency - - 90 - %
Output power in HP mode with THD = 1%
P
HPOUT
Output power in HP mode with THD = 10%
SNR Signal to noise ratio 20 Hz to 20 kHz - 75 - dB
3.3-V supply R
3.3-V supply R
= 32 -41-
L
= 32 -53-
L
mW
THD + N Total harmonic distortion plus noise
RL = 32 Ω, HP mode
0 dBFs In - 0.3 -
%
-6 dBFs In - 0.05 -
DR Dynamic range A-weighted - 80 - dB
I
STBYP
I
DDP
I
DDPD
t
R
t
F
R
DSON
I
OCH
I
OCL
Current in standby, pins VCCx - - 2 - µA
Operating current, pins VCCx
Pre-drive supply current in operation, pin VCC33
No LC filter, no load, PWM at 50% duty-cycle
No load, PWM at 50% duty-cycle
-1-mA
- 250 350 µA
Driver rise time, pins OUT1-3 Resistive load, see Figure 3 -5-ns
Driver fall time, pins OUT1-3 Resistive load, see Figure 3 -5-ns
Headphone output stage N/P MOS on-resistance
Over-current limit for OUT1-3 to VCCx short circuit
Over-current limit for OUT1-3 to ground short circuit
- - 500 700 m
- - 1.88 - A
- - 1.72 - A
PLL
I
STDBYPLL
I
DDPLL
f
CLKIN_Range
Duty
CLKIN
t
CLKIN_RF
f
F_INT
f
VCO_Range
Duty
VCO
T
LOCK
PLL supply current in standby - - 20 - µA
PLL supply current in operation - - 0.4 1.0 mA
Input clock frequency range - 2.048 - 49.152 MHz
Input clock duty cycle - 40 - 60 %
Input clock rise/fall time - - - 0.2 ns
PFD input clock frequency PLL_FR_CTRL = 1 2.048 - 12.288 MHz
Clock out range - 65.536 - 98.304 MHz
Clock out duty cycle - 35 - 65 %
Lock time - - - 200 µs
Doc ID 15351 Rev 3 15/157
Electrical specifications STA321
Table 6. Electrical specifications (continued)
Symbol Parameter Test conditions Min Typ Max Unit
ADC
I
DDA
I
STDBYA
DR Dynamic range
SNR
ADC
THD
ADC
CT Channel cross talk V
- Group delay
Supply current in operating mode V
AVDD supply current in standby V
Signal to noise ratio
Total harmonic distortion
= 3.3V - 10 15 mA
AVD D
= 3.3V - 2 - µA
AVD D
1 kHz, A-weigthed
= 3.3 V
V
AVD D
1 kHz, A-weighted
= 3.3 V
V
AVD D
1 kHz, -1dB V
= 3.3 V
AVD D
= 3.3 V - 80 - dB
AVD D
Fs mode (f
Fs_by_4 mode (f
= 32 kHz) - 0.4 -
S
= 16 kHz) - 0.7 -
S
= 8 kHz) - 1.4 -
S
-90-dB
-92-dB
-85-dB
msFs_by_2 mode (f
- Pass band - - 0.4535 - Fs
= 44.1 kHz) - 0.08 -
S
-0.08-
-0.08-
= 44.1 kHz) - 45 -
S
-45-
-45-
dB
dB
- Pass band ripple
- Stop band attenuation
Fs mode (f
Fs_by_2 mode (f
= 22.05 kHz)
S
Fs_by_4 mode
= 11.025 kHz)
(f
S
Fs mode (f
Fs_by_2 mode (f
= 22.05 kHz)
S
Fs_by_4 mode
= 11.025 kHz)
(f
S
-3 dB - 7 - Hz
- Frequency response
-0.08 dB - 50 - Hz
- Linear phase deviation at 20 Hz - 19.35 - deg
- Pass-band ripple - - 0.08 - dB
Headphone detector threshold limits
HP low threshold - - 2.34 -
E_HP1
HP high threshold - - 2.52 -
HP low threshold - - 0.7 -
E_HP2
HP high threshold - - 0.9 -
16/157 Doc ID 15351 Rev 3
V
V
STA321 Electrical specifications

Figure 3. Test circuit

R = 32

3.4 Embedded crystal oscillator

Figure 4. Oscillator configuration

XTI
STA321
To PLL
Enable from register bit MISC[7]
XTO
Doc ID 15351 Rev 3 17/157
Electrical specifications STA321
The STA321 has an integrated oscillator between pins XTI and XTO.
The architecture is a single-stage oscillator with an inverter working as an amplifier. The oscillator stage is biased by an internal resistor (of about 500 k), and requires an external PI network consisting of a crystal and two capacitors as shown in Figure 4 below. An enable feature is provided in bit 7 of register MISC (address 0xC8) to stop the oscillator and thereby to reduce power consumption.
Not all crystals operate satisfactorily with the type of oscillator used in the STA321. To find out if a crystal is suitable for this device the following transconductance formula must be evaluated and compared to the critical transconductance for the embedded oscillator:
Gm = Rm * ω
2
* (C + 2 * Co)2 < Gm
CRITICAL
/ 3
where ω is the crystal operating frequency, C = CA = CB, Co and Rm are shown in Figure 5 and Gm
CRITICAL
is given in Table 7 .

Figure 5. Equivalent circuit of crystal and external components

Table 7. Oscillator specifications

Symbol Parameter Min Typ Max Unit
I
OSC
Duty
OSC
T
UP
Gm
CRITICAL
1. If no crystal is connected then the power consumption could be much higher.
2. τx is the time constant of the crystal and external components; a typical value is 44 µs.
Oscillator power consumption with crystal connected
(1)
--215µA
Duty cycle 46.9 47.8% 48.9 %
Startup time - 15 * τx- s
(2)
Oscillator transconductance 1060 - - µA/V
18/157 Doc ID 15351 Rev 3
STA321 Electrical specifications

3.5 Embedded DC regulator

The power supply to the digital STA321 core and PLL is provided via embedded linear DC regulators as shown below in Figure 6. When pin REG_BYPASS is tied to ground, the DC regulators are active so that a voltage in the range 2.5 V to 3.6 V applied to pins VDD_REGx or PVDD provides a regulated internal voltage to the core and the PLL. The voltages Vddi and Vddipll range from 1.55 V to 1.95 V depending on operating conditions.

Figure 6. Embedded DC regulator scheme

PVDD
DC
DC
DC
Vddi
Vddi
Vddipll
Core
PLL
STA321
VDD_REG1
VDD_REG2
REG_BYPASS
If the application allows multiple supplies or the power supply requirements are a fundamental constraint, pin REG_BYPASS can be tied high and a 1.8 V external supply can be applied directly to pins VDD_REGx and PVDD. In this case the operating range for such an external supply is 1.55 V to 1.95 V.
Embedded DC regulators imply also static power consumption that must be take into account when the power-down modes are active. The STA321 provides a deep powerdown mode where also the regulators are active but in a low power consumption mode (see
Section 4.3.2 on page 27).
Doc ID 15351 Rev 3 19/157
Power-up and power-down sequences STA321
K

4 Power-up and power-down sequences

4.1 Device power-up

After providing the power supply to the device, it is necessary to wait until the DC regulator PWUP time has elapsed before the device can be set up and used for normal operations. (see Figure 7).

Figure 7. Startup sequence

VVDDIO
VDDIO
PVDD
3v3 2v2
VDDREG
VVDD_REG VPVDD
STBY (active H)
STBY (active H)
RSTN (active L)
RSTN (active L)
DC Reg. PWDN
PWDN (active H)
(active High)
DC Reg. A. OK (active High)
A.OK (active H)
I2C Writings
I2C read
I2C CL
I2C clock
XTI /MCLK
XTI / MCLK
Vdd ramp
DC reg. PWUP time

Table 8. Power-up signal description

Device in reset mode
User configuration via I2C
Signal/pin Type Description
VDDIO Supply Power supply of the digital pads (= VDDIO1,2)
VDD_REG Supply Power supply of the system core (= VDD_REG1,2)
PVDD Supply Power supply of the PLL
STBY In (digital) External standby signal provided by the user
RSTN In (digital) External reset signal provided by the user
PWDN Internal Power-down of the DC regulator cell, controlled by the core
A. OK Internal DC regulator status, when active the 1.8 V is provided to the core
2
C read In (I2C) Configuration commands coming to the I2C interface
I
2
I
C clock Internal I2C peripheral clock
XTI/MCLK In (digital) Clock input source
20/157 Doc ID 15351 Rev 3
STA321 Power-up and power-down sequences

Table 9. Startup timings

Parameter Description Min Typ Max Unit
DC reg. power-up time
Device in reset mode

Table 10. Configuration example

Register
address
Start up time of the DC Regulator after connecting the power
Must be greater than (VDD time + DC reg. power-up time)
- - 300 µs
---µs
Value Description
0xC9 0x00 Remove PLL bypass
0xCA 0x00 Headphone detection polarity = 0
0xB8 0x4A Configure SAI output: SAI_out1 = SAI_in1, SAI_out2 = SAI_in2
0xB7 0x38 SRC source select: SRC1 = ADC, SRC2 = ADC
0xC6 0x02 ADC clock on
2
0xB2 0xF3 I
S configuration
0xC8 0x21 Core clock on, SAI/ADC audio set to 32 kHz - 48 kHz range
0xB2 0xD3 SAI_out: output enabled
0xA0 0x00 Soft volume removed
0x00 0x00 Remove bridge 3-state

4.2 Software power-down mode

The software power-down is obtained by configuring the appropriate I2C registers.
In order to obtain flexibility every peripheral has its independent, standby signal and several gating clock cells are available.
Obviously, the I recover from the power-down state only via the reset pin.
In the table below EA is embedded amplifier and CB is CMOS bridge. For complete information this table must be used in conjunction with Chapter 14: Register description on
page 77.
Table 11. Registers for power-down
Put EA in standby FFXCFG1[7] 0x00 on page 81
Put CB in standby FFXCFG1[6] 0x00
Put PLL in standby PLLPFE[5] 0xC4 on page 132
Put ADC in standby ADCCFG0[3] 0xC6 on page 133
Turn core clock off MISC[0] 0xC8 on page 135
Turn ADC clock off ADCCFG0[1] 0xC6
2
C peripheral can not be turned off in this mode, otherwise the device can
Description Register bit Address
Doc ID 15351 Rev 3 21/157
Power-up and power-down sequences STA321
Table 11. Registers for power-down (continued)
Description Register bit Address
Turn SRC clock off CKOCFG[3] 0xC7 on page 134
Turn PROC clock off CKOCFG[2] 0xC7
Turn FFX clock off CKOCFG[4] 0xC7

4.2.1 Configuration example

This is an example of the register setup for power-down clock. It is assumed that every peripheral is already configured and working correctly.
There are other configuration examples to help you get started please refer to other chapters and also to Chapter 14: Register description on page 77 in order to get all the necessary and complementary details.
Turn off all the peripherals.
Note: The MCLK (or XTI) must be used as system clock (sys_clk) before setting the PLL to
standby.
Table 12. Example configurations for power-down
Register bit Address Value Description
EA_STBY CB_STBY
0x00 on page 81 0xC0
Set the embedded power amplifier and CMOS bridge to power-down
CLK_FFX_ON 0xC7 on page 134 0x0C Turn off the FFX modulator clock
ADC_STBY 0xC6 on page 133 0x09 Set the ADC into standby mode
CLK_ADC_ON 0xC6 0x80 Turn the ADC clock off
CLK_PROC_ON 0xC7 0x08 Turn the processing clock off
CLK_SRC_ON 0xC7 0x00 Turn the sample rate converter clock to off
Bypass the PLL clock and use MCLK (or XTI) as
PLL_BYP_UNL 0xC4 on page 132 0x80
source clock when the PLL is not locked (a safety operational mode)
PLL_PWDN 0xC4 0xA0 Put the PLL in standby
CLK_CORE_ON 0xC8 on page 135 0x00 Turning off the core clock
22/157 Doc ID 15351 Rev 3
STA321 Power-up and power-down sequences
_
_

4.3 Hardware power-down mode

The hardware power-down is obtained by asserting pin STBY to high.
There are two power-down options available, namely mild mode and full (or deep) mode, that could be selected using the DC_STBY_EN signal in register STBY_MODES
Figure 8 summarizes the main power-down sequence. “Power on” is the normal operating
status where all the startup procedures have already been executed. The rectangular boxes indicate the steps to be done by the user whilst the rounded boxes indicate the steps done by the device.

Figure 8. Hardware power-done sequence

Power on
2
I
C programming register STBY_MODES bits: CMP_EN_N DC_STBY_EN
CMP_EN_N = 1 ?
NO
YES
Comp Cell Pwdn
Pin STBY <= 1'
DC_STBY_EN = 1 ?
NO
YES
DC Reg. Stby Embedded amp. CMOS bridge
Powerdown
I2C off
CLK
CLK
ADC off
Power-down mode
CLK Core off PLL power down
Doc ID 15351 Rev 3 23/157
Power-up and power-down sequences STA321

Table 13. Frequently used signals

Name Description
STBY Input pin STBY on page 11
PWDN DC regulator
Internal
A. OK DC regulator
Internal
CMP_EN_N Bit 1, register STBY_MODES on page 139
EA_STBY CB_STBY
Bits 7:6, register FFXCFG1 on page 81
EA/CB volume Internal
PLL_UNLOCK Bit 7, register PLLST on page 132
PLL_PWDN Bit 5, register PLLPFE on page 132
CLK_PROC_ON Bit 2, register CKOCFG on page 134
CLK_PROC Processing clock
CLK_FFX_ON Bit 4, register CKOCFG on page 134
clk_ffx FFX clock
CLK_ADC_ON Bit 1, register ADCCFG0 on page 133
clk_adc ADC clock
CLK_SRC_ON Bit 3, register CKOCFG on page 134
clk_src SRC clock
CMP_EN_N Bit 1, register STBY_MODES on page 139
DC_STBY_EN Bit 0, register STBY_MODES on page 139
FFX_ULCK_PLL Bits 4:3, register FFXCFG1 on page 81
24/157 Doc ID 15351 Rev 3
STA321 Power-up and power-down sequences

4.3.1 Mild power-down

In this case, the device is put into a mild power-down mode.
All the peripherals are set to standby and their clocks turned off.
2
The I
C configuration is not required as the default values of the registers are sufficient.
z Initial conditions:
FFX_ULCK_PLL = 10
CMP_EN_N = 0
DC_STBY_EN = 0
z Going into power-down:
After the assertion of the pin STBY, the following actions are taken by the device:
1. Embedded amplifier (EA) and CMOS bridge (CB) volume are set to mute (the length of this step changes according to the fade-out ramp configuration).
2. EA and CB are put into power-down.
After the previous operation is completed:
3. All peripherals are turned off (regardless the register settings).
4. The PLL clock is bypassed, the system clock (sys_clk in Figure 11 on page 29) is XTI.
5. All clocks are shut down.
z Returning to normal mode:
After the release of the pin STBY, the power-up procedure takes place:
1. All clocks are turned on.
2. All peripherals are restored to their previous status (based on the last register settings).
3. If the PLL clock was the system clock it will be selected again after the locking time.
4. The EA and the CB execute the fade-in procedure before becoming ready to be used (the length of this step changes according to the fade-in ramp configuration).
Doc ID 15351 Rev 3 25/157
Power-up and power-down sequences STA321
Figure 9. Hardware powerdown sequence (mild mode)
STBY (active H)
DC Reg. PWDN
(active High) DC Reg. A. OK
(active High)
Comp Cell PWDN
(active High)
EA is in Pwdn
EA Volume
CB is in Pwdn
CB Volume
PLL LOCKED
(active High)
PLL_PWDN
(active High)
I2C [CORE_CLK_ON]
CLK_I2C
Operational Volume
Operational Volume
MUTE O.V.
O.V.MUTE
I2C [CLK_PROC_ON]
CLK_PROC_CLK
I2C [CLK_FFX_ON]
CLK_FFX_CLK
I2C [CLK_ADC_ON]
CLK_ADC_CLK
I2C [CLK_SRC_ON]
CLK_SRC_CLK
E.A Fade InE.A Fade Out
Bridge Fade Out Bridge Fade In
PLL Locking Time
26/157 Doc ID 15351 Rev 3
STA321 Power-up and power-down sequences

4.3.2 Full power-down

In this case the device is put into a full power-down mode.
This implies lower power consumption than the mild mode, but has a drawback in that it takes longer to execute.
z Initial conditions
FFX_ULCK_PLL = 10
CMP_EN_N = 1
DC_STBY_EN = 1
z Going into power-down:
This mode differs from the previous one by an additional step at the end of the power­down procedure and at the beginning of the power-up:
1. Embedded amplifier (EA) and CMOS bridge (CB) volume are set to mute (the length of this step changes according to the fade-out ramp configuration).
2. EA and CB are put into power-down.
After the acknowledge signals (EA is in power-down and CB is in power-down) are received:
3. All peripherals are turned off (regardless the register settings).
4. PLL clock is bypassed, the system clock (sys_clk in Figure 11 on page 29) is XTI.
5. All clocks are shut down.
6. DC regulator is put into standby mode. After this point the device is in a very low power consumption mode.
z Returning to normal mode:
After the release of pin STBY, the power-up procedure will take place:
1. DC regulator is set to operational mode
After the acknowledge signal (DCAOK) from the DC regulator is received:
2. All clocks are turned on.
3. All peripherals are restored to the status based on their relative register settings.
4. If the PLL clock was the system clock it is selected again after the locking time.
5. The EA and the CB execute the fade-in procedure before being ready to be used (the length of this step changes according to the fade-in ramp configuration).
Doc ID 15351 Rev 3 27/157
Power-up and power-down sequences STA321
DC- Td
Figure 10. Hardware power-down sequence (full mode)
STBY (active H)
DC Reg. PWDN
(active High) DC Reg. A. OK
(active High)
Comp Cell PWDN
(active High)
EA is in Pwdn
EA Volume
CB is in Pwdn
CB Volume
PLL LOCKED
(active High)
PLL_PWDN
(active High)
I2C [CORE_CLK_ON]
CLK_I2C
own
Operational Volume
Operational Volume
DC- Tup
MUTE O.V.
O.V.MUTE
I2C [CLK_ PROC_ON]
CLK_PROC_CLK
I2C [CLK_FFX_ON]
CLK_FFX_CLK
I2C [CLK_ADC_ON]
CLK_AD C_CLK
I2C [CLK_SRC_ON]
CLK_SRC_CLK
E.A Fade InE.A Fade Out
Bridge Fade Ou t Bridge Fade In
PLL Locking Time
28/157 Doc ID 15351 Rev 3
STA321 Clock management

5 Clock management

Figure 11. Clock management scheme

CKOCFG[6:5]
CLKOUT_SEL
11
1/2
1/8
1/8
1/4
10
00
01
1/2
1/2
1/2
1/2
clk_i2c
clk_ffx
clk_src
clk_proc
clk_adc
CLKOUT
FFX
SAI_in1
SAI_in2
BICLKI1
MCLK
XTI
OR
PLLPFE[6]
BICLK2PLL
pll_clk_in_i
1 0
PLL
PLLB[7]
CLK_CORE_ON
CKOCFG[4]
CLK_FFX_ON
CKOCFG[3]
CLK_SRC_ON
CKOCFG[2]
CLK_PROC_ON
ADCCFG[1]
CLK_ADC_ON
sys_clk
1 0
Clock management
MISC[0]
ADC
1/4
0
clk_adc_in
1
PLLB[5] ADC_CLKSEL
clk_proc
1 0
1 0
SAI_out1
SAI_out2
PLLB[3] P2S1_CLKSEL
PLLB[1] P2S2_CLKSEL

Table 14. Clock control registers

Register Name Address
PLLB on page 136 0xC9
ADCCFG0 on page 133 0xC6
CKOCFG on page 134 0xC7
Doc ID 15351 Rev 3 29/157
Clock management STA321

Table 15. Clock characteristics

Symbol Parameter Min Typ Max Unit
f
MCLK_Range
Duty
MCLK
t
MCLK_RF
f
XTI_Range
Duty
XTI
t
XTI_RF
f
BICLK1_Range
Duty
BICLK1
t
BICLK1_RF
f
CLKOUT_Range
Input clock frequency range 2.048 - 49.152 MHz
Input clock duty cycle 40 - 60 %
Input clock rise/fall time - - 0.2 ns
Input clock frequency range 2.048 - 49.152 MHz
Input clock duty cycle 40 - 60 %
Input clock rise/fall time - - 0.2 ns
Input clock frequency range 2.048 - 49.152 MHz
Input clock duty cycle 40 - 60 %
Input clock rise/fall time - - 0.2 ns
Output clock frequency range - - 49.152 MHz

5.1 System clock

Figure 11 above shows the STA321 clock management scheme with all the major clocks. As
can be seen, the system clock (sys_clk) is selected from one of three sources by using register PLLB on page 136:
z an external clock BICLKI1
z (default) an external clock XTI or MCLK (the unused one must, however, be set to 0)
z the internal PLL.
If the PLL is used there are some design constraints:
z pll_clk_in_i must be in the range: 2.048 MHz to 49.152 MHz
z pll_clk_out must be in the range: 65.536 MHz to 98.304 MHz.
The sys_clk is routed to the peripherals through the clock manager section.

5.1.1 Configuration example

This is an example of the PLL register setup. It is assumed that every peripheral is already configured and working correctly.
There are other configuration examples to help you get started please refer to other chapters and also to Chapter 14: Register description on page 77 in order to get all the necessary and complementary details.
Starting with MCLK as system clock switching to PLL as source
Table 16. Register setup to provide sys_clk from MCLK to PLL
Register Address Value Description
PLLPFE 0xC4 0x80
PLLB 0xC9 0x00 Remove the PLL bypass and use its clock as system
Safety operational mode: automatic use of MCLK (or XTI) as system clock if the PLL is not locked
30/157 Doc ID 15351 Rev 3
Loading...
+ 127 hidden pages