ST ST72E121, ST72T121 User Manual

查询ST72121供应商
8-BIT MCU WITH 8 TO 16K OTP/EPROM,
384 TO 512 BYTES RAM, WDG, SCI, SPI AND 2 TIMERS
User Program Memory (OTP/EPROM):
Data RAM: 384 to 512 bytes including 256 bytes
of stack
Master Reset and Power-On Reset
Low Voltage Detector (LVD) Reset option
Run and Power Saving modes
32 multifunctional bidirectional I/O lines:
– 9 programmable interrupt inputs – 4 high sink outputs
– 13 alternate functions –EMI filtering
Software or Hardware Watchdog (WDG)
Two 16-bit Timers, each featuring:
– 2 Input Captures and 2 Output Compares – External Clock input (on Timer A) – PWM and Pulse Generator modes
Synchronous Serial Peripheral Interface (SPI)
Asynchronous Serial Communications Interface
(SCI)
8-bit Data Manipulation
63 basic Instructions an d 17 main Addressing
Modes
8 x 8 Unsigned Multiply Instruction
True Bit Manipulation
Complete Development Support on DOS/
WINDOWS
Full Software Package on DOS/WINDOWS
(C-Compiler, Cross-Assembler, Debugger)
Note: 1. One only of each on Tim er A.
TM
Real-Time Emulator
ST72E121
ST72T121
DATASHEET
PSDIP42
1)
CSDIP42W
TQFP44
TM
(See ordering information at the end of datasheet)
Device Summary
Features ST72T121J2 ST72T121J4
Program Memory - bytes 8K 16K RAM (stack) - bytes 384 (256) 512 (256) Peripherals Watchdog, Timers, SPI, SCI and optional Low Voltage Detector Reset Operating Supply 3 to 5.5 V CPU Frequency 8MHz max (16MHz oscillator) - 4MHz max over 85°C
Temperature Range - 40°C to + 125°C
Package TQFP44 - SDIP42 OTP/EPROM Devices ST72T121J4/ST72E121J4
Note: ROM versions are supported by the ST72334/124 family. Important product differences must be taken into account.
Refer to the Preamble in the ST72334/124 Datasheet for more information.
Revision 1.9
May 2001 1/93
1
Table of Contents
1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 EXTERNAL CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 OPTION BYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 CLOCKS, RESET, INTERRUPTS & POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 CLOCK SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 External Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Low Voltage Detector Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 NON MASKABLE SOFTWARE INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 PERIPHERAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Slow Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.4 Halt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 MISCELLANEOUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
5.1 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.3 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.4 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.4 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
93
2/93
2
Table of Contents
5.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1 ST7 ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1.7 Relative Mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 DC ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 RESET CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5 OSCILLATOR CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6 PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8 GENERAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.1 EPROM ERASURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3/93
3
ST72E121 ST72T121
1 GENERAL DESCRIPTION
1.1 INTRODUCTION
The ST72T121 HCMOS Microcontroller Unit (MCU) is a member of the ST7 f amily. The de vic e is based on an industry-standard 8-bit core and features an enhanced instruction set . The device is normally operated at a 16 MHz oscillator fre­quency. Under software control, the ST72T121 may be placed in either Wait, Slow or Halt modes, thus reducing power consumption. Th e enhance d instruction set and ad dressing modes afford real programming potential. In addition to standard 8-bit data management, the ST72T121 features true bit manipulation, 8x8 unsigned multiplication
Figure 1. ST72T121 Block Diagram
Internal
OSCIN
OSCOUT
RESET
OSC
CONTROL
AND L VD
8-BIT CO RE
ALU
PROGRAM
MEMORY
(8 - 16K Bytes)
CLOCK
and indirect addressing modes on the whole mem­ory. The device includes a low consumption and fast sta r t on - c hip o s c illator, CP U , p r og ra m memo ­ry (OTP/EPROM vers ions), RAM, 32 I/O lines, a Low Voltage Detector (LVD) and the following on­chip peripherals: industry standard synchronous SPI and asynchronous SCI serial interfaces, digi t­al Watchdog, two independent 16-bit Timers, one featuring an External Clock Input, and both featur­ing Pulse Generator capabilities, 2 Input Captures and 2 Output Compares (only 1 Input Capture and 1 Output Compare on Timer A).
PORT A
PORT B
TIMER B
ADDRESS AND DATA BUS
PORT C
SPI
PA3 - > PA7
(5 bits)
PB0 - > PB4
(5 bits)
PC0 -> PC7
(8 bits)
PF0 -> PF 2,4,6,7
4/93
4
(6 bits)
PORT D
RAM
(384 - 512 Bytes)
PORT E
PORT F
SCI
TIMER A
V
DD
V
SS
POWER SUPPLY
WATCHDOG
PD0 -> PD5
(6 bits)
PE0 -> PE1
(2 bits)
1.2 PIN DESCRIPTI ON Figure 2. 44-Pin Thin QFP Package Pinout
PE0/TD0
PE1/RDI
PB0 PB1 PB2 PB3 PB4 PD0 PD1 PD2 PD3 PD4
44 43 42 41 40 39 38 37 36 35 34
1
(EI2)
2
(EI2)
3
(EI2)
4
(EI2)
5
(EI3)
6 7 8 9 10 11
12 13 14 15 16 17 18 19
PD5
DD_3
V
ST72E121 ST72T121
1) PP
DD_2
SS_2
V
V
RESET
TEST/V
PA7
PA6
PA5
(EI0)
20 21 22
DD_0
V
31 30 29 28
V
PA4
33 32
27 26 25 24 23
SS_0
V
SS_1
V
DD_1
PA3 PC7/SS PC6/SCK PC5/MOSI PC4/MISO PC3/ICAP1_B PC2/ICAP2_B PC1/OCMP1_B PC0/OCMP2_B
OSCIN
OSCOUT
(EI1)
(EI1)
(EI1)
PF1
PF2
SS_3
V
1. VPP on EPROM/OTP only
Figure 3. 42-Pin Shrink DIP Package Pinout
PB4 PD0 PD1 PD2 PD3 PD4 PD5
V
DD_3
V
SS_3
CLKOUT/PF0
PF1
OCMP1_A/PF4
EXTCLK_A/PF7
PC0/OCMP2_B PC1/OCMP1_B
PF2
ICAP1_A/PF6
PC2/ICAP2_B PC3/ICAP1_B
PC4/MISO PC5/MOSI
CLKOUT/PF0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21
(EI3)
(EI1) (EI1) (EI1)
ICAP1_A/PF6
OCMP1_A/PF4
EXTCLK_A/PF7
PB3
42
(EI2) (EI2) (EI2) (EI2)
(EI0)
41 40 39 38 37 36 35 34 33 32 31 30 29
28 27 26 25 24 23 22
PB2 PB1 PB0 PE1/RDI PE0/TD0
V
DD_2
OSCIN OSCOUT
V
SS_2
RESET TEST/V PA7 PA6 PA5 PA4
V
SS_1
V
DD_1
PA3 PC7/SS PC6/SCK
1)
PP
1. VPP on EPROM/OTP only
5/93
5
ST72E121 ST72T121
Table 1. ST72T121Jx Pin Desc ription
Pin n°
QFP44
Pin n°
SDIP42
Pin Name Type Description Remarks
1 38 PE1/RDI I/O Port E1 or SCI Receive Data In 2 39 PB0 I/O Port B0 Extern al Interrupt: EI2 3 40 PB1 I/O Port B1 Extern al Interrupt: EI2 4 41 PB2 I/O Port B2 Extern al Interrupt: EI2 5 42 PB3 I/O Port B3 Extern al Interrupt: EI2 6 1 PB4 I/O Port B4 External Int er ru pt: EI3 7 2 PD0 I/O Port D0 8 3 PD1 I/O Port D1
9 4 PD2 I/O Port D2 10 5 PD 3 I/O Port D3 11 6 PD 4 I/O Port D4 12 7 PD 5 I/O Port D5 13 8 V 14 9 V
DD_3 SS_3
S Main Power Supply
S Ground 15 10 PF0/CLKOUT I/O Port F0 or CPU Clock Output External Interrup t: EI1 16 11 PF1 I/O Port F1 External Interrupt: EI1 17 12 PF2 I/O Port F2 External Interrupt: EI1 18 13 PF4/OCMP1_A I/O Port F4 or Timer A Output Compare 1 19 14 PF6/ICAP1_A I/O Port F6 or Timer A Input Capture 1 20 15 PF7/EXTCLK_A I/O Port F7 or External Clock on Timer A 21 V 22 V
DD_0 SS_0
S Main power supply
S Ground 23 16 PC0/OCMP2_B I/O Port C0 or Timer B Output Compare 2 24 17 PC1/OCMP1_B I/O Port C1 or Timer B Output Compare 1 25 18 PC2/ICAP2_B I/O Port C2 or Timer B Input Capture 2 26 19 PC3/ICAP1_B I/O Port C3 or Timer B Input Capture 1 27 20 PC4/MISO I/O Port C4 or SPI Master In / Slave Out Data 28 21 PC5/MOSI I/O Port C5 or SPI Master Out / Sl ave In Data 29 22 PC6/SCK I/O Port C6 or SPI Serial Clock 30 23 PC7/SS
I/O Port C7 or SPI Slave Select 31 24 PA3 I/O Port A3 External Interrupt: EI0 32 25 V 33 26 V
DD_1 SS_1
S Main power supply
S Ground 34 27 PA4 I/O Port A4 High Sink 35 28 PA5 I/O Po rt A5 High Sink 36 29 PA6 I/O Po rt A6 High Sink 37 30 PA7 I/O Po rt A7 High Sink
38 31 TEST/V
PP
1)
39 32 RESET 40 33 V
SS_2
41 34 OSCOUT O 42 35 OSCIN I 43 36 V
DD_2
S
mode, this pin acts as the programming voltage input V
PP.
I/O Bidirectional. Active low. Top priority non maskable interrupt.
S Ground
Input/Ou tput Oscill ator p in. The se pins conn ect a paral lel-re sonant cr ystal, or an external source to the on-chip oscillator.
S Main power supply
Test mode pin. In the EPROM programming
This pin must be tied low in user mode
44 37 PE0/TDO I/O Port E0 or SCI Transmit Dat a Out
Note 1: VPP on EPROM/OTP only.
6/93
6
1.3 EXTERNAL CONNECTIONS
ST72E121 ST72T121
The following figure shows the recom mended ex­ternal connections for the device.
The V
pin is only used for programming OTP
PP
and EPROM devices and must be tied to ground in user mode.
The 10 nF and 0. 1 µF decoupling capacitors on the power supply lines are a suggested EMC per­formance/cost tradeoff.
Figure 4. Recommended Extern al Connec tions
V
DD
Optional if Low Voltage Detector (LVD) is used
EXTERNAL RESET CIRCUIT
10nF
+
V
DD
0.1µF
0.1µF
The external reset network is intended to protect the device against parasitic resets, especially in noisy environments.
Unused I/Os shoul d be t ied hi gh to av oid any un­necessary power consumption on floating lines. An alternative solution is to program the unused ports as inputs with pull-up.
V
PP
V
4.7K
DD
V
SS
RESET
0.1µF
See Clocks Section
Or configure unused I/O ports by software as input with pull-up
V
10K
DD
OSCIN OSCOUT
Unused I/O
7/93
7
ST72E121 ST72T121
1.4 MEMORY MAP Figure 5. Program Memo ry Map
0000h
007Fh
0080h
01FFh
027Fh
0200h / 0280h
BFFFh C000h
E000h
FFDFh
FFE0h
FFFFh
HW Registers
(see Table 3)
384 Bytes RAM
512 Bytes RAM
Reserved
16K Bytes
Program
8K Bytes
Memory
Program
Memory
Interrupt & Reset Vectors
(see Table 2)
0080h
Short Addressing
00FFh
0100h
01FFh
0080h
00FFh
0100h
RAM (zero page)
256 Bytes Stack/
16-bit Addressing RAM
Short Addressing
RAM (zero page)
256 Bytes Stack/
16-bit Addressing RAM
01FFh 0200h
027Fh
16-bit Addressing
RAM
Table 2. Interrupt Vector Map
Vector Address Description Remarks
FFE0-FFE1h FFE2-FFE3h FFE4-FFE5h FFE6-FFE7h
FFE8-FFE9h FFEA-FFEBh FFEC-FFEDh
FFEE-FFEFh
FFF0-FFF1h
FFF2-FFF3h
FFF4-FFF5h
FFF6-FFF7h
FFF8-FFF9h
FFFA-FFFBh
FFFC-FFFDh
FFFE-FFFFh
TIMER B Interrupt Vector TIMER A Interrupt Vector
External Interrupt Vector EI3 (PB4) External Interrupt Vector EI2 (PB0:PB3) External Interrupt Vector EI1 (PF0:PF2)
External Interrupt Vector EI0 (PA3)
TRAP (software) Interrupt Vector
Not Used Not Used Not Used
SCI Interrupt Vector
SPI interrupt vector
Not Used
Not Used Not Used
RESET Vector
8/93
8
Internal Interrupt Internal Interrupt Internal Interrupt Internal Interrupt Internal Interrupt
External Interrupt External Interrupt External Interrupt External Interrupt
CPU Interrupt
Table 3. Hardware Register Mem ory Map
ST72E121 ST72T121
Address Block
0000h 0001h
Port A
0002h
Register
Label
PADR PADDR PAOR
Register Name
Data Register Data Direction Register Option Register
Reset
Status
00h 00h
00h 0003h Reserved Area (1 byte) 0004h 0005h 0006h
Port C
PCDR PCDDR PCOR
Data Register Data Direction Register Option Register
00h
00h
00h 0007h Reserved Area (1 byte) 0008h 0009h 000Ah
Port B
PBDR PBDDR PBOR
Data Register Data Direction Register Option Register
00h
00h
00h 000Bh Reserved Area (1 byte) 000Ch 000Dh 000Eh
Port E
PEDR PEDDR PEOR
Data Register Data Direction Register Option Register
00h
00h
0Ch 000Fh Reserved Area (1 byte) 0010h 0011h 0012h
Port D
PDDR PDDDR PDOR
Data Register Data Direction Register Option Register
00h 00h
00h 0013h Reserved Area (1 byte) 0014h 0015h 0016h 0017h to 001Fh
Port F
PFDR PFDDR PFOR
Data Register Data Direction Register Option Register
Reserved Area (9 bytes)
00h
00h
28h
0020h MISCR Miscellaneous Register 00h 0021h 0022h 0023h 0024h to 0029h 002Ah
002Bh 002Ch to 0030h
SPI
WDG
SPIDR SPICR SPISR
WDGCR WDGSR
SPI Data I/O Register SPI Control Register SPI Status Register
Reserved Area (6 bytes)
Watchdog Control Register Watchdog Status Register
Reserved Area (5 bytes)
xxh
xxh
00h
7Fh
00h
Remarks
R/W R/W
1)
R/W
R/W R/W R/W
R/W R/W
1)
R/W
R/W R/W
1)
R/W
R/W R/W
1)
R/W
R/W R/W
1)
R/W
R/W R/W Read Only
R/W
3)
R/W
9/93
9
ST72E121 ST72T121
Address Block
0031h 0032h 0033h 0034h-0035h
0036h-0037h
0038h-0039h
Timer A
003Ah-003Bh
003Ch-003Dh
003Eh-003Fh
Register
Label
TACR2 TACR1 TASR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR
Register Name
Control Register2 Control Register1 Status Register Input Capture1 High Register Input Capture1 Low Register Output Compare1 High Register Output Compare1 Low Register Counter High Register Counter Low Register Alternate Counter High Register Alternate Counter Low Register Input Capture2 High Register Input Capture2 Low Register Output Compare2 High Register Output Compare2 Low Register
Reset
Status
00h
00h
xxh
xxh
xxh
80h
00h
FFh FCh FFh FCh
xxh
xxh
80h
00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W
R/W 0040h Reserved Area (1 byte) 0041h 0042h 0043h 0044h-0045h
0046h-0047h
0048h-0049h
004Ah-004Bh
004Ch-004Dh
004Eh-004Fh
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h 0058h to 007Fh
Timer B
SCI
TBCR2 TBCR1 TBSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR
SCIETPR
Control Register2 Control Register1 Status Register Input Capture1 High Register Input Capture1 Low Register Output Compare1 High Register Output Compare1 Low Register Counter High Register Counter Low Register Alternate Counter High Register Alternate Counter Low Register Input Capture2 High Register Input Capture2 Low Register Output Compare2 High Register Output Compare2 Low Register SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved SCI Extended Transmit Prescaler Register
Reserved Area (40 bytes)
00h 00h xxh xxh xxh 80h
00h FFh FCh FFh FCh
xxh
xxh
80h
00h C0h
xxh
00x----xb
xxh
00h
00h
---
00h
R/W R/W Read Only Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W Read Only R/W R/W R/W R/W R/W Reserved R/W
Notes:
1. The bits corresponding to unavailable pins are forced to 1 by hardware, this affects the reset status value.
2. External pin not available.
3. Not used in versions without Low Voltage Detector Reset.
Remarks
2)
2)
2)
2)
10/93
10
1.5 OPTION BYTE
ST72E121 ST72T121
The user has the option to select software watch­dog or hardware watchdog (see description in the Watchdog chapter). When program ming EPROM or OTP devices, this o ption is selected in a men u by the user of the EPROM programmer before burning the EPROM/O TP. The Option Byte is lo­cated in a non-user map. No address has to be specified. The Option Byte is at FFh after UV eras­ure and must be properly programmed t o set de­sired options.
OPTBYTE
70
- - - - b3 b2 - WDG
Bit 7:4 = Not used
Bit 3 = Reserved, must be cleared.
Bit 2 = Reserved, must be s et on S T7 2T121 N de­vices and must be cleared on ST72T121J devices.
Bit 1 = Not used
Bit 0 = WDG
Watchdog disable
0: The Watchdog is enabled after reset (Hardware
Watchdog).
1: The Watchdog is not enabled after reset (Soft-
ware Watchdog).
11/93
11
ST72E121 ST72T121
2 CENTRAL PROCE SSI NG UNIT
2.1 INTRODUCTION
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.
2.2 MAIN FEATURES
63 basic instructions
Fast 8-bit by 8-bit multiply
17 main addressing modes
Two 8-bit index registers
16-bit stack pointer
Low po wer modes
Maskable hardware interrupts
Non-maskable software interrupt
2.3 CPU REGISTERS
The 6 CPU registers shown in Figure 6 are not present in the memory mapping and are accessed by specific instructions.
Figure 6. CPU Registers
70
RESET VALUE = XXh
70
RESET VALUE = XXh
70
RESET VALUE = XXh
Accumulator (A)
The Accumulator is an 8-bit general purpose reg­ister used to hold operan ds and the results of the arithmetic and logic calculations and to manipulate data.
Index Registers (X and Y)
In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede in­struction (PRE) to indicate that the following in­struction refers to the Y register.)
The Y register is not affected by the interrupt auto­matic procedures (not pushed to and popped from the stack).
Program Cou nt er (P C )
The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).
ACCUMULA T OR
X INDEX REGISTER
Y INDEX REGISTER
15 8
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
15
RESET VALUE = STACK HIGHER ADDRESS
12/93
PCH
RESET VALUE =
7
70
1C11HI NZ
1X11X1XX 70
8
PCL
12
0
PROGRAM COUNTER
CONDITION CODE REGISTER
STACK POINTER
X = Undefined Value
ST72E121 ST72T121
CPU REGISTERS (Cont’d) CONDITION CODE REGISTER (CC)
Read/Write Reset Value: 111x1xxx
70
111HINZC
The 8-bit Condition Code register c ontains the in­terrupt mask and four flags represent ative of the result of the instruction just executed. This register can also be handled by the PUSH and POP in­structions.
These bits can be individually tested and/or con­trolled by specific instructions.
Bit 4 = H
Half carry
.
This bit is set by hardware when a carry occurs be­tween bits 3 and 4 of t he ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred.
This bit is tested using the JRH or JRNH instruc­tion. The H bit is useful in BCD arithmetic subrou­tines .
Bit 3 = I
Interrupt mask
.
This bit is set by hardware when entering in inter­rupt or by software to disable all interrup ts except the TRAP software interrupt. This bit is cleared by software. 0: Interrupts are enabled. 1: Interrupts are disabled.
This bit is controlled by the RIM, SIM and IRET in­structions and is tested by the JRM and JRNM in­structions.
Note: Interrupts requested while I is set are latched and can be processed whe n I is cleared. By default an interrupt routine is not in terruptable
because the I bi t is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the cur­rent interrupt routine.
Bit 2 = N
Negative
.
This bit is set and cleared by hardware. It is repre­sentative of the result sign of the last arithmeti c, logical or data manipulation. It is a copy of the 7 bit of the result. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative
(i.e. the most significant bit is a logic 1).
This bit is accessed by the JRMI and JRPL instruc­tions.
Zero
Bit 1 = Z
.
This bit is set and cleared by hardware. This bit in­dicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from
zero.
1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test
instructions.
Bit 0 = C
Carry/borrow.
This bit is set and cleared b y hardware and soft­ware. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred.
This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions.
th
13/93
13
ST72E121 ST72T121
CENTRAL PROCESSING UNIT (Cont’d) Stack Pointer (SP)
Read/Write Reset Value: 01FFh
15 8
00000001
70
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
The Stack Pointer is a 16-bit register which is al­ways pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 7).
Since the stack is 256 bytes deep, the 8th most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer in­struction (RSP), the Stack Pointer contains its re­set value (the SP7 to SP0 bits are set) which is the stack higher address.
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD in­struction.
Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, wi th­out indicating the s tack overflow. The previously stored information is then o verwritten and there­fore lost. The stack also wraps in case of an under­flow.
The stack is used to save the retu rn address dur­ing a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instruc­tions. In the case of an interrupt, the PCL is stored at the first location point ed to by the SP. Then the other registers are stored in the next locations as shown in Figure 7.
– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.
– On return from interrupt, the SP is incremented
and the context is popped from the stack.
A subroutine call occupies two locations and an in­terrupt five locat ions i n the sta ck ar ea.
Figure 7. Stack Manipulation Example
@ 0100h
SP
@ 01FFh
CALL
Subroutine
SP
PCH PCL
Stack Higher Address = 01FFh Stack Lower Address =
Interrupt
Event
SP
CC
A
X PCH PCL PCH PCL
0100h
PUSH Y POP Y IRET
SP
Y
CC
A
X PCH PCL PCH
PCL
CC
A
X PCH PCL PCH
PCL
SP
PCH
PCL
RET
or RSP
SP
14/93
14
ST72E121 ST72T121
3 CLOCKS, RESET, INTERRUPTS & POWER SAVING MODES
3.1 CLOCK SYSTEM
3.1.1 General Description
The MCU accepts either a crystal or ceramic reso­nator, or an external clock signal to drive the inter­nal oscillator. The internal clock (f
from the external oscillator frequency (f
) is derived
CPU
OSC).
The
external Oscillator clock is first divided by 2, and an additional division factor of 2, 4, 8, or 16 can be applied, in Slow Mode, to red uce th e f requency of the f
; this clock signal is also routed to the on-
CPU
chip peripherals. The CPU clock signal consists of a square wave with a duty cycle of 50%.
The internal oscillat or is designed to operate with an AT-cut parallel resonant quartz crystal resona­tor in the frequency range specified for f
osc
. The
circuit shown in Figure 9 is recommended whe n using a crystal, and Tab le 4 lists the recommend­ed capacitance and feedback resistance values. The crystal and associated components should be mounted as close as p ossible to the input pins i n order to minimize output distortion and start-up stabilisation time.
Use of an external CMOS oscillator is recom­mended when crystals outside the specified fre­quency ranges are to be used.
3.1.2 External Clock
An external clock may be applied to the OSCIN in­put with the OSCOUT pin not connected, as shown on Figure 8.
Figure 8. External Clock Source Connections
OSCIN OSCOUT
NC
EXTERNAL
CLOCK
Figure 9. Crystal/Ceramic Resonator
OSCIN OSCOUT
C
OSCIN
C
OSCOUT
Table 4 Recommended Values for 16 MHz
R
SMAX
Crystal Resonator (C
R
SMAX
C
OSCIN
C
OSCOUT
40
56pF 47pF 22pF 56pF 47pF 22pF
: Parasitic series resistance of the quartz
60
< 7pF)
0
150
crystal (upper limit).
: Parasitic shunt capacitance of the quartz crys-
C
0
tal (upper limit 7pF).
C
OSCOUT
, C
: Maximum total capacitance on
OSCIN
pins OSCIN and OSCOUT (the value includes the external capacitance tied to the p in plus the para­sitic capacitance of the board and of the device).
Figure 10. Clock Prescaler Block Diagram
C
OSCIN
OSCIN
OSCOUT
%2 % 2, 4, 8, 16
C
OSCOUT
f
CPU
to CPU and Peripherals
15/93
15
ST72E121 ST72T121
3.2 RESET
3.2.1 Introd uction
There are four sources of Reset:
– RESET
pin (external source) – Power-O n Reset (Internal source) – W ATCHDOG (Internal Source) – Lo w Voltage Detection Reset (internal source) The Reset Service Routine vector is located at ad-
dress FFFEh-FFFFh.
3.2.2 External Reset
The RESET
pin is both an input and an open-drain output with integrated pull-up resi stor. When one of the internal Reset sources is active, the Reset pin is driven low for a duration of t
RESET
to reset
the whole application.
3.2.3 Reset Operation
The duration of the Reset state is a minimum of 4096 internal CPU Clock cycles. During the Reset state, all I/Os take their reset value.
A Reset signal originating from an external source must have a duration of at least t
PULSE
in order to
Figure 11. Reset Block Diagram
be recognised. This detection is asynchronous and therefore the MCU can enter Reset state even in Halt mode.
At the end of the Reset cycle, the MCU may be held in the Reset state by an External Reset sig­nal. The RESET
has risen to a point where the MCU can oper-
V
DD
pin may thus be used to ens ure
ate correctly before the user program is run. Fol­lowing a Reset event, or after exiting Halt mode, a 4096 CPU Clock cycle delay period is initiated in order to allow the oscillat or to stabilise and to en­sure that recovery has taken place from the Reset state.
In the high state, the RESET ternally to a pull-up resistor (R
pin is connected in-
). This resistor
ON
can be pulled low b y ex ternal circuitry to res et t he device.
The RESET
pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is rec ommended to u se the exter­nal connections shown in Figure 4.
RESET
OSCILLATOR
SIGNAL
V
DD
R
ON
TO ST7
RESET
INTERN AL RESET
COUNTER
POWER-ON RESE T WATCHDOG RESET LOW VOLTAGE DETECTOR RESET
16/93
16
RESET (Cont’d)
3.2.4 Low Voltage Detector Reset
The on-chip Low Voltage Detector (LVD) gener­ates a static reset when the supply voltage is be­low a reference value. The LVD functions both during power-on as well as when the power supply drops (brown-out). The reference value for a volt­age drop is lower than the reference value for pow­er-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the sup­ply (hysteresis).
The LVD Reset circuitry generates a reset when
is below:
V
DD
V V
Provided the minimun V the oscillator frequency) is above V MCU can only be in two modes:
when VDD is rising
LVDUP LVDDOWN
when VDD is falling
value (guaranteed for
DD
LVDDOWN
, the
- under full software control or
- in static safe reset In this condition, secure operation is always en-
sured for the application without the need for ex­ternal reset hardware.
During a Low Voltage Detector Reset, the RESET pin is held low, thus perm itting the MCU to reset other devices.
In noisy environments, the power supply may drop for short periods and cause the Low Voltage De­tector to generate a Reset too frequen tly. In such
ST72E121 ST72T121
cases, it is recommended to us e devices without the LVD Reset option and to rely on the watchdog function to detect application runaway conditions.
Figure 12. Low Voltage Detector Reset Function
V
DD
Figure 13. Low Voltage Detector Reset Signal
V
DD
RESET
Note: See electrical characteristics for values of V
LVDUP
LOW VOLTAGE
DETECTOR RESET
WATCHDOG
V
LVDUP
and V
LVDDOWN
FROM
RESET
RESET
V
LVDDOWN
Figure 14. Temporization timing diagram after an internal Reset
V
V
DD
Addresses
LVDUP
Temporiz ation (40 96 CP U clock cy cl es)
$FFFE
17/93
17
ST72E121 ST72T121
4 INTE RRUPTS
The ST7 core may be interrupted by one of two dif­ferent methods: maskable hardware interrupts as listed in the Interrupt Mapping Table and a non­maskable software interrupt (TRAP). The Interrupt processing flowchart is shown in Figure 15. The maskable interrupts must be enabled by clearing the I bit in order to be serviced. However, disabled interrupts may be latched and processed when they are enabled (see external interrupts subsection).
Note: After reset, all interrupts are disabled. When an interrupt has to be serviced:
– No rmal processing is susp ended at the end of
the current instruction execution.
– The PC, X, A and CC registers are saved onto
the stack.
– The I bit of the CC register is set to prevent addi-
tional interrupts.
– The PC is then loaded with the interrupt vector of
the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to the Interrupt Mapping Table for vector address­es).
The interrupt service routine should finish with the IRET instruction which c auses the conten ts o f the saved registers to be recovered from the stack.
Note: As a consequence of the IRET instruction, the I bit will be cleared a nd the main pro gram will resume.
Priority Management
By default, a servicing interrupt cannot be inter­rupted because the I bit is set by hardware enter­ing in interrupt routine.
In the case when several inte rrupt s are simultane­ously pending, an hardware priority defines which one will be serviced first (see the Interrupt Map­ping Table).
Interrupts and Low Power Mode
All interrupts allow the processor to leave the WAIT low power mode. Only external and specifi­cally mentioned interrupts allow the processor to leave the HALT low power mode (refer to the “Exit from HALT“ column in the I nterrupt Mapping Ta­ble).
4.1 NON MASKABLE SOFTWARE INTERRUPT
This interrupt is entered when the TRAP instruc­tion is executed regardless of the state of the I bit.
It will be serviced according to the flowchart on
Figure 15.
4.2 EXTERNAL INTERRUPTS
External interrupt vectors can be loaded into the PC register if the corresponding ext ernal interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the Halt low power mode.
The external interrupt polarity is selected through the miscellaneous register or interrupt register (if available).
An external interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.
If several input pins, connected to the same inter­rupt vector, are configured as interrupts, their sig­nals are logically ANDed and inverted before en­tering the edge/level detection block.
Caution: The type of sensitivity defined in the Mis­cellaneous or Interrupt register (if available) ap­plies to the ei source. In case of an ANDed source (as described on the I/O ports section), a low level on an I/O pin configured as input with interrupt, masks the interrupt request even in case of rising­edge sensitivity.
4.3 PERIPHERAL INTERRUPTS
Different peripheral interrupt flags in the status register are able to cause an interrupt when they are active if both:
– The I bit of the CC register is cleared. – The corresponding enable bit is set in the control
register.
If any of these two conditions is false, the interrupt is latched and thus remains pending.
Clearing an interrupt request is done by: – Writing “0” to the corresponding bit in the status
register or
– Access to the status register while the f lag i s set
followed by a read or write of an associated reg­ister.
Note: the clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being en­abled) will therefore be lost if the clear sequence is executed.
18/93
18
INTERRUPTS (Cont’d) Figure 15. Inte rru pt P rocessing Flow c hart
FROM RESET
ST72E121 ST72T121
EXECUTE INSTRUCTION
RESTORE PC, X, A, CC FROM STACK
I BIT SET?
Y
FETCH NEXT INSTRUCTION
N
THIS CLEARS I BIT BY DEFAULT
IRET?
Y
N
N
INTER RUPT
PENDING?
Y
STACK PC, X, A, CC
SET I BIT
LOAD PC FROM I NTER RU PTVECTOR
19/93
19
ST72E121 ST72T121
Table 5. Int errupt Mapp in g
Source
Block
RESET Reset N/A N/A yes FFFEh-FFFFh TRAP So ftware N/A N/A no FFFCh-FFFDh
EI0 Ext. Interrupt (Ports PA0:PA3) N/A N/A EI1 Ext. Interrupt (Ports PF0:PF2) N/A N/A FFF4h-FFF5h EI2 Ext. Interrupt (Ports PB0:PB3) N/A N/A FFF2h-FFF3h EI3 Ext. Interrupt (Ports PB4:PB7) N/A N/A FFF0h-FFF1h
SPI
TIMER A
TIMER B
SCI
Transfer Complete Mode Fault MODF Input Capture 1 Output Compare 1 OCF1_A Input Capture 2 ICF2_A Output Compare 2 OCF2_A Timer Overflow TOF_A Input Capture 1 Output Compare 1 OCF1_B Input Capture 2 ICF2_B Output Compare 2 OCF2_B Timer Overflow TOF_B Transmit Buffer Empty Transmit Complete TC Receive Buffer Full RDRF Idle Line Detect IDLE Overrun OR
Description
NOT USED FFFAh-FFFBh NOT USED FFF8h-FFF9h
NOT USED FFEEh-FFEFh
NOT USED FFE4h-FFE5h NOT USED FFE2h-FFE3h NOT USED FFE0h-FFE1h
Register
Label
SPISR
TASR
TBSR
SCISR
Flag
SPIF
ICF1_A
ICF1_B
TDRE
Exit
from
HALT
yes
no
Vector
Address
FFF6h-FFF7h
FFECh-FFEDh
FFEAh-FFEBh
FFE8h-FFE9h
FFE6h-FFE7h
Priority
Order
Highest
Priority
Lowest Priority
20/93
20
4.4 POWER SAVING MODES
4.4.1 Introd uct i on
There are three Power Saving modes. Slow Mode is selected by setting the rele vant bits in the Mis­cellaneous register. Wait and Halt m odes may b e entered using the WFI and HALT instructions.
ST72E121 ST72T121
Figure 16. WAIT Flow Chart
WFI INSTRUCTION
4.4.2 Slow Mode
In Slow mode, the oscillator frequency can be d i­vided by a value defined in the Miscellaneous Register. The CPU and peripherals are clocked at this lower frequency. Slow mode is used to reduce power consumption, and enables the user to adapt clock frequency to available supply voltage.
4.4.3 Wait Mode
Wait mode places the M CU in a low power con­sumption mode by stopping the CPU. All peripher­als remain active. During Wait mode, th e I bit (CC Register) is cleared, so as to enable all interrupts. All other registers and memory remain unchanged. The MCU w ill remain in Wait mode u ntil an Inte r­rupt or Reset occurs, whereupon the Program Counter branches to the starting address of the In­terrupt or Reset Service Routine. The MCU will remain in Wait mode until a Reset or an Interrupt occurs, causing it to wake up.
Refer to Figure 16 below.
N
INTERRUPT
Y
OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT
N
RESET
OSCILLATOR PERIPH. CLOCK CPU CLOCK
I-BIT
4096 CPU CLOCK
CYCLES DELAY
ON
ON
OFF CLEARED
Y
ON
ON
ON SET
OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT
FETCH RESET VECTOR
OR SERVICE INTERRUP T
Note: Before servicing an interrupt, the CC register is pushed on the sta ck. The I-Bit is s et d uring the inte r­rupt routine and cleared when the CC register is popped.
ON
ON
ON SET
21/93
21
ST72E121 ST72T121
POWER SAVING MODES (Cont’d)
4.4.4 Halt Mode
The Halt mode is the MCU lowest power con­sumption mode. The Halt mode is entered by exe­cuting the HALT instruction. The internal oscillator is then turned off, causing all internal processing to be stopped, including the operation of the on-chip peripherals. The Halt mode cannot be used whe n the watchdog is enabled, if the HALT instruction is executed while the watchdog system is enabled, a watchdog reset is generated thus resetting the en­tire MCU.
When entering Halt mode, the I bit in the CC Reg­ister is cleared so as to enable External Interrupts. If an interrupt occurs, the CPU becomes active.
The MCU can exit the Halt mode upon reception of an interrupt or a reset. Refer t o the I nterrupt M ap­ping Table. The oscillator is then turned on and a stabilization time is provided before releasing CPU operation. The stabilization time is 4096 CPU clock cycles. After the start up delay, the CPU continues oper­ation by servicing the interrupt which wakes it up or by fetching the reset vector if a reset wakes it up.
Figure 17. HALT Flow Chart
HALT INSTRUCTION
WATCHDOG
RESET
N
EXTERNAL
INTERRUPT
Y
OSCILLATOR PERIPH. CLOCK CPU CLOCK I-BIT
N
1)
WDG
ENABLED?
N
OFF
OFF
OFF CLEARED
RESET
Y
Y
1) or some specific interrupts
2) if reset PERIPH. CLOCK = ON ; if interrupt PERIPH. CLOCK = OFF
Note: Before servicing an interrupt, the CC register is pushed on th e sta ck. The I-Bit is s et d uring the inte r­rupt routine and cleared when the CC register is popped.
OSCILLATOR PERIPH. CLOCK CPU CLOCK
I-BIT
4096 CPU CLOCK
CYCLES DELAY
OSCILLATOR PERIPH. CLOCK
CPU CLOCK I-BIT
FETCH RESET VECTOR
OR SERVICE INTERRUPT
ON
2)
OFF
ON SET
ON
ON
ON SET
22/93
22
4.5 MISCELLANEOUS REGISTER
ST72E121 ST72T121
The Miscellaneous register allows to select the SLOW operating mode , the polarity of ex ternal i n­terrupt requests and to output the internal clock.
Register Address: 0020h Read/Write Reset Value: 0000 0000 (00h)
Bit 4:3 = PEI[1:0]
Polarity Opti o n s
These bits are set and cleared by so ftware. They determine which event on EI0 and EI1 causes the external interrupt according to Table 7.
External Interrupt EI1 and EI0
.
Table 7. EI0 and E I1 External Inte rrup t P o larity
70
PEI3 PEI2 MCO PEI1 PEI0 PSM1 PSM0 SMS
Bit 7:6 = PEI[3:2]
Polarity Options
External Interrupt EI3 a nd EI2
.
These bits are set and cleared by software. They determine which event on EI2 and EI3 causes the
Options
MODE PEI1 PEI0
Falling edge and low level
(Reset state) Falling edge only 1 0 Rising edge only 0 1
Rising and falling edge 1 1
external interrupt according to Table 6.
Table 6. EI2 and EI3 External Interrupt Polarity
Options
MODE PEI3 PEI2
Falling edge and low level
(Reset state)
Falling edge only 1 0
Rising edge only 0 1
Rising and falling edge 1 1
00
Note: Any modification of one of these two bits re­sets the interrupt request related to this interrupt vect or.
Bit 5 = MCO
Main Clock Out
This bit is set and cleared by software. When set, it enables the output of the Internal Clock on the PPF0 I/O port. 0 - PF0 is a general purpose I/O port. 1 - MCO alternate function (f
is output on PF0
CPU
pin).
Note: Any modification of one of these two bits re­sets the interrupt request related to t his interrupt vector.l
Bit 2:1 = PSM[1:0]
Prescaler for Slow Mode.
These bits are set and cleared by so ftware. They determine the CPU clock when the SMS bit is set according to the following table.
Table 8. f
Bit 0 = SMS
Value in Slow Mode
CPU
f
Valu e
CPU
/ 4 0 0
f
OSC
f
/ 16 0 1
OSC
/ 8 1 0
f
OSC
/ 32 1 1
f
OSC
Slow Mode Select
This bit is set and cleared by software.
= f
0: Normal Mode - f
CPU
OSC
/ 2
(Reset state)
1: Slow Mode - the f
PSM[1:0] b its.
value is determined by the
CPU
00
PSM1 PSM 0
23/93
23
ST72E121 ST72T121
5 ON-CHIP PERIPHERALS
5.1 I/O PORTS
5.1.1 Introd uction
The I/O ports offer different functional modes:
– transfer of data through digital inputs and outputs and for specific pins: – an alog signal input (ADC) – alterna te signal input/output for the on-chip pe-
ripherals. – external interrupt generat ion An I/O port is composed of up to 8 pins. Each pin
can be programmed independently as digital input (with or without interrupt generation) or digital out­put.
5.1.2 Functional Description
Each port is associated to 2 main registers: – Data Register (DR) – Data Direction Register (DDR) and some of them to an optional register: – Option Register (OR) Each I/O pin may be programmed using the corre-
sponding register bits in DDR and OR registers: bit X corresponding to pin X of the port. The same cor­respondence is used for the DR register.
The following description takes into account the OR register, for specific ports which do not provide this register refer to the I/O Port Implementation
Section 5.1.3. The generic I/O block diagram is
shown on Figure 19.
5.1.2.1 Input Modes
The input configuration is sele cted by clearing the corresponding DDR register bit.
In this case, reading the DR register returns the digital value applied to the external I/O pin.
Different input modes can be selected by software through the OR register.
Notes:
1. All the inputs are triggered by a Schmitt trigger.
2. When switching from input mode to output mode, the DR register should be written first to output the correct value as soon as the port is con­figured as an output.
Interrupt function
When an I/O is configured in Input with Interrupt, an event on thi s I/O can generat e an external In­terrupt request to the CPU. The interrupt polarity is given independently according to the description mentioned in the Miscellaneous regi ster or in the interrupt register (where available).
Each pin can independently generate an Interrupt request.
Each external interrupt vector is linked t o a dedi­cated group of I/O port pins (see Interrupts sec­tion). If several input pins are configured as inputs to the same interrupt vector, their sign als are logi­cally ANDed before entering the edge/level detec­tion block. For this reason if one of the interrupt pins is tied low, it masks the other ones.
5.1.2.2 Output Mode
The pin is configured in output mode by setting the corresponding DDR register bit.
In this mode, writing “0” or “1” to the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value.
Note: In this mode, the interrupt function is disa­bled.
5.1.2.3 Digital Alternate Function
When an on-chip peripheral is configured to use a pin, the alternate function is au tomatically select­ed. This alternate function takes priority over standard I/O programming. When the signal is coming from an on-chip peripheral, the I/O pin is automatically configured in output mode (push-pull or open drain according to the peripheral).
When the signal is goi ng to an on-chip peripheral, the I/O pin ha s to be configured in i nput mode. In this case, the pin’s state is a lso digitally readable by addressing the DR register.
Notes:
1. Input pull-up configuration can cause an unex ­pected value at the input of the alternate peripher­al input.
2. When the on-chip peripheral uses a pin as input and output, this pin must be configured as an input (DDR = 0).
Warning
vated as long as the pin is configured as input with interrupt, in order to avoid generating spurious in­terrupts.
: The alternate func tion m us t not be a cti-
24/93
24
I/O PORTS (Cont’d)
5.1.2.4 Analog Alternate Function
When the pin is used as an ADC input the I/O must be configured as input, floating. The analog multi­plexer (controlled by the ADC registers) switches the analog voltage present o n the selected pin to the common ana log rail which i s c onnect ed to the ADC input.
It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it i s recommended not to have clocking pins located close t o a sele cted an­alog pin.
Warning
within the limits stated in the Absolute M aximum Ratings.
Figure 18. Recommended I/O State Transition Diagram
: The analog input voltage level mus t be
5.1.3 I/O Port Implementation
The hardware implementation on each I/O port de­pends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC In­put (see Figure 19) or true open drain. Switching these I/O ports from one state to an other should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are il­lustrated in Figure 18. Other transitions are poten­tially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.
ST72E121 ST72T121
INPUT
with interrupt
INPUT
no interrupt
OUTPUT
open-drain
OUTPUT push-pull
25/93
25
ST72E121 ST72T121
I/O PORTS (Cont’d) Figure 19
. I/O Block Diagram
COMMON ANALOG RAIL
ALTERNATE INPUT
LATCH
DDR LATCH
DATA BUS
LATCH
(SEE TABLE BELOW)
OR SEL
DDR SEL
DR SEL
ALTERNATE OUTPUT
DR
OR
ALTERNATE ENABLE
1
M U X
0
ALTERNATE
1 M U X
0
ENABLE
ALTERNATE ENABLE
PULL-UP CONDITION
ANALOG ENABLE
(ADC)
(S
EE NOTE BELOW)
PULL-UP
ANALOG SWITCH
V
DD
P-BUFFER
EE TABLE BELOW)
(S
V
DD
DIODE
(SEE TABLE BELOW)
GND
N-BUFFER
GND
PAD
CMOS
SCHMITT TRIGGER
EXTERNAL INTERRUPT
SOURCE (EIx)
POLARITY
SEL
FROM OTHER BITS
Table 9. Port Mode Configuration
Configuration Mode Pull-up P-buffer VDD Diode
Floating 0 0 1 Pull-up 1 0 1 Push-pull 0 1 1 True Open Drain not present not present not present Open Drain (logic level) 0 0 1
Legend: 0 - present, not activated 1 - present and activated
26/93
Notes:
– No OR Register on some ports (see register map). – ADC Switch on ports with analog alternate functions.
26
I/O PORTS (Cont’d) Table 10. Port Configuration
ST72E121 ST72T121
Port Pin name
PA3 floating* pull-up with interrupt open-drain push-pull
Port A
PA4:PA7 floating* true open drain, high sink capability Port B PB0:PB4 floating* pull-up with interrupt open-drain push-pull Port C PC0:PC7 floating* pull-up open-drain push-pull Port D PD0:PD5 floating* pull-up open-drain push-pull Port E PE0:PE1 floating* pull-up open-drain push-pull
PF0:PF2 floating* pull-up with interrupt open-drain push-pull
Port F
PF4, PF6, PF7 floating* pull-up open-drain push-pull
* Reset state (The bits corresponding to unavailable pins are forced to 1 by hardware, this affects the reset status value).
Warning: All bits of the DDR register which correspond to unconnected I/Os must be left at their reset value. They must not be modified by the user otherwise a spurious interrupt may be generated.
Input (DDR = 0) Output (DDR = 1)
OR = 0 OR = 1 OR = 0 OR =1
27/93
27
ST72E121 ST72T121
I/O PO R T S (Cont’d)
5.1.4 Register Description
5.1.4.1 Data registers
Port A Data Register (PADR) Port B Data Register (PBDR) Port C Data Register (PCDR) Port D Data Register (PDDR) Port E Data Register (PEDR) Port F Data Register (PFDR) Read/Write
Reset Value: 0000 0000 (00h)
5.1.4.3 Option registers
Port A Option Register (PAOR) Port B Option Register (PBOR) Port C Option Register (PBOR) Port D Option Register (PBOR) Port E Option Register (PBOR) Port F Option Register (PFOR) Read/Write
Reset Value: see Register Memory Map Table 3
70
D7 D6 D5 D4 D3 D2 D1 D0
Bit 7:0 = D7-D0
Data Register 8 bits.
The DR register has a specific behaviour accord­ing to the selected input/output configuration. Writ­ing the DR register is always taken in account even if the pin is configured as an input. Reading the DR register returns ei ther the DR register latch content (pin configured as output) or the digital val­ue applied to the I/O pin (pin configured as input).
70
O7 O6 O5 O4 O3 O2 O1 O0
Bit 7:0 = O7-O0
Option Register 8 bits.
The OR register allow to distinguish in input mode if the interrupt c apability or t he floating conf igura­tion is selected.
In output mode it select push-pull or open-drain capability.
Each bit is set and cleared by software. Input mode:
5.1.4.2 Data direction registers
Port A D a t a D irection Regi s ter (PAD DR) Port B D a t a D irection Regi s ter (PBD DR) Port C Data Direction Register (PCDDR)
0: floating input 1: input pull-up with interrupt
Output mode: 0: open-drain configuration
1: push-pull configuration
Port D Data Direction Register (PDDDR) Port E D a t a D irection Regi s ter (PED DR) Port F Data Direction Register (PFDDR) Read/Write
Reset Value: 0000 0000 (00h) (input mode)
70
DD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0
Bit 7:0 = DD7-DD0
Data Direction Register 8 bits.
The DDR register gives the input/output direction configuration of the pins. Each bits is set and cleared by software.
0: Input mode 1: Output mode
28/93
28
Loading...
+ 65 hidden pages