ST LSM330 User Manual

3D accelerometer and 3D gyroscope
LGA-24L (3x3.5x1 mm)
Features
Digital supply voltage IOs: 1.8 V
Power-down and sleep modes
2 Embedded programmable state machines
3 independent acceleration channels and 3
angular rate channels
±2 g/±4 g/±6 g/±8 g/±16 g selectable full scale
±250/±500/±2000 dps selectable full scale
SPI/I
Embedded Temperature Sensor
Embedded FIFOs
ECOPACK
Application
GPS navigation systems
Impact recognition and logging
Gaming and virtual reality input devices
Motion activated functions
Intelligent power saving for handheld devices
Vibration monitoring and compensation
Free-fall detection
6D orientation detection
Description
2
C serial interface
®
RoHS and “Green” compliant
LSM330
iNEMO inertial module:
Datasheet — target specification
The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics.
The LSM330 has an user-selectable full scale acceleration range of ±2 g/±4 g/±6 g/±8 g/±16 g and angular rate range of ±250/±500/±2000 d.The accelerometer and gyroscope sensors can be either activated or separately put in Power­down/ sleep mode for applications optimized for power saving.
The LSM330 is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number
LSM330 -40 to +85
LSM330TR -40 to +85
Temperature
range [°C]
Package Packing
LGA-24L
(3x3.5x1mm)
Tr a y
Tape
and reel
The LSM330 is a system-in-package featuring a 3D digital accelerometer with two embedded state machines that can be programmed to implement autonomous applications and a 3D digital gyroscope.
ST’s family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.
July 2012 Doc ID 023426 Rev 1 1/76
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.
www.st.com
76
Contents LSM330
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Zero-g and zero rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Linear acceleration sensor digital main blocks . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.5 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.6 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.7 Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.8 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Angular rate sensor digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.4 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2/76 Doc ID 023426 Rev 1
LSM330 Contents
4.3.5 Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.6 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.7 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.8 Level-sensitive / edge-sensitive data enable . . . . . . . . . . . . . . . . . . . . . 23
4.3.9 Level-sensitive trigger stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.10 Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1 WHO_AM_I_A (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.3 CTRL_REG5_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.4 CTRL_REG6_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.5 CTRL_REG7_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.6 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.7 OFF_X (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.8 OFF_Y (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.9 OFF_Z (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.10 CS_X (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.11 CS_Y (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.12 CS_Z (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 023426 Rev 1 3/76
Contents LSM330
8.13 LC_L (16h) and LC_H (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.14 STAT (18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.15 VFC_1 (1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.16 VFC_2 (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.17 VFC_3 (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.18 VFC_4 (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.19 THRS3 (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.20 OUT_X_L_A (28h) and OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . 45
8.21 OUT_Y_L_A (2Ah) and OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . 45
8.22 OUT_Z_L_A (2Ch) and OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . 45
8.23 FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.24 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.25 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.26 STx_1 (40h-4Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.27 TIM4_1 (50h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.28 TIM3_1 (51h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.29 TIM2_1 (52h - 53h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.30 TIM1_1 (54h - 55h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.31 THRS2_1 (56h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.32 THRS1_1(57h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.33 MASKB_1 (59h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.34 MASKA_1(5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.35 SETT1 (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.36 PR1 (5Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.37 TC1 (5Dh-5E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.38 OUTS1 (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.39 PEAK1 (19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.40 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.41 STx_2 (60h-6Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.42 TIM4_2 (70h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.43 TIM3_2 (71h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.44 TIM2_2 (72h - 73h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.45 TIM1_2 (74h - 75h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4/76 Doc ID 023426 Rev 1
LSM330 Contents
8.46 THRS2_2 (76h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.47 THRS1_2 (77h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.48 MASKB_2 (79h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.49 MASKA_2 (7Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.50 SETT2 (7Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.51 PR2 (7Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.52 TC2 (7Dh-7E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.53 OUTS2 (7Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.54 PEAK2 (1Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.55 DES2 (78h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.56 WHO_AM_I_G (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.57 CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.58 CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.59 CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.60 CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.61 CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.62 REFERENCE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.63 OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.64 STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.65 OUT_X_L_G (28h), OUT_X_H_G (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.66 OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.67 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.68 FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.69 FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.70 INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.71 INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.72 INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.73 INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.74 INT1_THS_YH _G (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.75 INT1_THS_YL_G (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.76 INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.77 INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.78 INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Doc ID 023426 Rev 1 5/76
Contents LSM330
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6/76 Doc ID 023426 Rev 1
LSM330 List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 9. LSM330 accelerometer state machines: sequence of state to execute an algorithm. . . . . 21
Table 10. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 11. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 12. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 13. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 14. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 33
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 33
Table 16. Linear Acceleration SAD+Read/Write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 17. Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 18. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 19. WHO_AM_I_A register default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 20. CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 21. CTRL_REG4_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 22. CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 23. CTRL_REG5_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 24. CTRL_REG5_A Output Data Rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 25. CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 26. CTRL_REG6_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 27. CTRL_REG7_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 28. CTRL_REG7_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 29. STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 30. STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 31. OFF_X default valu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 32. OFF_Y default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 33. OFF_Z default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 34. CS_X default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 35. CS_Y default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 36. CS_Z default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 37. LC_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 38. LC_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 39. STAT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 40. STAT register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 41. VFC_1 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 42. VFC_2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 43. VFC_3 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 44. VFC_4 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 45. THRS3 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 46. FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 47. FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 48. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Doc ID 023426 Rev 1 7/76
List of tables LSM330
Table 49. FIFO_SRC_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 50. IFO_SRC_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 51. CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 52. CTRL_REG2_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 53. STx_1 registers default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 54. TIM4_1b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 55. TIM4_1 default valu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 56. TIM3_1 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 57. TIM2_1_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 58. TIM2_1_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 59. TIM1_1_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 60. TIM1_1_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 61. THRS2_1 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 62. THRS1_1 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 63. MASKB_1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 64. MASKB_1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 65. MASKA_1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 66. MASKA_1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 67. SETT1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 68. SETT1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 69. PR1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 70. PR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 71. TC1_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 72. TC1_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 73. OUTS1 register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 74. OUTS1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 75. PEAK1 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 76. CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 77. CTRL_REG3_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 78. STx_2 registers default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 79. TIM4_2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 80. TIM3_2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 81. TIM2_2_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 82. TIM2_2_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 83. TIM1_2_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 84. TIM1_2_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 85. THRS2_2 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 86. THRS1_2 default value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 87. MASKB_2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 88. MASKB_2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 89. MASKA_2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 90. MASKA_2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 91. SETT2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 92. SETT2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 93. PR2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 94. PR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 95. TC2_L default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 96. TC2_H default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 97. OUTS2 register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 98. OUTS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 99. PEAK2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 100. DES2 default value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8/76 Doc ID 023426 Rev 1
LSM330 List of tables
Table 101. WHO_AM_I_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 102. CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 103. CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 104. DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 105. Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 106. CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 107. CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 108. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 109. High-pass filter cut-off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 110. CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 111. CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 112. CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 113. CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 114. CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 115. CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 116. REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 117. REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 118. OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 119. OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 120. STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 121. STATUS_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 122. FIFO_CTRL_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 123. FIFO_CTRL_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 124. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 125. FIFO_SRC_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 126. FIFO_SRC_REG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 127. INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 128. INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 129. INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 130. INT1_SRC_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 131. INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 132. INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 133. INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 134. INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 135. INT1_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 136. INT1_THS_YH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 137. INT1_THS_YL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 138. INT1_THS_YL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 139. INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 140. INT1_THS_ZH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 141. INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 142. INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 143. INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 144. INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 145. LGA (3.5x3x1 mm) 24 lead mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 146. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Doc ID 023426 Rev 1 9/76
List of figures LSM330
List of figures
Figure 1. LSM330 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Angular rate sensor digital block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8. Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9. Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10. Trigger stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 11. Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0) . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 13. LSM330 electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 14. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 15. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 16. Multiple-byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 17. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 18. Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 19. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 20. INT1_Sel and Out_Sel configuration block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 21. Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 22. Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 23. LGA 3.5x3x1 24 leads drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10/76 Doc ID 023426 Rev 1
LSM330 Block diagram and pin description
Y+
Z+
Y-
Z-
X+
X-
MUX
I (a)
+
-
CHARGE
AMPLIFIER
Sensing Block Sensing Interface
I2C/SPI
I (
Ω)
Drive+
Drive-
Feedback+
Feedback-
DEMODULATOR
VOLTAGE
AUTOMATI C
GAIN
CONTROL
LOW-PASS
FILTER
GAIN
AMPLIFIER
ANALOG CONDITION ING
CONTROL LOGIC
&
INTERRUPT GEN.
CLOCK
TRIMMING
CIRCUITS
REFERENCE
GENERATOR
PHASE
+
-
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
X+
X-
MUX
CS_G
SDA/SDI_A/G
SDO_G
INT1_A
INT2_A
INT1_G
DEN_G
DRDY_G/INT2_G
CS_A
SDO_A
SCL_A/G
ADC1
DIGITAL FILTER
LOW-PASS
FILTER
ADC2
STATE
MACHINES
AND
CONTROL
LOGIC
AM14723V1

1 Block diagram and pin description

1.1 Block diagram

Figure 1. LSM330 block diagram

Doc ID 023426 Rev 1 11/76
Block diagram and pin description LSM330
1
X
6
13
18
VDD_IO
VDD
VDD
VDD
CAP
GND
GND
RES
SDO_A
CS_G
CS_A
DRDY_G/INT2_G
INT1_G
INT1_A
INT2_A
DEN_G
RES
RES
RES
RES
SCL_A/G
VDD_IO
SDA/SDI_A/G
SDO_G
(BOTTOM VIEW)
1
X
Z
X
Y
Y
1
X
Z
DIRECTION OF DETECTABLE ACCELERATIONS
DIRECTION OF DETECTABLE ANGULAR RATE
Z
Y
X
AM14724V1

1.2 Pin description

Figure 2. Pin connection

Table 2. Pin description

Pin# Name Function
(1)
1 Vdd_IO
2SCL_A/GI
3 Vdd_IO
4SDA/SDI_A/G
5SDO_G
6SDO_A
7CS_G
8CS_A
12/76 Doc ID 023426 Rev 1
9
DRDY_G/
INT2_G
Power supply for IO pins
2
C serial clock (SCL)/SPI serial port clock (SPC)
(1)
Power supply for IO pins
I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
Gyroscope: SPI serial data output (SDO)
2
I
C least significant bit of the device address (SA0)
Accelerometer: SPI serial data output (SDO)
2
I
C least significant bit of the device address (SA0)
Gyroscope: SPI enable
2
C/SPI mode selection (1: SPI idle mode / I2C communication
I enabled; 0: SPI communication mode / I
Accelerometer: SPI enable
2
I
C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I
Gyroscope Data Ready/FIFO Interrupt (Watermark/Overrun/Empty)
2
C disabled)
2
C disabled)
LSM330 Block diagram and pin description
Table 2. Pin description (continued)
Pin# Name Function
10 INT1_G Gyroscope interrupt signal
11 INT1_A Accelerometer interrupt1 signal
12 INT2_A Accelerometer interrupt2 signal
13 DEN_G Gyroscope Data Enable
14 Res Reserved. Connect to GND
15 Res Reserved. Connect to GND
16 Res Reserved. Connect to GND
17 Res Reserved. Connect to GND
18 Res Reserved. Connect to GND
19 GND 0 V supply
20 GND 0 V supply
21 CAP Connect to GND with ceramic capacitor
22 Vdd
23 Vdd
24 Vdd
(3)
(3)
(3)
Power supply
Power supply
Power supply
(2)
1. 100 nF filter capacitor recommended.
2. 10 nF (+/- 10%), 25V. 1nF minimum value has to be guaranteed under 11V bias condition1.
3. 100 nF plus 10 µF capacitors recommended.
Doc ID 023426 Rev 1 13/76
Module specifications LSM330

2 Module specifications

2.1 Mechanical characteristics

@ Vdd = 3V, T = 25 °C unless otherwise noted

Table 3. Mechanical characteristics

Symbol Parameter Test conditions Min. Typ.
FS bit set to 000 ±2.0
FS bit set to 001 ±4.0
LA_FS
G_FS
LA_So Linear acceleration sensitivity
G_So Angular rate sensitivity
LA_TyOff
G_TyOff
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high-pass filter.
Linear acceleration measurement
(2)
range
Angular rate measurement range
Linear acceleration typical zero-g level offset accuracy
Angular rate typical zero-rate
(4)
level
(3)
(3)
FS bit set to 010 ±6.0
FS bit set to 011 ±8.0
FS bit set to 100 ±16.0
FS bit set to 00 ±250
FS bit set to 10 ±2000
FS bit set to 000 0.061
FS bit set to 001 0.122
FS bit set to 010 0.183
FS bit set to 011 0.244
FS bit set to 100 0.732
FS = ±250 dps 8.75
FS = ±500 dps 17.50
FS = ±2000 dps 70
FS bit set to 000 ±60 mg
FS = 250 dps ±10
FS = 2000 dps ±25
(a)
(1)
Max. Unit
g
dpsFS bit set to 01 ±500
mg/digit
mdps/
digit
dpsFS = 500 dps ±15
a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.4 V to 3.6 V.
14/76 Doc ID 023426 Rev 1
LSM330 Module specifications

2.2 Electrical characteristics

@ Vdd = 3 V, T = 25 °C unless otherwise noted

Table 4. Electrical characteristics

Symbol Parameter Test conditions Min. Typ.
Vdd Supply voltage 2.4 3.6 V
Vdd_IO Power supply for I/O 1.71 Vdd+0.1 V
(1)
Max. Unit
LA_Idd
LA_IddPdn
G_Idd
G_IddLowP
G_IddPdn
VIH Digital high level input voltage 0.8*Vdd_IO V
VIL Digital low level input voltage 0.2*Vdd_IO V
VOH High level output voltage 0.9*Vdd_IO V
VOL Low level output voltage 0.1*Vdd_IO V
Top Operating temperature range -40 +85
1. Typical specifications are not guaranteed.
2. Sleep mode introduces a faster turn-on time compared to Power-down mode.
Accelerometer current consumption in Normal mode
Accelerometer current consumption in Power-down mode
Gyroscope current consumption in Normal mode
Gyroscope supply current in Sleep mode
Gyroscope current consumption in Power-down mode
(2)
1.6 kHz ODR 250
3.125 Hz ODR 10
A
6.1 mA
2mA
A
µA
°C

2.3 Temperature sensor characteristics

@ Vdd = 3V, T = 25 °C unless otherwise noted

Table 5. Temperature sensor characteristics

Symbol Parameter Test condition Min. Typ.
TSDr
TODR Temperature refresh rate 1 Hz
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
Temperature sensor output change vs. temperature
-
b. The product is factory calibrated at 3.0 V.
Doc ID 023426 Rev 1 15/76
(b)
(1)
-1 °C/digit
Max. Unit
Module specifications LSM330
SPC
CS
SD I
SD O
t
su (CS)
t
v(SO)
t
h(SO )
t
h(SI)
t
su (SI)
t
h(CS)
t
dis(SO)
t
c(SPC )
MSB IN
MSB OUT
LSB OUT
LSB IN
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and TOP.
Table 6. SPI slave timing values
(2)
Symbol
Parameter
(1)
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 6
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 9
tdis(SO) SDO output disable time 50
Val ue
Unit
Min Max
ns
1. Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A / SDO_G.
2. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results. Not tested in production.
(c)
Figure 3. SPI slave timing diagram
2. Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A / SDO_G.
c. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
16/76 Doc ID 023426 Rev 1
LSM330 Module specifications
6'$
6&/
W
I6'$
W
VX63
W
Z6&//
W
VX6'$
W
U6'$
W
VX65
W
K67
W
Z6&/+
W
K6'$
W
U6&/
W
I6&/
W
Z6365
67$57
5(3($7('
67$57
6723
67$57
!-V

2.4.2 I2C - inter IC control interface

Subject to general operating conditions for Vdd and TOP.
Table 7. I2C slave timing values
Symbol Parameter
(1)
I2C standard mode
(1)
I2C fast mode
Min. Max. Min. Max.
(1)
Unit
f
(SCL)
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA) tr(SCL)
t
f(SDA) tf(SCL)
t
h(ST)
t
su(SR)
t
su(SP)
t
w(SP:SR)
1. SCL (SCL_A/G pin), SDA (SDA_A/G pin).
2. Cb = total capacitance of one bus line, in pF
Figure 4. I
SCL clock frequency 0 100 0 400 KHz
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100 ns
SDA data hold time 0.01 3.45 0 0.9 µs
SDA and SCL rise time 1000
SDA and SCL fall time 300
START condition hold time 4 0.6
Repeated START condition setup time
STOP condition setup time 4 0.6
Bus free time between STOP and START condition
2
C slave timing diagram
(d)
20 + 0.1C
20 + 0.1C
4.7 0.6
4.7 1.3
b
b
(2)
(2)
µs
300
ns
300
µs
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Doc ID 023426 Rev 1 17/76
Module specifications LSM330
This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to the part.

2.5 Absolute maximum ratings

Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
(1)
Vin
Input voltage on any control pin (SCL_A/G, SDA_A/G, SDO_A, SDO_G, CS_A, CS_G, DEN_G)
-0.3 to Vdd_IO +0.3 V
3000 g for 0.5 ms
A
POW
Acceleration (any axis, powered, Vdd = 3 V)
10000 g for 0.1 ms
3000 g for 0.5 ms
A
T
UNP
T
STG
Acceleration (any axis, unpowered)
10000 g for 0.1 ms
Operating temperature range -40 to +85 °C
OP
Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection 2 (HBM) kV
1. Supply voltage on any pin should never exceed 4.8 V.
18/76 Doc ID 023426 Rev 1
LSM330 Terminology

3 Terminology

3.1 Sensitivity

Linear acceleration sensitivity can be determined e.g. by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors.
Angular Rate Sensitivity describes the angular rate gain of the sensor and can be determined by applying a defined angular velocity to the device. This value changes very little overtemperature and also very little overtime.

3.2 Zero-g and zero rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X axis and Y axes, whereas the Z axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Linear acceleration zero-g level change vs. temperature” in Ta bl e 3 . The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
Angular rate zero-rate level describes the actual output value if there is no angular rate present. zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little overtemperature and overtime.
Doc ID 023426 Rev 1 19/76
Functionality LSM330

4 Functionality

The LSM330 is a system-in-package featuring a 3D digital accelerometer with two embedded state machines and a 3D digital gyroscope, together with two FIFO memory block available to manage linear acceleration and angular rate data.
The device includes specific sensing elements and two IC interfaces capable to measuring both the acceleration and angular rate applied to the module and to provide a signal to external applications through an SPI/I
The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using a CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics.

4.1 Power modes

The linear acceleration sensor and the angular rate sensor can be either activated or separately set in Power-down/ sleep mode for applications optimized for power saving.
The acceleration sensor operating modes can be selected between normal or power-down trough the CTRL_REG5_A (20h); the angular rate sensor operating mode can be selected among normal power-down or sleep mode, through CTRL_REG1_G (20h).
2
C serial interface.

4.2 Linear acceleration sensor digital main blocks

4.2.1 State machine

The LSM330 embeds two state machines able to run a user defined program.
The program is composed by a set of instructions that define the transition to successive states. Conditional branches are possible.
From each state (n) it is possible to have transition to next state (n+1) or to reset state. Transition to Reset Point happens when “RESET condition” is true; Transition to next step happens when “NEXT condition” is true.
Interrupt is triggered when Output/Stop/Continue state is reached.
Each State machine allows to implement in a flexible way gesture recognition, Free Fall, Wake-up, 4D/6D orientation, pulse counter and step recognition, click/double click, shake/double shake, face up/face down, turn/double turn:
Code and parameters are loaded by host into dedicated memory areas for the
state program
State program with timing based on ODR or decimated time
Possibiliy of conditional branches
20/76 Doc ID 023426 Rev 1
LSM330 Functionality
State 1
State 2
next
State 3
next
State n
next
reset
reset
reset
reset
START
OUTPUT/STOP/CONTINUE
INT set
AM14725v1
Table 9. LSM330 accelerometer state machines: sequence of state to execute an
algorithm

4.2.2 FIFO

LSM330 embeds 32 slots of data FIFO for each of the three acceleration output
channels: X, Y and Z. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. In order to use FIFO it is necessary to enable FIFO_EN bit in CTRL_REG7_A (25h) register.
FIFO buffer can work accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Stream-to-FIFO mode and Bypass-to-Stream mode. Each mode is selected by FMODE [2:0] bits in the FIFO_CTRL_REG_A (2Eh) register. Programmable watermark level, FIFO empty or FIFO overrun events can be enabled to generate dedicated interrupts on the INT1_A/INT2_A pin (configured through INT2_EN and INT1_EN bits in the
CTRL_REG4_A (23h) register).
When FIFO is empty, EMPTY bit in FIFO_SRC_REG_A (2Fh) is equal to '1' and no samples are available.
If the application requires a lower number of samples a programmable watermark level can be set. In FIFO_SRC_REG_A (2Fh) WTM bit is high if a new data arrives and FSS [4:0] bit in FIFO_SRC_REG_A (2Fh) is greater than or equal to WTMP [4:0] bit in
FIFO_CTRL_REG_A (2Eh) register. In FIFO_SRC_REG_A (2Fh) WTM bit goes to '0' if
reading X, Y, Z data slot from FIFO and FSS [4:0] bit in FIFO_SRC_REG_A (2Fh) is minor than or equal to WTMP [4:0] bit in FIFO_CTRL_REG_A (2Eh) register.
When FIFO is completely filled, OVRN_FIFO bit in FIFO_SRC_REG_A (2Fh) is equal to '1' and FIFO slot is overwritten.
Doc ID 023426 Rev 1 21/76
Functionality LSM330

4.2.3 Bypass mode

In Bypass mode, the FIFO is not operational and it remains empty. For each channel only the first address is used. The remaining FIFO slots are empty.
Bypass mode must be used in order to reset the FIFO buffer when a different mode is operating (i.e. FIFO mode).

4.2.4 FIFO mode

In FIFO mode, the buffer continues filling data from the X, Y and Z accelerometer channels until it is full (32 samples set stored). When the FIFO is full it stops collecting data from the input channels and the FIFO content remains unchanged.
An overrun interrupt can be enabled, P1_OVERRUN = '1' in CTRL_REG7_A (25h) register, in order to be raised when the FIFO stops collecting data. When overrun interrupt occurs, the first data has been overwritten and the FIFO stops collecting data from the input channels.
At the end of the reading procedure it is necessary to transit from Bypass mode to reset FIFO content. . After this reset command it is possible to restart FIFO mode writing FMODE [2:0] the value '001' in FIFO_CTRL_REG_A (2Eh) register.
FIFO buffer can memorize 32 X, Y and Z data but the depth of the FIFO can be reduced by a programmable watermark. In order to enable FIFO watermark, WTM_EN bit in
CTRL_REG7_A (25h) is high and the FIFO depth is set in WTMP [4:0] bits in FIFO_CTRL_REG_A (2Eh) register. The watermark interrupt can be enable in INT1_A pad
if P1_WTM bit in CTRL_REG7_A (25h) register is enable.

4.2.5 Stream mode

In Stream mode FIFO continues filling data from X, Y, and Z accelerometer channels, when the buffer is full (32 samples set stored) the FIFO buffer index restarts from the beginning and older data is replaced by the current. The oldest values continue to be overwritten until a read operation makes free FIFO slots available.
An overrun interrupt can be enabled, P1_OVERRUN = '1' in CTRL_REG7_A (25h) register, in order to read the whole FIFO content at once. If in the application it is mandatory not to lose data and it is not possible to read at least one sample for each axis within one ODR period, a watermark interrupt can be enabled in order to read partially the FIFO and let free memory slots for data incoming.
Setting the WTMP [4:0] bit in FIFO_CTRL_REG_A (2Eh) register to N value, the number of X, Y and Z data samples that should be read at watermark interrupt rising is up to (N+1).
In the latter case reading all FIFO content before an overrun interrupt has occurred, the first data read is equal to the last already read in previous burst, so the number of new data available in FIFO depends on previous reading (see FIFO_SRC_REG_A (2Fh)) .
At the end of the reading procedure it is necessary to transit from Bypass mode to reset FIFO content.

4.2.6 Stream-to-FIFO mode

In Stream-to-FIFO mode FIFO behavior changes according to interrupt generated by the configuration of the two state machine by INT_SM1and INT_SM2 bits in STAT (18h) register.
22/76 Doc ID 023426 Rev 1
LSM330 Functionality
ADC
LPF1
HPF
0
1
HPen
LPF2
10 11
01
00
Out_Sel
DataReg
00
11
10
01
Interrupt
generator
INT_Sel
I2C SPI
INT1
SCR REG
CONF REG
FIFO
32x16x3
AM07230v1
When INT_SM1, INT_SM2 bits in STAT (18h) register are equal to '1' FIFO operates in FIFO mode, when INT_SM1, INT_SM2 bit in STAT (18h) register are equal to '0' FIFO operates in Stream mode.

4.2.7 Bypass-to-stream mode

In Bypass-to-stream mode, the FIFO starts operating in Bypass mode and once a trigger event occurs (STAT (18h) the FIFO starts operating in Stream mode.

4.2.8 Retrieve data from FIFO

FIFO data is read through OUT_X_L_A (28h) and OUT_X_H_A (29h), OUT_Y_L_A (2Ah)
and OUT_Y_H_A (2Bh) and OUT_Z_L_A (2Ch) and OUT_Z_H_A (2Dh). When the FIFO is
in Stream, Trigger or FIFO mode, a read operation to the OUT_X_L_A (28h) and
OUT_X_H_A (29h), OUT_Y_L_A (2Ah) and OUT_Y_H_A (2Bh) or OUT_Z_L_A (2Ch) and OUT_Z_H_A (2Dh) registers provides the data stored in the FIFO. Each time data is read
from the FIFO, the oldest X, Y and Z data are placed in the OUT_X_L_A (28h) and
OUT_X_H_A (29h), OUT_Y_L_A (2Ah) and OUT_Y_H_A (2Bh) and OUT_Z_L_A (2Ch) and OUT_Z_H_A (2Dh) registers and both single read and read_burst operations can be
used.

4.3 Angular rate sensor digital main blocks

Figure 5. Angular rate sensor digital block diagram

Doc ID 023426 Rev 1 23/76
Functionality LSM330
l
x
0
y
z
0
y
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
empty
AM07231v1

4.3.1 FIFO

LSM330 embeds a 32 slots of 16 bit data FIFO buffer for each of the three output channels, yaw, pitch and roll. This allows a consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.
In order to use FIFO it is necessary to enable FIFO_EN bit in CTRL_REG5_G (24h) register. FIFO buffer can work accordingly to five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-to-Stream mode and Stream-to-FIFO mode. Each mode is selected by the FM[2:0] bits into the FIFO_CTRL_REG_G (2Eh) register.
Programmable watermark level, FIFO empty or FIFO full events can be enabled to generate dedicated interrupts on DRDY_G/INT2_G pin (configuration through CTRL_REG3_G (22h)) and event detection information are available into FIFO_SRC_REG_G (2Fh). Watermark level can be configurated to WTM[4:0] bits into FIFO_CTRL_REG_G (2Eh).

4.3.2 Bypass mode

In bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in the next figure, for each channel only the first address is used. The remaining FIFO slots are empty. When a new data is available the old one is overwritten.
Figure 6. Bypass mode

4.3.3 FIFO mode

In FIFO mode, data from yaw, pitch and roll channels are stored into the FIFO. A watermark interrupt can be enabled (I2_WTM bit into CTRL_REG3_G (22h)) in order to be raised when the FIFO is filled to the level specified into the WTM[4:0] bits of FIFO_CTRL_REG_G (2Eh) register. The FIFO continues filling until it is full (32 slots of 16 data for Yaw, Pitch and Roll). When full, the FIFO stops collecting data from the input channels. To restart collecting data it is needed to write FIFO_CTRL_REG_G (2Eh) back to Bypass mode. FIFO mode is represented in the following figure.
24/76 Doc ID 023426 Rev 1
LSM330 Functionality
x
0
y
z
0
y
0
x
1
y
1
z
1
x
2
y
2
z
2
x
31
y
31
z
31
xi,yi,z
i
AM07232v1
Figure 7. FIFO mode

4.3.4 Stream mode

In the stream mode, data from yaw, pitch and roll measurement are stored into the FIFO. A watermark interrupt can be enabled and set as in the FIFO mode. FIFO continues filling until it is full (32 slots of 16 data for Yaw, Pitch and Roll). When full, the FIFO discards the older data as the new arrive. Programmable watermark level events can be enabled to generate dedicated interrupts on DRDY_G/INT2_G pin (configuration through CTRL_REG3_G
(22h)). Stream mode is represented in the following figure.
Doc ID 023426 Rev 1 25/76
Functionality LSM330
Figure 8. Stream mode
xi,yi,z
i
x
x

4.3.5 Bypass-to-stream mode

x
0
x
1
x
2
30
31
y
0
y
1
y
2
y
30
y
31
z
0
z
1
z
2
z
30
z
31
AM07234v1
In Bypass-to-stream mode, the FIFO starts operating in Bypass mode and once a trigger event occurs (related to INT1_CFG_G (30h) register events) the FIFO starts operating in Stream mode. Refer the following figure.
Figure 9. Bypass-to-stream mode
xi,yi,z
Empty
i
x
x
x
x
y
y
0
y
1
y
2
y
31
z
i
0
1
2
31
0
z
1
z
2
z
31
Bypass mode
Trigger event
xi,yi,z
i
x
x
x
x
x
y
0
1
2
30
31
0
y
1
y
2
y
30
y
31
Stream mode
z
0
z
1
z
2
z
30
z
31
AM07235v1
26/76 Doc ID 023426 Rev 1
LSM330 Functionality

4.3.6 Stream-to-FIFO mode

In Stream-to-FIFO mode, data from yaw, pitch and roll measurement are stored into the FIFO. A watermark interrupt can be enabled on pin DRDY_G/INT2_G setting I2_WTM bit into CTRL_REG3_G (22h) in order to be raised when the FIFO is filled to the level specified into the WTM [4:0] bits of FIFO_CTRL_REG_G (2Eh). The FIFO continues filling until it's full (32 slots of 16 data for Yaw, Pitch and Roll). When full, the FIFO discards the older data as the new arrive. Once trigger event occurs (related to INT1_CFG_G (30h) register events), the FIFO starts operating in FIFO mode. Refer to the following figure.
Figure 10. Trigger stream mode
xi,yi,z
i
x
0
x
1
x
2
x
30
x
31
y
0
y
1
y
2
y
30
y
31
Stream Mode

4.3.7 Retrieve data from FIFO

FIFO data is read through OUT_X_L_G (28h), OUT_X_H_G (29h) and OUT_Y_L_G (2Ah),
OUT_Y_H_G (2Bh) and OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh). When the FIFO is in
stream, stream-to-FIFO or FIFO mode, a read operation to the OUT_X_L_G (28h),
OUT_X_H_G (29h), OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) and OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) regiters provides the data stored into the FIFO.
xi,yi,z
z
0
z
1
z
2
z
30
z
31
i
x
x
x
x
y
y
0
y
1
y
2
y
31
z
i
0
1
2
31
0
z
1
z
2
z
31
FIFO Mode
Trigger event
AM07236v1
Each time data is read from the FIFO, the oldest Pitch, Roll and Yaw data are placed into the
OUT_X_L_G (28h), OUT_X_H_G (29h), OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) and OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) registers and both single read and read_burst (X, Y
and Z with autoincremental address) operations can be used. When data included into OUT_Z_H_G (2Dh) is read, the system restarts to read information from OUT_X_L_G (28h).

4.3.8 Level-sensitive / edge-sensitive data enable

The LSM330 allows external trigger level recognition through the enabling of the EXTRen and LVLen bits in the CTRL_REG2_G register. Two different modes can be used: Level­sensitive or Edge-sensitive trigger.
Doc ID 023426 Rev 1 27/76
Functionality LSM330
xi(15-1)
xi,yi,z
i
D E N
y
i
(15-0)
Z
i
(15-0)
x
i-N+1
D E N
(15-1)
y
i-N+1
(15-0)
z
i-N+1
(15-0)
xi(15-0)
xi,yi,z
i
D E N
y
i
(15-1)
Z
i
(15-0)
xi(15-0)
xi,yi,z
i
D E N
y
i
(15-0)
Z
i
(15-1)
x
i-N+1
D E N
(15-0)
y
i-N+1
(15-0)
z
i-N+1
(15-1)
x
i-N+1
D E N
y
i-N+1
Z
i-N+1
(15-0)
(15-1)
(15-0)
Level-sensitive Trigger enabled on X-Axis
Level-sensitive Trigger enabled on Y-axis
Level-sensitive Trigger enabled on Z-axis
Xen=1,Yen=Zen=0
Yen=1, Xen=Zen=0
Zen=1,
Xen=Yen=0
AM10162V1
Figure 11. Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0)

4.3.9 Level-sensitive trigger stamping

4.3.10 Edge-sensitive trigger

Once enabled, DEN level replaces the LSb of the X, Y or Z axes, configurable through the Xen, Yen, Zen bits in the CTRL_REG1_G register. Data is stored in the FIFO with the internally-selected ODR.
Once enabled by setting EXTRen = 1, FIFO is filled with the pitch, roll and yaw data on the rising edge of the DEN input signal. When selected ODR is 800 Hz, the maximum DEN sample frequency is f
DEN
= 1/T
DEN
= 400 Hz.
28/76 Doc ID 023426 Rev 1
LSM330 Functionality
Figure 12. Edge-sensitive trigger

4.4 Factory calibration

The IC interface is factory calibrated for sensitivity and zero level. The trimming values are stored in the device in non volatile memory. Any time the device is turned on, the trimming parameters are downloaded to the registers to be used during normal operation. This allows use of the device without further calibration.
Doc ID 023426 Rev 1 29/76
Application hints LSM330
RES
GND
GND
CAP
VDD
VDD
VDD
VDD_IO
RES
RES
RES
RES
(TOP VIEW)
1
316
18
DEN_G
INT2_A
INT1_A
INT_G
DRDY_G/INT2_G
CS_A
CS_G
SDO_A
SCL_A/G
VDD_IO
SDA/SDI_A/G
SDO_G
10nF(25V)
*C1
100 nF
GND
GND
10 µF
C3 C4
Vdd
Vdd_IO
GND
100 nF
C2
GND
GND
* C1 must guarantee 1 nF value under 11 V bias condition
Vdd_IO
I2C configuration
SCL
SDA
Rpu= 10kOhmRpu
Pull-up to be added
AM14726V1

5 Application hints

Figure 13. LSM330 electrical connection

5.1 External capacitors

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C2, C3=100 nF ceramic, C4=10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice).
All voltage and ground supplies must be present at the same time to achieve proper behavior of the IC (refer to Figure 13).
30/76 Doc ID 023426 Rev 1
LSM330 Application hints
The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I
The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I

5.2 Soldering information

The LGA package is compliant with ECOPACK®, RoHS and “Green” standards. It is qualified for soldering heat resistance according to JEDEC J-STD-020D.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems
2
C interface.
2
C interface.
.
Doc ID 023426 Rev 1 31/76
Digital interfaces LSM330

6 Digital interfaces

The registers embedded in the LSM330 may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.
To select/exploit the I

Table 10. Serial interface pin description

Pin name Pin description
2
C interface, the CS line must be tied high (i.e. connected to Vdd_IO).
CS_A
CS_G
SCL_A/G
SDA_A/G
SDO_A SDO_G
Linear acceleration SPI enable Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
Angular rate SPI enable Angular rate I
I2C serial clock (SCL) SPI serial port clock (SPC)
2
I
C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
2
I
C least significant bit of the device address (SA0) SPI serial data output (SDO)

6.1 I2C serial interface

The LSM330 I2C is a bus slave. The I2C is employed to write the data to the registers, whose content can also be read back.
The relevant I

Table 11. Serial interface pin description

2
C terminology is provided in the table below.
Term Description
2
C/SPI mode selection (1: I2C mode; 0: SPI enabled)
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master
Slave The device addressed by the master
The device which initiates a transfer, generates clock signals and terminates a transfer
There are two signals associated with the I2C bus: the Serial Clock Line (SCL) and the Serial Data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface.
32/76 Doc ID 023426 Rev 1
LSM330 Digital interfaces

6.1.1 I2C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits, and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.
2
The I
C embedded in the LSM330 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST), a slave address is sent. Once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSb enables address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) will be automatically increased to allow multiple data read/write.
Table 12. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 13. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 14. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Data is transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes sent per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL, LOW to force the transmitter into a wait state.
Doc ID 023426 Rev 1 33/76
Digital interfaces LSM330
Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub­address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read.
In the communication format presented, MAK is Master Acknowledge and NMAK is No Master Acknowledge.
Default address:
The SDO/SA0 pins (SDO_A / SDO_G) can be used to modify the least significant bits of the device address.The linear acceleration sensor slave address is 00111xxb whereas the xx bits are modified by the SDO_A pin: If SDO/A pin is connected to voltage supply, the address is 0011101b otherwise if SDO/A pin is connected to ground, the address is 0011110b.This solution allows to connect and address two different accelerometers to the same I2C line.
The angular rate sensor slave address is 110101xb, whereas the x bit is modified by the SDO/G bit: If the SDO_G pin is connected to voltage supply, LSb is ‘1’ (address 1101011b), otherwise, if the SDO_G pin is connected to ground, the LSb value is ‘0’ (address 1101010b).
The slave addresses is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. Ta b le and Ta b le 1 7 explain how the SAD+Read/Write bit pattern arecomposed, listing all the possible configurations.
Linear acceleration sensor: the default (factory) 7-bit slave address is 00111xxb.
Table 16. Linear acceleration SAD+Read/Write patterns
Command SAD[6:2] SAD[1] = SDO_A SAD[0] = SDO_A R/W SAD+R/W
Read 00111 1 0 1
Write 00111 1 0 0
Read 00111 0 1 1
Write 00111 0 1 0
00111101
(3Dh)
00111100
(3Ch)
00111011
(3Bh)
00111010
(3Ah)
34/76 Doc ID 023426 Rev 1
LSM330 Digital interfaces
CS
SPC
SDI
SDO
RW
AD5 AD4 AD3 AD2 AD1 AD0
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
MS
AM10129V1
Angular rate sensor: the default (factory) 7-bit slave address is 110101xb.
Table 17. Angular rate SAD+Read/Write patterns
Command SAD[6:1] SAD[0] = SDO_G R/W SAD+R/W
Read 110101 0 1 11010101 (D5h)
Write 110101 0 0 11010100 (D4h)
Read 110101 1 1 11010111 (D7h)
Write 110101 1 0 11010110 (D6h)

6.2 SPI bus interface

The LSM330 SPI is a bus slave. The SPI allows writing and reading the registers of the device.
The serial interface interacts with the external world through 4 wires: CS(CS_A,CS_G),
SPC, SDI and SDO (SDO_A,SDO_G); (SPC, SDI are common).

Figure 14. Read and write protocol

CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the
transmission and returns high at the end. SPC is the serial port clock and is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. These lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple-byte read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0: RW
bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS
bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
Doc ID 023426 Rev 1 35/76
Digital interfaces LSM330
CS
SPC
SDI
SDO
RW
DO7 DO6 DO5 DO4 DO3DO2 DO1 DO0
AD5 AD4 AD3 AD2 AD1 AD0
MS
AM10130V1
bit 8-15: data DI(7:0) (Write mode). This is the data that will be written to the device (MSb first).
bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods will be added. When the MS
bit is ‘0’, the address used to read/write data remains the same for every block. When
the MS
bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.

6.2.1 SPI read

Figure 15. SPI read protocol
Note: Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A /
SDO_G.
The SPI read command is performed with 16 clock pulses. A multiple-byte read command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple-byte reading.
36/76 Doc ID 023426 Rev 1
LSM330 Digital interfaces
C S
SPC
SDI
SDO
RW
DO7DO6DO5DO4DO3 DO 2 DO1 DO 0
AD5 AD4AD3 AD2 AD1 AD0
DO15 DO 14 DO 13 DO12 DO 11 DO 10 D O9 D O8
M S
AM10131V1
CS
SPC
SDI
RW
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
AD5 AD 4 AD 3 AD2 AD1 AD0MS
AM10132V1
Figure 16. Multiple-byte SPI read protocol (2-byte example)

6.2.2 SPI write

Figure 17. SPI write protocol
Note: Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A /
SDO_G.
The SPI write command is performed with 16 clock pulses. A multiple-byte write command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (Write mode). This is the data that will be written to the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple-byte writing.
Doc ID 023426 Rev 1 37/76
Digital interfaces LSM330
CS
SPC
SDI
RW
AD5 AD4 AD3 AD2 AD1 AD 0
DI7 DI6 DI 5 D I4 DI 3 DI 2 DI 1 DI 0 DI 15 D I1 4 DI13 DI12 DI 11 DI 10 DI9 DI 8
MS
AM10133V1
CS
SPC
SDI/O
RW
DO7 DO6 DO5 DO4 DO3 DO 2 DO 1 DO 0
AD5 AD4 AD3 AD2 AD1 AD 0MS
AM10134V1
Figure 18. Multiple bytes SPI write protocol (2 bytes example)

6.2.3 SPI read in 3-wire mode

3-wire mode is entered by setting the SIM bits to ‘1’ (SPI serial interface mode selection) in the CTRL_REG6_A (24h) and CTRL_REG4_G (23h) .
Figure 19. SPI read protocol in 3-wire mode
Note: Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A /
SDO_G.
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb
first).
Multiple read command is also available in 3-wire mode.
38/76 Doc ID 023426 Rev 1
LSM330 Register mapping

7 Register mapping

The table below provides a listing of the 8/16-bit registers embedded in the device, and their related addresses:

Table 18. Register address map

Name
WHO_AM_I_A Ta bl e 1 5 r 0F 000 1111 01000000
CTRL_REG4_A Ta b le 1 5 r/w 23 010 0011 00000000
CTRL_REG5_A Ta b le 1 5 r/w 20 010 0000 00000111
CTRL_REG6_A Ta b le 1 5 r/w 24 010 0100 00000000
CTRL_REG7_A Ta b le 1 5 r/w 25 010 0101 00000000
STATUS_REG_A Ta b le 1 5 r 27 010 0111 output
OFF_X Ta bl e 1 5 r/w 10 001 0000 output
OFF_Y Ta bl e 1 5 r/w 11 001 0001 output
OFF_Z Ta b le 1 5 r/w 12 001 0010 output
CS_X Ta bl e 1 5 r/w 13 001 0011 00000001
CS_Y Ta bl e 1 5 r/w 14 001 0100 00000001
CS_Z Ta bl e 1 5 r/w 15 001 0101 00000001
Slave
address
Typ e
Register address
Default Comment
Hex Binary
Who am I
linear
acceleration
sensor
register
Linear
Acceleration
Sensor
Control
Registers
Status
register
Axis offset
correction
Constant Shift
registers
LC_L Ta bl e 1 5 r/w 16 001 0110 00000001
LC_H Ta bl e 1 5 r/w 17 001 0111 00000000
STAT Ta bl e 1 5 r 18 001 1000 output Interrupt Sync
VFC_1 Ta b l e 1 5 r/w 1B 001 1011 00000000
VFC_2 Ta b l e 1 5 r/w 1C 001 1100 00000000
VFC_3 Ta b l e 1 5 r/w 1D 001 1101 00000000
VFC_4 Ta b l e 1 5 r/w 1E 001 1110 00000000
THRS3 Ta b l e 1 5 r/w 1F 001 1111 00000000
Doc ID 023426 Rev 1 39/76
Long Counter
Registers
Vec t o r F ilter
Coefficient
Thresold
value 3
Register mapping LSM330
Table 18. Register address map (continued)
Name
OUT_X_L_A Ta bl e 1 5 r 28 010 1000 output
OUT_X_H_A Ta b le 1 5 r 29 010 1001 output
OUT_Y_L_A Ta bl e 1 5 r 2A 010 1010 output
OUT_Y_H_A Ta b le 1 5 r 2B 010 1011 output
OUT_Z_L_A Tab le 1 5 r 2C 010 1100 output
OUT_Z_H_A Ta b le 1 5 r 2D 010 1101 output
FIFO_CTRL_REG_A Ta b le 1 5 r/w 2E 010 1110 00000000 Linear
FIFO_SRC_REG_A Ta bl e 1 5 r 2F 010 1111 output
CTRL_REG2_A Ta b le 1 5 r/w 21 010 0001 00000000
STx_1 Ta bl e 1 5 r/w 40-4F
TIM4_1 Ta bl e 1 5 r/w 50 101 0000 00000000
TIM3_1 Ta bl e 1 5 r/w 51 101 0001 00000000
TIM2_1 Ta bl e 1 5 r/w 52-53
TIM1_1 Ta bl e 1 5 r/w 54-55
THRS2_1 Ta bl e 1 5 r/w 56 101 0110 00000000
THRS1_1 Ta bl e 1 5 r/w 57 101 0111 00000000
MASKB_1 Ta b le 1 5 r/w 59 101 1001 00000000
MASKA_1 Ta b le 1 5 r/w 5A 101 1010 00000000
Slave
address
Typ e
Register address
Hex Binary
100 0000 100 1111
101 0010 101 0011
101 0100 101 0101
Default Comment
Linear
Acceleration
Sensor
Output
registers
Acceleration
Sensor FIFO
Registers
SM1 Control
Register
SM1 Code
00000000
00000000
00000000
Register (X=1-16)
SM1 General
Timers
SM1
Thereshold
Val ue 1
SM1
Thereshold
Val ue 2
SM1 axis and
sign mask
SETT1 Ta b le 1 5 r/w 5B 101 1011 00000000
PR1 Ta b le 1 5 r/w 5C 101 1100 00000000
TC1 Ta b le 1 5 r5D-5E
OUTS1 Ta b le 1 5 r 5F 101 1111 00000000 Main set flag
PEAK1 Ta bl e 1 5 r 19 001 1001 00000000 Peak value
40/76 Doc ID 023426 Rev 1
101 1101 101 1110
SM1
Detection
Settings
Program-
Reset Pointer
00000000 Timer Counter
LSM330 Register mapping
Table 18. Register address map (continued)
Name
CTRL_REG3_A Ta b le 1 5 r/w 22 010 0010 00000000
STx_2 Ta bl e 1 5 r/w 60-6F
TIM4_2 Ta bl e 1 5 r/w 70 111 0000 00000000
TIM3_2 Ta bl e 1 5 r/w 71 111 0001 00000000
TIM2_2 Ta bl e 1 5 r/w 72-73
TIM1_2 Ta bl e 1 5 r/w 74-75
THRS2_2 Ta bl e 1 5 r/w 76 111 0110 00000000
THRS1_2 Ta bl e 1 5 r/w 77 111 0111 00000000
MASKB_2 Ta b le 1 5 r/w 79 111 1001 00000000
MASKA_2 Ta b le 1 5 r/w 7A 111 1010 00000000
Slave
address
Typ e
Register address
Hex Binary
110 0000 110 1111
111 00 1 0
111 0011
111 0100 111 0101
Default Comment
00000000
00000000
00000000
SM2 Control
Register
SM2 Code
Register (X=1-16)
SM2 General
Timers
SM2
Thereshold
Val ue 1
SM2
Thereshold
Val ue 2
SM2 axis and
sign mask
SM2
SETT2 Ta b le 1 5 r/w 7B 111 1011 00000000
PR2 Ta b le 1 5 r/w 7C 111 1100 00000000
TC2 Ta b le 1 5 r7D-7E
OUTS2 Ta b le 1 5 r 7F 111 1111 00000000 Main set flag
PEAK2 Ta bl e 1 5 r 1A 001 1010 00000000 Peak value
DES2 Ta bl e 1 5 w 78 111 1000 00000000
WHO_AM_I_G Tab l e 1 6 r 0F 000 1111 11010100 Who I am ID
Reserved --10-1F - - -
CTRL_REG1_G Ta b le 1 6 r/w 20 010 0000 00000111
CTRL_REG2_G Ta b le 1 6 r/w 21 010 0001 00000000
CTRL_REG3_G Ta b le 1 6
CTRL_REG4_G Ta b le 1 6 r/w 23 010 0011 00000000
CTRL_REG5_G Ta b le 1 6 r/w 24 010 0100 00000000
r/w 22 010 0010 00000000
111 1101 111 1110
00000000 Timer Counter
Detection
Settings
Program-
Reset Pointer
Decimation
Facto r
Angular Rate
Sensor
Control
Registers
Doc ID 023426 Rev 1 41/76
Register mapping LSM330
Table 18. Register address map (continued)
Name
REFERENCE_G Ta bl e 1 6 r/w 25 010 0101 00000000
OUT_TEMP_G Ta bl e 1 6 r 26 010 0110 output
STATUS_REG_G Ta bl e 1 6 r 27 010 0111 output
OUT_X_L_G Ta b l e 1 6 r 28 010 1000 output
OUT_X_H_G Ta bl e 1 6 r 29 010 1001 output
OUT_Y_L_G Ta b l e 1 6 r 2A 010 1010 output
OUT_Y_H_G Ta bl e 1 6 r 2B 010 1011 output
OUT_Z_L_G Ta bl e 1 6 r 2C 010 1100 output
OUT_Z_H_G Ta b le 1 6 r 2D 010 1101 output
FIFO_CTRL_REG_G Ta bl e 1 6 r/w 2E 010 1110 00000000 Angular rate
FIFO_SRC_REG_G Ta b le 1 6 r 2F 010 1111 output
INT1_CFG_G Ta bl e 1 6 r/w 30 011 0000 00000000
Slave
address
Typ e
Register address
Default Comment
Hex Binary
Reference
value for interrupt
generation
Temperature
data output
Status
register
Angular rate
sensor Output
Registers
sensor FIFO
Registers
INT1_SRC_G Ta bl e 1 6 r/w 31 011 0001 output
INT1_THS_XH_G Ta b le 1 6 r/w 32 011 0010 00000000
INT1_THS_XL_G Ta bl e 1 6 r/w 33 011 0011 00000000
INT1_THS_YH_G Ta b le 1 6 r/w 34 011 0100 00000000
INT1_THS_YL_G Ta bl e 1 6 r/w 35 011 0101 00000000
INT1_THS_ZH_G Ta bl e 1 6 r/w 36 011 0110 00000000
INT1_THS_ZL_G Ta b le 1 6 r/w 37 011 0111 00000000
INT1_DURATION_G Ta bl e 1 6 r/w 38 011 1000 00000000
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.
Angular rate
sensor
Interrupt
Registers
42/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

8 Register descriptions

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

8.1 WHO_AM_I_A (0Fh)

Who am I linear acceleration sensor register (r)

Table 19. WHO_AM_I_A register default value

01000000

8.2 CTRL_REG4_A (23h)

Linear acceleration sensor control register 4 (r/w)

Table 20. CTRL_REG4_A register

DR_EN IEA IEL INT2_EN INT1_EN VFILT - STRT

Table 21. CTRL_REG4_A register description

DR_EN
IEA
IEL
INT2_EN
INT1_EN
VFILT
STRT
DRDY signal enable on INT1_A. Default Value:0 0 = Data Ready signal disabled, 1 = Data Ready signal routed to INT1_A
Interrupt signal polarity. Default Value:0 0 = Interrupt signal active LOW, 1 = Interrupt signal active HIGH
Interrupt signal lachting. Default Value:0 0 = Interrupt signal latched, 1 = Interrupt signal pulsed
Interrupt 2 enable on INT2_A. Default Value:0 0 = INT2_A signal disabled, 1 = INT2_A signal enable
Interrupt 1 enable on INT1_A. Default Value:0 0 = INT1_A signal disabled, 1 = INT1_A signal enable
Vector Filter enable. Default Value:0 0 = Vector filter disabled, 1 = Vector filter enabled
Soft Reset bit. Default Value:0. 0= no soft reset, 1= Soft Reset (POR function)

8.3 CTRL_REG5_A (20h)

Linear acceleration sensor control register 5 (r/w)
Doc ID 023426 Rev 1 43/76
Register descriptions LSM330

Table 22. CTRL_REG5_A register

ODR3 ODR2 ODR1 ODR0 BDU ZEN YEN XEN

Table 23. CTRL_REG5_A register description

ODR [3:0]
BDU
Output data rate & Power Mode selection. Default Value:0000 (see Table 24)
Block Data Update. Default Value:0 0:continuos update,1:output registers not updated until MSB and LSB reading
Zen
Ye n
Xen
Z axis enable. Default Value:1
(0:Z axis disabled; 1:Z axis enabled)
Y axis enable. Default Value:1 (0:Y axis disabled; 1:Y axis enabled)
X axis enable. Default Value:1
(0:X axis disabled;1:X axis enabled)
ODR [3:0] is used to set Power mode, ODR selection . In the following Ta b le are reported all frequencies available.

Table 24. CTRL_REG5_A Output Data Rate selection

ODR3 ODR2 ODR1 ODR0 ODR selection
0000Power Down
00013.125 Hz
00106.25 Hz
001112.5 Hz
010025 Hz
010150 Hz
0110100 Hz
0111400 Hz
1000800 Hz
10011600 Hz
BDU bit is used to inhibit output registers update until both upper and lower registers are read. In default mode (BDU=’0’) the output register values are updated continuosly. If for any reason it is not sure to read faster than output data rate it is recommended to set BDU bit to ‘1’. In this way the content of output register is not updated until both MSB and LSB are read, avoiding to read values related to different sample time.
44/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

8.4 CTRL_REG6_A (24h)

Linear acceleration sensor control register 6 (r/w).

Table 25. CTRL_REG6_A register

BW2 BW1 FSCALE2 FSCALE1 FSCALE0 - - SIM

Table 26. CTRL_REG6_A register description

BW [2:1] Anti aliasing filter bandwidth. Default value: 00
00= 800 Hz; 01= 200 Hz; 10:=400 Hz; 11:=50 Hz)
FSCALE [2:0] Full Scale selection. Default value: 000
000= +/- 2G; 001=+/- 4G; 010= +/- 6G; 011= +/- 8G; 100= +/- 16G
SIM SPI Serial Interface Mode selection. Default value: 0
0= 4-wire interface; 1:=3-wire interface

8.5 CTRL_REG7_A (25h)

Linear acceleration sensor control register 7(r/w).

Table 27. CTRL_REG7_A register

BOOT FIFO_EN WTM_EN
ADD_
INC
P1_
EMPTY
P1_WTM
P1_OVER
RUN
BOOT_
INT

Table 28. CTRL_REG7_A register description

BOOT Force reboot, cleared as soon as the reboot is finished. Active High.
Default value: 0
FIFO_EN FIFO Enable. Default value: 0.
0= Disable; 1= Enable
WTM_EN Enable FIFO Watermark level use. Default value: 0.
0= Disable; 1 = Enable
ADD_INC Register address automatically incremented during a multiple byte access with a
serial interface (I2C or SPI).Default value: 0 0=Disable; 1= Enable
P1_EMPTY Enable FIFO Empty indication on INT1_A. Default value: 0.
0= Disable; 1= Enable
P1_WTM FIFO Watermark interrupt on INT1_A. Default value: 0.
0:=Disable; 1= Enable
P1_OVERRUN FIFO Overrun interrupt on INT1_A. Default value: 0.
0= Disable; 1= Enable
P2_BOOT BOOT interrupt on INT2_A. Default value: 0.
0= Disable; 1= Enable
Doc ID 023426 Rev 1 45/76
Register descriptions LSM330

8.6 STATUS_REG_A (27h)

Linear acceleration sensor status register (r).

Table 29. STATUS_REG_A register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 30. STATUS_REG_A register description

ZYXOR X, Y and Z axis Data Overrun. Default value: 0
0=no overrun has occurred; 1= a new set of data has overwritten the previous one
ZOR Z axis Data Overrun. Default value: 0
0= no overrun has occurred; 1= a new set of data for the Z-axis has overwritten the previous one
YOR Y axis Data Overrun. Default value: 0
0= no overrun has occurred; 1= a new data for the Y-axis has overwritten the previous one
XOR X axis Data Overrun. Default value: 0
0= no overrun has occurred; 1= a new data for the X-axis has overwritten the previous one
ZYXDA X, Y and Z axis new Data Available. Default value: 0
0= a new set of data is not yet available; 1= a new set of data is available
ZDA Z axis new Data Available. Default value: 0
0= a new data for the Z-axis is not yet available; 1=a new data for the Z-axis is available
YDA Y axis new Data Available. Default value: 0
0 = a new data for the Y-axis is not yet available; 1 = a new data for the Y-axis is available
XDA X axis new Data Available. Default value: 0
0 = a new data for the X-axis is not yet available; 1 = a new data for the X-axis is available

8.7 OFF_X (10h)

Offset correction x-axis register, signed value (r/w).

Table 31. OFF_X default valu

00000000

8.8 OFF_Y (11h)

Offset correction y-axis register, signed value (r/w).

Table 32. OFF_Y default value

00000000
46/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

8.9 OFF_Z (12h)

Offset correction z-axis register, signed value (r/w).

Table 33. OFF_Z default value

00000000

8.10 CS_X (13h)

Constant shift signed value x-axis register (r/w).

Table 34. CS_X default value

00000001

8.11 CS_Y (14h)

Constant shift signed value y-axis register (r/w).

Table 35. CS_Y default value

00000001

8.12 CS_Z (15h)

Constant shift signed value z-axis register (r/w).

Table 36. CS_Z default value

00000001

8.13 LC_L (16h) and LC_H (17h)

16 bit long-counter register for interrupt state machine programs timing (r/w)

Table 37. LC_L default value

00000001

Table 38. LC_H default value

00000000
01h=counting stopped, 00h=counter full:interrupt available and counter is set to default
values higher than 00h:counting
Doc ID 023426 Rev 1 47/76
Register descriptions LSM330

8.14 STAT (18h)

Interrupt Synchronization register (r).

Table 39. STAT register

LONG SYNCW SYNC1 SYNC2 INT_SM1 INT_SM2 DOR DRDY

Table 40. STAT register description

LONG
LC interrupt flag. 0 = no interrupt, 1 = Long Counter (LC) interrupt flag common for both SM
SYNCW
SYNC1
SYNC2
INT_SM1
NT_SM2
DOR
DRDY
Synchronization for external Host Controller Interrupt based on output data 0= no action waiting from host; 1= action from host based on output data
0 = SM1 running normally, 1 = SM1 stopped and wait restart request from SM2
0 = SM2 running normally, 1 = SM2 stopped and wait restart request from SM1
SM1- Interrupt Selection.
1= SM1 interrupt generated;0 = SM1 interrupt not generated
SM2- Interrupt Selection.
1= SM2 interrupt generated;0=SM2 interrupt not generated
Data overrun indicates not read data from output register when next data
samples measure start ;0 = no overrun, 1 = data overrun
data overrun bit is reset when next sample is ready
data ready from output register.
0 = data not ready, 1 = data ready

8.15 VFC_1 (1Bh)

Vector coefficient register 1 for DIff filter (r/w).

Table 41. VFC_1 default value

00000000

8.16 VFC_2 (1Ch)

Vector coefficient register 2 for DIff filter (r/w).

Table 42. VFC_2 default value

00000000
48/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

8.17 VFC_3 (1Dh)

Vector coefficient register 3 for DIff filter (r/w).

Table 43. VFC_3 default value

00000000

8.18 VFC_4 (1Eh)

Vector coefficient register 4 for DIff filter (r/w).

Table 44. VFC_4 default value

00000000

8.19 THRS3 (1Fh)

Threshold value register (r/w).

Table 45. THRS3 default value

00000000

8.20 OUT_X_L_A (28h) and OUT_X_H_A (29h)

X-axis linear acceleration output data register (r). The value is expressed as two’s complement.

8.21 OUT_Y_L_A (2Ah) and OUT_Y_H_A (2Bh)

Y-axis linear acceleration output data register (r). The value is expressed as two’s complement.

8.22 OUT_Z_L_A (2Ch) and OUT_Z_H_A (2Dh)

X-axis linear acceleration output data register (r). The value is expressed as two’s complement.

8.23 FIFO_CTRL_REG_A (2Eh)

linear acceleration sensor FIFO control register (r/w).

Table 46. FIFO_CTRL_REG_A register

FMODE2 FMODE1 FMODE0 WTMP4 WTMP3 WTMP2 WTMP1 WTMP0
Doc ID 023426 Rev 1 49/76
Register descriptions LSM330

Table 47. FIFO_CTRL_REG_A register description

FMODE [2:0] FIFO mode selection. Default value: 000 (see Tab le 4 8 )
WTMP [4:0] FIFO threshold. Watermark level setting. FIFO depth if the watermark is enable

Table 48. FIFO mode configuration

FMODE2 FMODE1 FMODE0 FIFO Mode
0 0 0 Bypass mode
001FIFO mode
010Stream mode
0 1 1 Stream-to-FIFO mode
1 0 0 Bypass-to-Stream mode
Other configurations are not used.

8.24 FIFO_SRC_REG_A (2Fh)

Linear acceleration sensor FIFO source control register (r).

Table 49. FIFO_SRC_REG_A register

WTM
OVRN_
FIFO
EMPTY FSS4 FSS3 FSS2 FSS1 FSS0

Table 50. IFO_SRC_REG_A register description

WTM Watermark status.
0=FIFO filling is lower than WTM level; 1= FIFO filling is equal or higher than WTM level
OVRN_FIFO Overrun bit status. 0=FIFO is not completely filled; 1=FIFO is completely filled
EMPTY FIFO empty bit.
0= FIFO not empty; 1:=FIFO empty)
FSS [4:0] FIFO stored data level

8.25 CTRL_REG2_A (21h)

State machine 1 control register (r/w).

Table 51. CTRL_REG2_A register

HYST2_1 HYST1_1 HYST0_1 - SM1_PIN - - SM1_EN
50/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

Table 52. CTRL_REG2_A register description

HYST2_1 HYST1_1 HYST0_1
Hysteresis unsigned value to be added or subtracted from threshold value in SM1 Default Value :000
SM1_PIN
SM1_EN
0 = SM1 interrupt routed to INT1_A pin, 1 = SM1 interrupt routed to INT2_A pin Default Value :0
0 = SM1 disabled, 1 = SM1 enabled Default Value :0

8.26 STx_1 (40h-4Fh)

State machine 1 code register (r/w).
State machine 1 system register is composed by 16, 8 bit registers, to implement 16 steps op-code (STx_1 (x = 1-16)).

Table 53. STx_1 registers default value

00000000
------------------------------------------------------------------------------------------------------------------------------------
00000000

8.27 TIM4_1 (50h)

8 bit general timer (unsigned value) for state machine 1 operation timing register (r/w).

Table 54. TIM4_1b

Table 55. TIM4_1 default valu

00000000

8.28 TIM3_1 (51h)

8 bit general timer (unsigned value) for state machine 1 operation timing register (r/w).

Table 56. TIM3_1 default value

00000000

8.29 TIM2_1 (52h - 53h)

16 bit general timer (unsigned value) for state machine 1 operation timing register (r/w).
Doc ID 023426 Rev 1 51/76
Register descriptions LSM330

Table 57. TIM2_1_L default value

00000000

Table 58. TIM2_1_H default value

00000000

8.30 TIM1_1 (54h - 55h)

16 bit general timer (unsigned value) for state machine 1 operation timing register (r/w).

Table 59. TIM1_1_L default value

00000000

Table 60. TIM1_1_H default value

00000000

8.31 THRS2_1 (56h)

Threshold signed value for state machine 1 operation register (r/w).

Table 61. THRS2_1 default value

00000000

8.32 THRS1_1(57h)

Threshold signed value for state machine 1 operation register (r/w).

Table 62. THRS1_1 default value

00000000

8.33 MASKB_1 (59h)

Axis and sign mask (swap) for state machine 1 motion detection operation register (r/w).

Table 63. MASKB_1 register

P_X N_X P_Y N_Y P_Z N_Z P_V N_V
52/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

Table 64. MASKB_1 register description

P_X
N_X 0 = X - disabled, 1 = X – enabled. Default Value :0
0 = X + disabled, 1 =X+ enabled.Default Value :0
P_Y
N_Y 0 = Y- disabled, 1 = Y– enabled. Default Value :0
P_Z
N_Z 0 = Z - disabled, 1 = Z – enabled. Default Value :0
P_V
N_V 0 = V - disabled, 1 = V – enabled. Default Value :0
0 = Y+ disabled, 1 = Y+ enabled. Default Value :0
0 = Z+ disabled, 1 = Z + enabled. Default Value :0
0 = V + disabled, 1 = V + enabled. Default Value :0

8.34 MASKA_1(5Ah)

Axis and sign mask (default) for state machine 1 motion detection operation register (r/w).

Table 65. MASKA_1 register

P_X N_X P_Y N_Y P_Z N_Z P_V N_V

Table 66. MASKA_1 register description

P_X
N_X 0 = X - disabled, 1 = X – enabled. Default Value :0
P_Y
N_Y 0 = Y- disabled, 1 = Y– enabled. Default Value :0
0 = X + disabled, 1 =X+ enabled. Default Value :0
0 = Y+ disabled, 1 = Y+ enabled. Default Value :0
P_Z
N_Z 0 = Z - disabled, 1 = Z – enabled. Default Value :0
P_V
N_V 0 = V - disabled, 1 = V – enabled. Default Value :0
0 = Z+ disabled, 1 = Z + enabled. Default Value :0
0 = V + disabled, 1 = V + enabled. Default Value :0

8.35 SETT1 (5Bh)

Setting of threshold, peak detection and flags for state machine 1 motion detection operation register (r/w)

Table 67. SETT1 register

P_DET THR3_SA ABS - - THR3_MA R_TAM SITR
Doc ID 023426 Rev 1 53/76
Register descriptions LSM330

Table 68. SETT1 register description

P_DET
THR3_SA
ABS
THR3_MA
R_TAM
SITR
SM1 Peak detection.Default Value:0 0 = peak detection disabled, 1 = peak detection enabled
Default Value:0 0 = no action, 1 = Threshold 3 limit value for axis and sign mask reset (MASKB_1)
Default Value:0 0 = unsigned thresholds, 1 = signed thresholds
Default Value:0 0 = no action, 1 = Threshold 3 limit value for axis and sign mask reset (MASKA_1)
next condition validation flag.Default Value:0 0 = no valid next condition found , 1= valid next condition found and reset
Default Value:0 0 = no actions, 1 = program flow can be modified by STOP and CONT commands

8.36 PR1 (5Ch)

Program and reset pointer for state machine 1 motion detection operation register (r/w)

Table 69. PR1 register

PP3 PP2 PP1 PP0 RP3 RP2 RP1 RP0

Table 70. PR1 register description

PP [3:0] SM1 Program Pointer Address.Default Value:0000
RP [3:0] SM1 Reset Pointer Address.Default Value:0000

8.37 TC1 (5Dh-5E)

16 bit general timer (unsigned output value) for state machine 1 operation timing register (r).

Table 71. TC1_L default value

00000000

Table 72. TC1_H default value

00000000
54/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

8.38 OUTS1 (5Fh)

Output flags on axis for interrupt state machine 1 management register (r).

Table 73. OUTS1 register

P_X N_X P_Y N_Y P_Z N_Z P_V N_V

Table 74. OUTS1 register description

P_X
N_X 0 = X - not shown, 1 = X – show.Default Value :0
0 = X + not shown, 1 =X+ show.Default Value :0
P_Y
N_Y 0 = Y - not shown, 1 = Y – show.Default Value :0
P_Z
N_Z 0 = Z - not shown, 1 = Z – show.Default Value :0
P_V
N_V 0 = V - not shown, 1 = V – show.Default Value :0
0 = Y + not shown, 1 =Y+ show.Default Value :0
0 = Z + not shown, 1 =Z+ show.Default Value :0
0 = V + not shown, 1 = V + show.Default Value :0

8.39 PEAK1 (19h)

Peak detection value register for state machine 1 operation register (r).

Table 75. PEAK1 default value

00000000
Peak detected value for next condition SM1

8.40 CTRL_REG3_A (22h)

State machine 2 control register (r/w).

Table 76. CTRL_REG3_A register

HYST2_2 HYST1_2 HYST0_2 - SM2_PIN - - SM2_EN
Doc ID 023426 Rev 1 55/76
Register descriptions LSM330

Table 77. CTRL_REG3_A register description

HYST2_2 HYST1_2 HYST0_2
Hysteresis unsigned value to be added or subtracted from threshold value in SM2 Default Value= 000
SM2_PIN
SM2_EN
0 = SM2 interrupt routed to INT1_A, 1 = SM2 interrupt routed to INT1_A pin Default Value=0
0 = SM2 disabled, 1 = SM2 enabled Default Value=0

8.41 STx_2 (60h-6Fh)

State machine 2 code register (r/w).
State machine 2 system register is composed by 16, 8 bit register, to implement 16 steps op-code (STx_2 (x = 1-16)).

Table 78. STx_2 registers default value

00000000
------------------------------------------------------------------------------------------------------------------------------------
00000000

8.42 TIM4_2 (70h)

8 bit general timer (unsigned value) for state machine 2 operation timing register (r/w).

Table 79. TIM4_2 default value

00000000

8.43 TIM3_2 (71h)

8 bit general timer (unsigned value) for state machine 2 operation timing (r/w).

Table 80. TIM3_2 default value

00000000

8.44 TIM2_2 (72h - 73h)

16 bit general timer (unsigned value) for state machine 2 operation timing register (r/w).

Table 81. TIM2_2_L default value

00000000
56/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

Table 82. TIM2_2_H default value

00000000

8.45 TIM1_2 (74h - 75h)

16 bit general timer (unsigned value) for state machine 2 operation timing register (r/w).

Table 83. TIM1_2_L default value

00000000

Table 84. TIM1_2_H default value

00000000

8.46 THRS2_2 (76h)

Threshold signed value for state machine 2 operation register (r/w).

Table 85. THRS2_2 default value

00000000

8.47 THRS1_2 (77h)

Threshold signed value for state machine 2 operation register (r/w).

Table 86. THRS1_2 default value

00000000

8.48 MASKB_2 (79h)

Axis and sign mask (swap) for state machine 2 motion detection operation register (r/w).

Table 87. MASKB_2 register

P_X N_X P_Y N_Y P_Z N_Z P_V N_V
Doc ID 023426 Rev 1 57/76
Register descriptions LSM330

Table 88. MASKB_2 register description

P_X 0 = X + disabled, 1 =X+ enabled. Default Value :0
N_X 0 = X - disabled, 1 = X – enabled. Default Value :0
P_Y 0 = Y+ disabled, 1 = Y+ enabled. Default Value :0
N_Y 0 = Y- disabled, 1 = Y– enabled. Default Value :0
P_Z 0 = Z+ disabled, 1 = Z + enabled. Default Value :0
N_Z 0 = Z - disabled, 1 = Z – enabled. Default Value :0
P_V 0 = V + disabled, 1 = V + enabled. Default Value :0
N_V 0 = V - disabled, 1 = V – enabled. Default Value :0

8.49 MASKA_2 (7Ah)

Axis and sign mask (default) for state machine 2 motion detection operation register (r/w).

Table 89. MASKA_2 register

P_X N_X P_Y N_Y P_Z N_Z P_V N_V

Table 90. MASKA_2 register description

P_X 0 = X + disabled, 1 =X+ enabled. Default Value :0
N_X 0 = X - disabled, 1 = X – enabled. Default Value :0
P_Y 0 = Y+ disabled, 1 = Y+ enabled. Default Value :0
N_Y 0 = Y- disabled, 1 = Y– enabled. Default Value :0
P_Z 0 = Z+ disabled, 1 = Z + enabled. Default Value :0
N_Z 0 = Z - disabled, 1 = Z – enabled. Default Value :0
P_V 0 = V + disabled, 1 = V + enabled. Default Value :0
N_V 0 = V - disabled, 1 = V – enabled. Default Value :0

8.50 SETT2 (7Bh)

Setting of threshold, peak detection and flags for state machine 2 motion detection operation register (r/w).

Table 91. SETT2 register

P_DET THR3_SA ABS - - THR3_MA R_TAM SITR
58/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

Table 92. SETT2 register description

P_DET
THR3_SA
ABS
THR3_MA
R_TAM
SITR

8.51 PR2 (7Ch)

Program and reset pointer for state machine 2 motion detection operation register (r/w).

Table 93. PR2 register

PP3 PP2 PP1 PP0 RP3 RP2 RP1 RP0
SM2 Peak detection.Default Value:0
0 = peak detection disabled, 1 = peak detection enabled
Default Value:0 0 = no action, 1 = Threshold 3 limit value for axis and sign mask reset (MASKB_2)
Default Value:0
0 = unsigned thresholds, 1 = signed thresholds
Default Value:0 0 = no action, 1 = Threshold 3 limit value for axis and sign mask reset (MASKA_2)
next condition validation flag.Default Value:0
0 = no valid next condition found , 1= valid nextc ondition found and reset
Default Value:0 0 = no actions, 1 = program flow can be modified by STOP and CONT commands

Table 94. PR2 register description

PP [3:0] SM2 Program Pointer Address.Default Value :0
RP [3:0] SM2 Reset Pointer Address.Default Value :0

8.52 TC2 (7Dh-7E)

16 bit general timer (unsigned output value) for state machine 2 operation timing register (r).

Table 95. TC2_L default value

00000000

Table 96. TC2_H default value

00000000

8.53 OUTS2 (7Fh)

Output flags on axis for interrupt SM2 management register (r).
Doc ID 023426 Rev 1 59/76
Register descriptions LSM330

Table 97. OUTS2 register

P_X N_X P_Y N_Y P_Z N_Z P_V N_V
Read action of this register, depending on the flag will affect SM2 interrupt functions.

Table 98. OUTS2 register description

P_X 0 = X + noshow, 1 =X+ show. Default Value :0
N_X 0 = X - noshow, 1 = X – show. Default Value :0
P_Y 0 = Y + noshow, 1 =Y+ show. Default Value :0
N_Y 0 = Y - noshow, 1 = Y – show. Default Value :0
P_Z 0 = Z + noshow, 1 =Z+ show. Default Value :0
N_Z 0 = Z - noshow, 1 = Z – show. Default Value :0
P_V 0 = V + noshow, 1 = V + show. Default Value :0
N_V 0 = V - noshow, 1 = V – show. Default Value :0

8.54 PEAK2 (1Ah)

Peak detection value register for state machine 2 operation register (r).

Table 99. PEAK2 default value

00000000
Peak detected value for next condition SM2.

8.55 DES2 (78h)

Decimation counter value register for SM2 operation (w).

Table 100. DES2 default value

00000000

8.56 WHO_AM_I_G (0Fh)

Who am I angular rate sensor register (r)

Table 101. WHO_AM_I_G register

11010100
60/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

8.57 CTRL_REG1_G (20h)

Angular rate sensor control register 1 (r/w).

Table 102. CTRL_REG1_G register

DR1 DR0 BW1 BW0 PD Zen Xen Yen

Table 103. CTRL_REG1_G description

DR [1:0] Output data rate selection.Default value:00. Refer toTable 104
BW [1:0] Bandwidth selection.Default value:00. Refer to Table 104
PD
Zen Z axis enable. Default value: 1
Yen Y axis enable. Default value: 1
Xen X axis enable. Default value: 1
Power-down mode enable. Default value: 0 (0: Power-down mode, 1: Normal mode or Sleep mode)
(0: Z axis disabled; 1: Z axis enabled)
(0: Y axis disabled; 1: Y axis enabled)
(0: X axis disabled; 1: X axis enabled)
DR [1:0] is used to set ODR selection. BW [1:0] is used to set bandwidth selection.
The table below provides all the frequencies resulting from the DR / BW bit combinations.

Table 104. DR and BW configuration setting

DR [1:0] BW [1:0] ODR [Hz] Cut-off [Hz]
00 00 95 12.5
00 01 95 25
00 10 95 25
00 11 95 25
01 00 190 12.5
01 01 190 25
01 10 190 50
01 11 190 70
10 00 380 20
10 01 380 25
10 10 380 50
10 11 380 100
11 00 760 30
11 01 760 35
(1)
Doc ID 023426 Rev 1 61/76
Register descriptions LSM330
Table 104. DR and BW configuration setting (continued)
DR [1:0] BW [1:0] ODR [Hz] Cut-off [Hz]
11 10 760 50
11 11 760 100
1. Values in the table are indicative and they can vary proportionally with the specific ODR value
(1)
The combination of PD, Zen, Yen, Xen is used to set the angular rate sensor in different modes (Power-down / Normal / Sleep mode) according to the following table:

Table 105. Power mode selection configuration

Mode PD Zen Yen Xen
Power-down 0 - - -
Sleep1000
Normal1---

8.58 CTRL_REG2_G (21h)

Angular rate sensor control register 2 (r/w).

Table 106. CTRL_REG2_G register

EXTRen LVLen HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0

Table 107. CTRL_REG2_G description

EXTRen
LV Le n
HPM [1:0]
HPCF [3:0]
Edge-sensitive trigger Enable: Default value: 0 (0: external trigger disabled; 1: External trigger enabled)
Level-sensitive trigger Enable: Default value: 0 (0: level sensitive trigger disabled; 1: level sensitive trigger enabled)
High-pass filter mode selection. Default value: 00 Refer to Tab le 1 0 8
High-pass filter cut-off frequency selection. Default value: 0000 Refer to Tab le 1 0 9

Table 108. High-pass filter mode configuration

HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading REFERENCE_G (25h) register)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event
62/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

Table 109. High-pass filter cut-off frequency configuration [Hz]

HPCF[3:0] ODR=95 Hz ODR=190 Hz ODR=380 Hz ODR=760 Hz
0000 7.2 13.5 27 51.4
0001 3.5 7.2 13.5 27
0010 1.8 3.5 7.2 13.5
0011 0.9 1.8 3.5 7.2
0100 0.45 0.9 1.8 3.5
0101 0.18 0.45 0.9 1.8
0110 0.09 0.18 0.45 0.9
0111 0.045 0.09 0.18 0.45
1000 0.018 0.045 0.09 0.18
1001 0.009 0.018 0.045 0.09
1. Values in the table are indicative and they can vary proportionally with the specific ODR value

8.59 CTRL_REG3_G (22h)

Angular rate sensor control register 3 (r/w).

Table 110. CTRL_REG3_G register

I1_Int1 I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty
(1)

Table 111. CTRL_REG3_G description

I1_Int1 Interrupt enable on INT1_G pin. Default value 0. (0: Disable; 1: Enable)
I1_Boot Boot status available on INT1_G. Default value 0. (0: Disable; 1: Enable)
H_Lactive Interrupt active configuration on INT1_G. Default value 0. (0: High; 1: Low)
PP_OD Push-pull / Open drain. Default value: 0. (0: Push-pull; 1: Open drain)
I2_DRDY Date ready on DRDY_G/INT2_G. Default value 0. (0: Disable; 1: Enable)
I2_WTM FIFO watermark interrupt on DRDY_G/INT2_G. Default value: 0.
(0: Disable; 1: Enable)
I2_ORun FIFO overrun interrupt on DRDY_G/INT2_G Default value: 0. (0: Disable; 1: Enable)
I2_Empty FIFO empty interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable)

8.60 CTRL_REG4_G (23h)

Angular rate sensor control register 4 (r/w).

Table 112. CTRL_REG4_G register

BDU BLE FS1 FS0 0 0 0 SIM
Doc ID 023426 Rev 1 63/76
Register descriptions LSM330

Table 113. CTRL_REG4_G description

BDU Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSb and LSb reading)
BLE Big/little endian data selection. Default value 0.
(0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS [1:0] Full scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM 3-wire SPI Serial interface read mode enable. Default value: 0
(0: 3-wire Read mode disabled; 1: 3-wire read enabled).

8.61 CTRL_REG5_G (24h)

Angular rate sensor control register 5 (r/w).

Table 114. CTRL_REG5_G register

BOOT FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0

Table 115. CTRL_REG5_G description

BOOT Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
HPen High-pass filter Enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, see Figure 20)
INT1_Sel [1:0] INT1 selection configuration. Default value: 0
(see Figure 20)
Out_Sel [1:0] Out selection configuration. Default value: 0
(see Figure 20)
64/76 Doc ID 023426 Rev 1
LSM330 Register descriptions
ADC
LPF1
HPF
0
1
HPen
LPF2
10 11
01
00
Out_Sel <1:0>
DataReg
FIFO
32x16x3
00
11
10
01
Interrupt
generator
INT1_Sel <1:0>
AM07949V2

Figure 20. INT1_Sel and Out_Sel configuration block diagram

8.62 REFERENCE_G (25h)

Interrupt reference value register (r/w).

Table 116. REFERENCE_G register

Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0

Table 117. REFERENCE_G register description

Ref [7:0] Reference value for interrupt generation. Default value: 0

8.63 OUT_TEMP_G (26h)

Temperature data output register (r).

Table 118. OUT_TEMP_G register

Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0

Table 119. OUT_TEMP_G register description

Temp [7:0] Temperature data (1LSb/deg - 8-bit resolution).The value is expressed as
two’s complement.

8.64 STATUS_REG_G (27h)

Angular rate sensor register (r).
Doc ID 023426 Rev 1 65/76
Register descriptions LSM330

Table 120. STATUS_REG_G register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 121. STATUS_REG_G register description

X, Y, Z-axis data overrun. Default value: 0
ZYXOR
(0: no overrun has occurred; 1: new data has overwritten the previous data before it was read)
ZOR
YOR
XOR
ZYXDA X, Y, Z -axis new data available. Default value: 0
ZDA Z axis new data available. Default value: 0
YDA Y axis new data available. Default value: 0
XDA X axis new data available. Default value: 0
Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data)
X axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data)
(0: a new set of data is not yet available; 1: a new set of data is available)
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
(0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available)
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)

8.65 OUT_X_L_G (28h), OUT_X_H_G (29h)

X-axis angular rate output data register (r). The value is expressed as two’s complement.

8.66 OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh)

Y-axis angular rate output data register (r). The value is expressed as two’s complement.

8.67 OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh)

Z-axis angular rate output data register (r). The value is expressed as two’s complement.

8.68 FIFO_CTRL_REG_G (2Eh)

Angular rate sensor FIFO control register (r/w).

Table 122. FIFO_CTRL_REG_G register

FM2 FM1 FM0 WTM4 WTM3 WTM2 WTM1 WTM0
66/76 Doc ID 023426 Rev 1
LSM330 Register descriptions

Table 123. FIFO_CTRL_REG_G register description

FM [2:0] FIFO mode selection. Default value: 000 (see Tab l e 1 24 )
WTM [4:0] FIFO threshold. Watermark level setting

Table 124. FIFO mode configuration

FM2 FM1 FM0 FIFO mode
000Bypass mode
001FIFO mode
010Stream mode
011Stream-to-FIFO mode
100Bypass-to-stream mode

8.69 FIFO_SRC_REG_G (2Fh)

Angular rate sensor FIFO source control register (r).

Table 125. FIFO_SRC_REG_G register

WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0

Table 126. FIFO_SRC_REG_G register description

WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS [4:0] FIFO stored data level

8.70 INT1_CFG_G (30h)

Angular rate sensor FIFO source control register (r/w).

Table 127. INT1_CFG_G register

AND/OR LIR ZHIE ZLIE YHIE YLIE XHIE XLIE
Doc ID 023426 Rev 1 67/76
Register descriptions LSM330

Table 128. INT1_CFG_G description

AND/OR
AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Latch Interrupt request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC_G reg.
Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)

8.71 INT1_SRC_G (31h)

Angular rate sensor interrupt source register (r).

Table 129. INT1_SRC_G register

0 IA ZHZLYHYLXHXL

Table 130. INT1_SRC_G register description

IA
ZH Z high. Default value: 0 (0: no interrupt, 1: Z High event has occurred)
ZL Z low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred)
YH Y high. Default value: 0 (0: no interrupt, 1: Y High event has occurred)
YL Y low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred)
XH X high. Default value: 0 (0: no interrupt, 1: X High event has occurred)
XL X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
68/76 Doc ID 023426 Rev 1
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
LSM330 Register descriptions
Reading at this address clears the INT1_SRC_G (31h) IA bit (and eventually the interrupt signal on the INT1_G pin) and allows the refreshing of data in the INT1_SRC_G register if the latched option was chosen.

8.72 INT1_THS_XH_G (32h)

Angular rate sensor interrupt threshold x-axis high register (r/w).

Table 131. INT1_THS_XH_G register

- THSX14 THSX13 THSX12 THSX11 THSX10 THSX9 THSX8

Table 132. INT1_THS_XH_G description

THSX [14:8] Interrupt threshold. Default value: 000 0000

8.73 INT1_THS_XL_G (33h)

Angular rate sensor interrupt threshold x-axis low register (r/w).

Table 133. INT1_THS_XL_G register

THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THSX0

Table 134. INT1_THS_XL_G description

THSX [7:0] Interrupt threshold. Default value: 0000 0000

8.74 INT1_THS_YH _G (34h)

Angular rate sensor interrupt threshold y-axis high register (r/w).

Table 135. INT1_THS_YH_G register

- THSY14 THSY13 THSY12 THSY11 THSY10 THSY9 THSY8

Table 136. INT1_THS_YH_G description

THSY [14:8] Interrupt threshold. Default value: 000 0000

8.75 INT1_THS_YL_G (35h)

Angular rate sensor interrupt threshold y-axis low register (r/w).
Doc ID 023426 Rev 1 69/76
Register descriptions LSM330

Table 137. INT1_THS_YL_G register

THSY7 THSY6 THSY5 THSY4 THSY3 THSY2 THSY1 THSY0

Table 138. INT1_THS_YL_G description

THSY [7:0] Interrupt threshold. Default value: 0000 0000

8.76 INT1_THS_ZH_G (36h)

Angular rate sensor interrupt threshold z-axis high register (r/w).

Table 139. INT1_THS_ZH_G register

- THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 THSZ9 THSZ8

Table 140. INT1_THS_ZH_G description

THSZ [14:8] Interrupt threshold. Default value: 000 0000

8.77 INT1_THS_ZL_G (37h)

Angular rate sensor interrupt threshold z-axis low register (r/w).

Table 141. INT1_THS_ZL_G register

THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0

Table 142. INT1_THS_ZL_G description

THSZ [7:0] Interrupt threshold. Default value: 0000 0000

8.78 INT1_DURATION_G (38h)

Angular rate sensor interrupt duration register (r/w).

Table 143. INT1_DURATION_G register

WAIT D6 D5 D4 D3 D2 D1 D0

Table 144. INT1_DURATION_G description

WAIT WAIT enable. Default value: 0 (0: disable; 1: enable)
D [6:0] Duration value. Default value: 000 0000
70/76 Doc ID 023426 Rev 1
LSM330 Register descriptions
D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps
and maximum values depend on the ODR chosen.
WAIT bit has the following meaning:
Wait =’0’: the interrupt falls immediately if signal crosses the selected threshold
Wait =’1’: if the signal crosses the selected threshold, the interrupt falls only after the duration has counted the number of samples at the selected data rate, written into the duration counter register.

Figure 21. Wait disabled

Doc ID 023426 Rev 1 71/76
Register descriptions LSM330

Figure 22. Wait enabled

72/76 Doc ID 023426 Rev 1
LSM330 Package information

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.
®
packages, depending on their level of environmental compliance. ECOPACK
®
Doc ID 023426 Rev 1 73/76
Package information LSM330
8379971_A

Table 145. LGA (3.5x3x1 mm) 24 lead mechanical data

mm
Dim.
Min. Typ. Max.
A1 1.000 1.027
A2 0.800
A3 0.200
D1 2.850 3.000 3.150
E1 3.350 3.500 3.650
L1 3.010
L2 1.290
N1 0.430
M 0.040 0.100
M1 0.070 0.130
P2 0.200 0.250 0.300
a 45°
T1 0.300 0.350 0.400
T2 0.180 0.230 0.280
K0.050
L1 1.27 1.40
L2 1.30 1.75
R0.4
V2

Figure 23. LGA (3.5x3x1 mm) lead drawing

74/76 Doc ID 023426 Rev 1
LSM330 Revision history

10 Revision history

Table 146. Document revision history

Date Revision Changes
10-Jul-2012 1 Initial release.
Doc ID 023426 Rev 1 75/76
LSM330
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
76/76 Doc ID 023426 Rev 1
Loading...