ST LM2902W User Manual

Low-power quad operational amplifier
Features
Wide gain bandwidth: 1.3 MHz
Input common-mode voltage range includes
negative rail
Very low supply current per amplifier: 375 µA
Low input bias current: 20 nA
Low input offset current: 2 nA
ESD internal protection: 800 V
Wide power supply range
Single supply: +3 V to +30 V
Dual supplies: ±1.5 V to ±15 V
Description
LM2902W
N
DIP14
(Plastic package)
D
SO-14
(Plastic micropackage)
This circuit consists of four independent, high­gain, internally frequency-compensated operational amplifiers designed especially for automotive and industrial control systems.
The device operates from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
All the pins are protected against electrostatic discharges up to 800 V.
(Thin shrink small outline package)
Output 1
Inverting Input 1
Non-inverting Input 1
Non-inverting Input 2
Inverting Input 2
Output 2
P
TSSOP14
Pin connections (top view)
Output 4
14
Inverting Input 4
13
Non-inverting Input 4
12
V
11
CC
10
Non-inverting Input 3
9
Inverting Input 3
8
Output 3
V
CC
1
2
-
+
3
+
4
5
+
-
6
7
-
+
+
-
-
February 2012 Doc ID 9922 Rev 8 1/17
www.st.com
17
Absolute maximum ratings and operating conditions LM2902W

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
V
I
T
R
R
ESD
1. Short-circuits from the output to V maximum output current is approximately 20 mA, independent of the magnitude of V
2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op-amps to go to the V for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages higher than -0.3 V.
3. R
thja/c
4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.
6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Supply voltage ±16 to 32 V
CC
Differential input voltage +32 V
id
Input voltage -0.3 to V
i
Output short-circuit to ground
Input current
in
Storage temperature range -65 to +150 °C
stg
(2)
Thermal resistance junction to ambient
thja
SO-14 TSSOP14
(1)
(3)
DIP14
Thermal resistance junction to case
thjc
SO-14 TSSOP14
(3)
DIP14
HBM: human body model
MM: machine model
CDM: charged device model
are typical values.
(4)
(5)
(6)
+
can cause excessive heating and potential destruction. The
CC
+
+ 0.3 V
CC
Infinite
50 mA
105 100
80
31 32 33
800 V
100 V
1500 V
CC
voltage level (or to ground
CC
°C/W
°C/W
+
Symbol Parameter Value Unit
V
V
T
oper
Supply voltage 3 to 30 V
CC
Common mode input voltage range
icm
T
T
min
amb
T
max
Operating free-air temperature range -40 to +125 °C
2/17 Doc ID 9922 Rev 8
-
V
CC
V
CC
to V
-
to V
CC
CC
+
- 1.5
+
- 2
V
LM2902W Circuit schematics

2 Circuit schematics

Figure 1. Schematic diagram (1/4 LM2902)

Doc ID 9922 Rev 8 3/17
Electrical characteristics LM2902W

3 Electrical characteristics

Table 3. V
CC
+
=5V, V
(unless otherwise stated)
Symbol Parameter Test conditions Min. Typ. Max. Unit
-
= ground, VO= 1.4 V, T
CC
amb
= 25° C
V
DV
DI
A
Input offset voltage
i o
Input offset voltage drift 7 30 µV/°C
io
I
Input offset current
io
Input offset current drift 10 200 pA/°C
io
I
Input bias current
ib
Large signal voltage gain
vd
(1)
(2)
SVR Supply voltage rejection ratio
Supply current
I
CC
(all op-amps, no load)
CMR Common-mode rejection ratio
Output short-circuit current Vid = +1V, VCC+ = +15V, Vo = +2V 20 40 70 mA
I
o
I
V
Output sink current
sink
High level output voltage
OH
LM2902W LM2902AW
T
T
T
min
T
T
T
T
T
V
amb
T
min
amb
= +25°C 2 30
amb
T
min
amb
= +25°C 20 150
amb
T
min
amb
+
= +15V, RL=2kΩ,
CC
Vo= 1.4V to 11.4V, T
+
= +15V, RL=2kΩ,
V
CC
= 1.4V to 11.4V,
V
o
T
T
min
amb
R
10kΩ, T
S
10kΩ, T
R
S
T
= +25°C, VCC+ = +5V 0.7 1.2
amb
T
= +25°C, VCC+ = +30V 1.5 3
amb
T
T
min
amb
T
T
min
amb
R
10kΩ, T
S
10kΩ, T
R
S
V
= -1V, VCC+ = +15V, Vo = +2V 10 20 mA
id
V
= -1V, VCC+ = +15V, Vo = +0.2V 12 50 µA
id
+ = 30V, RL = 2kΩ:
V
CC
T
= +25°C
amb
T
T
min
amb
+ = 30V, RL = 10kΩ:
V
CC
= +25°C,
T
amb
T
T
min
amb
V
+ = 5V, RL = 2kΩ:
CC
T
= +25°C
amb
T
≤ T
min
amb
LM2902W
max
T
T
T
LM2902AW
max
max
max
amb
= + 25°C
50 100
25
T
max
=+ 25°C 65 110
amb
T
min
T
T
amb
min
max
max, VCC
T
T
amb
max
, VCC+ = +5V 0.9 1.2
+ = +30V 1.5 3
= +25°C 70 80
T
amb
max
65
60
26
T
max
26
27
T
max
27
3.5
≤ T
max
3
27
2
9 4
40
300
27
28
mV
nA
nA
V/mV
dB
mA
dB
V
4/17 Doc ID 9922 Rev 8
LM2902W Electrical characteristics
Table 3. V
CC
+
=5V, V
-
= ground, VO= 1.4 V, T
CC
amb
= 25° C
(unless otherwise stated) (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
R
= 10kΩ, T
V
Low level output voltage
OL
SR Slew rate
GBP Gain bandwidth product
THD Total harmonic distortion
Equivalent input noise voltage f = 1kHz, RS= 100Ω, VCC+ = 30V 40
e
n
V
O1/VO2
1. VO = 1.4 V, RS = 0 Ω, 5 V < V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output,
3. Due to the proximity of external components ensure that stray capacitance does not cause coupling between these
Channel separation
so there is no change in the load on the input lines.
external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
(3)
+
< 30 V, 0 V < Vic < V
CC
L
= 10kΩ, T
R
L
+ = 15V, Vin= 0.5 to 3V,
V
CC
= 2kΩ, CL= 100pF, unity gain
R
L
< Top < T
T
min
+ = 30V, Vin= 10mV, RL= 2kΩ,
V
CC
CL= 100pF
f=1kHz, A Vo=2Vpp, CL= 100pF, VCC+= 30V
1kHz ≤ f 20kHz 120 dB
CC
= +25°C 5 20
amb
T
amb
≤ T
max
min
0.24
max
= 20dB, RL=2kΩ,
V
+
- 1.5 V.
0.14
20
mV
0.4 V/µs
1.3 MHz
0.015 %
nV/
Hz
Doc ID 9922 Rev 8 5/17
Electrical characteristics LM2902W
24
amb

Figure 3. Input voltage range

15
Figure 2. Input bias current vs. T
IB (nA)
21 18 15 12
10
Négative
9 6 3
5
INPUT VOLTAGE (V)
0
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
051015
POWER SUPPLY VOLTAGE (±V)
Figure 4. Current limiting Figure 5. Supply current
90
80
70
60
50
40
30
20
OUTPUT CURRENT (mA)
10
0
-55 -35 -15 5 25 45 65 85 105 125
-
+
I
TEMPERATURE (°C)
O
4
V
CC
I
D
3
2
1
mA
-
+
T
amb
SUPPLY CURRENT (mA)
0102030
POSITIVE SUPPLY VOLTAGE (V)
Positive
= 0°C to +125°C
T
= -55°C
amb
Figure 6. Gain bandwidth product Figure 7. Voltage follower pulse response
(V
= 15 V)
CC
GBP (mhz)
1.35
1.30
1.25
1.2
OUTPUT
1.15
1.1
1.05 1
-95
-9
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
GAIN BANDWIDTH PRODUCT (MHz)
6/17 Doc ID 9922 Rev 8
INPUT
4
(
E
RL 2 k VCC = +15V
μ
)
s
3
2
1
VOLTAGE (V)
0
3
2
1
010203040
VOLTAGE (V)
M
T
I
Ω
Loading...
+ 11 hidden pages