ST L6997S User Manual

L6997S

STEP DOWN CONTROLLER FOR LOW VOLTAGE OPERATIONS

1 Features

FROM 3V TO 5.5V VCC RANGE

MINIMUM OUTPUT VOLTAGE AS LOW AS 0.6V

1V TO 35V INPUT VOLTAGE RANGE

CONSTANT ON TIME TOPOLOGY

VERY FAST LOAD TRANSIENTS

0.6V, ±1% VREF

SELECTABLE SINKING MODE

LOSSLESS CURRENT LIMIT, AVAILABLE ALSO IN SINKING MODE

REMOTE SENSING

OVP,UVP LATCHED PROTECTIONS

600 A TYP QUIESCENT CURRENT

POWER GOOD AND OVP SIGNALS

PULSE SKIPPING AT LIGTH LOADS

94% EFFICIENCY FROM 3.3V TO 2.5V

2 Applications

NETWORKING

DC/DC MODULES

DISTRIBUTED POWER

MOBILE APPLICATIONS

CHIP SET, CPU, DSP AND MEMORIES SUPPLY

Figure 2. Minimum Component Count Application

Figure 1. Package

TSSOP20

 

 

 

Table 1. Order Codes

 

 

 

 

Part Number

 

Package

 

 

 

L6997S

 

TSSOP20

 

 

 

L6997STR

 

Tape & Reel

 

 

 

3 Description

The device is a high efficient solution for networking dc/dc modules and mobile applications compatible with 3.3V bus and 5V bus.

It's able to regulate an output voltage as low as 0.6V. The constant on time topology assures fast load transient response. The embedded voltage feed-forward provides nearly constant switching frequency operation in spite of a wide input voltage range.

An integrator can be introduced in the control loop to reduce the static output voltage error.

The remote sensing improves the static and dynamic regulation, recovering the wires voltage drop.

Pulse skipping technique reduces power consumption at light loads. Drivers current capability allows output currents in excess of 20A.

 

 

 

 

3.3V

 

 

Rin2

Rin1

 

 

 

 

 

Cin

VCC

VDR

OSC

 

Dboot

BOOT

 

 

 

 

 

 

 

 

HGATE

HS

Cboot

 

 

 

 

L

 

 

 

 

0.6V

 

 

PHASE

 

 

PGOOD

 

 

 

Ro1

 

 

LGATE

 

OVP

 

LS

DS

L6997S

 

Cout

 

Ro2

ILIM

 

PGND

 

 

 

 

GND

 

 

Rilim

 

GNDSENSE

 

 

SS

 

VSENSE

 

 

Css

 

INT

 

 

 

 

 

 

 

 

VFB

 

 

SHDN

 

Vref

 

 

 

 

 

Cvref

 

REV. 1

June 2004

1/30

L6997S

Table 2. Absolute Maximum Ratings

Symbol

Parameter

Value

Unit

 

 

 

 

 

VCC

VCC to GND

-0.3 to 6

V

VDR

VDR to GND

-0.3 to 6

V

 

HGATE and BOOT, to PHASE

-0.3 to 6

V

 

 

 

 

 

 

HGATE and BOOT, to PGND

-0.3 to 42

V

 

 

 

 

 

VPHASE

PHASE

-0.3-to 36

V

 

LGATE to PGND

-0.3 to VDR+0.3

V

 

ILIM, VFB, VSENSE, NOSKIP, SHDN, PGOOD, OVP, VREF,

-0.3 to VCC+0.3

V

 

INT, GNDSENSE to GND

 

 

BOOT, HGATE

Maximum Withstanding Voltage Range

±750

V

and PHASE

Test Condition:CDF-AEC-Q100-002 “Human Body Model”

 

 

PINS

Accepatance Criteria: “Normal Performance”

 

 

 

 

 

 

 

OTHER PINS

 

 

±2000

V

 

 

 

 

Ptot

Power dissipation at Tamb = 25°C

1

W

Tstg

Storage temperature range

-40 to 150

°C

Table 3. Thermal Data

Symbol

Parameter

Value

Unit

 

 

 

 

Rth j-amb

Thermal Resistance Junction to Ambient

125

°C/W

Tj

Junction operating temperature range

-40 to 125

°C

Figure 3. Pin Connection (Top View)

NOSKIP

1

20

BOOT

GNDSENSE

2

19

HGATE

INT

3

18

PHASE

VSENSE

4

17

VDR

VCC

5

16

LGATE

GND

6

15

PGND

VREF

7

14

PGOOD

VFB

8

13

OVP

OSC

9

12

SHDN

SS

10

11

ILIM

 

 

TSSOP20

 

Table 4. Pin Function

Name

Description

 

 

 

1

NOSKIP

Connect to VCC to force continuous conduction mode and sink mode.

2

GNDSENSE

Remote ground sensing pin

 

 

 

3

INT

Integrator output. Short this pin to VFB pin and connect it via a capacitor to VOUT to insert the

 

 

integrator in the control loop. If the integrator is not used, short this pin to VREF.

 

 

 

4

VSENSE

This pin must be connected to the remote output voltage to detect overvoltage and

 

 

undervoltage conditions and to provide integrator feedback input.

 

 

 

2/30

 

 

L6997S

Table 4. Pin Function (continued)

 

 

 

Name

Description

 

 

 

5

VCC

IC Supply Voltage.

 

 

 

6

GND

Signal ground

 

 

 

7

VREF

0.6V voltage reference. Connect a ceramic capacitor (max. 10nF) between this pin and

 

 

ground. This pin is capable to source or sink up to 250uA

 

 

 

8

VFB

PWM comparator feedback input. Short this pin to INT pin to enable the integrator function, or

 

 

to VSENSE to disable the integrator function.

 

 

 

9

OSC

Connect this pin to the input voltage through a voltage divider in order to provide the feed-

 

 

forward function don’t leave floating.

 

 

 

10

SS

Soft Start pin. A 5 A constant current charges an external capacitor. Itsvalue sets the soft-

 

 

start time don’t leave floating.

 

 

 

11

ILIM

An external resistor connected between this pin and GND sets the current limit threshold don’t

 

 

leave floating..

 

 

 

12

SHDN

Shutdown. When connected to GND the device and the drivers are OFF. It cannot be left

 

 

floating.

 

 

 

13

OVP

Open drain output. During the over voltage condition it is pulled up by an external resistor.

 

 

 

14

PGOOD

Open drain output. It is pulled down when the output voltage is not within the specified

 

 

thresholds. Otherwise is pulled up by external resistor. If not used it can be left floating.

 

 

 

15

PGND

Low Side driver ground.

 

 

 

16

LGATE

Low Side driver output.

 

 

 

17

VDR

Low Side driver supply.

18

PHASE

Return path of the High Side driver.

 

 

 

19

HGATE

High side driver output.

 

 

 

20

BOOT

Bootstrap capacitor pin. High Side driver is supplied through this pin.

 

 

 

Table 5. Electrical Characteristics

(VCC = VDR = 3.3V; Tamb = 0°C to 85°C unless otherwise specified)

Symbol

Parameter

Test Condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

SUPPLY SECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

Vin

Input voltage range

Vout=Vref Fsw=110Khz Iout=1A

1

 

35

V

 

 

 

 

 

 

 

 

VCC,

 

 

3

 

5.5

V

VDR

 

 

 

 

 

 

VCC

Turn-onvoltage

 

2.86

 

2.97

V

 

 

Turn-off voltage

 

2.75

 

2.9

V

 

 

 

 

 

 

 

 

 

 

Hysteresis

 

 

90

 

mV

 

 

 

 

 

 

 

IqVDR

Drivers Quiescent Current

VFB > VREF

 

7

20

A

IqVcc

Device Quiescent current

VFB > VREF

 

400

600

A

 

 

 

 

 

 

 

 

SHUTDOWN SECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

SHDN

Device On

 

1.2

 

 

V

 

 

 

 

 

 

 

 

 

 

Device Off

 

 

 

0.6

V

 

 

 

 

 

 

 

ISHVDR

Drivers shutdown current

SHDN to GND

 

 

5

A

ISHVCC

Devices shutdown current

SHDN to GND

 

1

15

A

SOFT START SECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

ISS

Soft Start current

VSS = 0.4V

4

 

6

A

VSS

Active Soft start and voltage

 

300

400

500

mV

3/30

L6997S

Table 5. Electrical Characteristics (continued)

(VCC = VDR = 3.3V; Tamb = 0°C to 85°C unless otherwise specified)

Symbol

 

Parameter

Test Condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

CURRENT LIMIT AND ZERO CURRENT COMPARATOR

 

 

 

 

 

 

 

 

 

 

 

 

ILIM

 

Input bias current

RILIM = 2KΩ to 200KΩ

4.6

5

5.4

µA

 

 

Zero Crossing Comparator offset

 

-2

 

2

mV

 

 

Phase-gnd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KILIM

 

Current limit factor

 

1.6

1.8

2

µA

ON TIME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ton

 

On time duration

VREF=VSENSE OSC=125mV

720

800

880

ns

 

 

 

 

VREF=VSENSE OSC=250mV

370

420

470

ns

 

 

 

 

VREF=VSENSE OSC=500mV

200

230

260

ns

 

 

 

 

VREF=VSENSE OSC=1000mV

90

115

140

ns

OFF TIME

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOFFMIN

 

Minimum off time

 

 

 

600

ns

 

 

KOSC/TOFFMIN

OSC=250mV

0.20

 

0.40

 

VOLTAGE REFERENCE

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF

 

Voltage Accuracy

0µA < IREF < 100µA

0.594

0.6

0.606

V

PWM COMPARATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input voltage offset

 

-2

 

+2

mV

 

 

 

 

 

 

 

 

IFB

 

Input Bias Current

 

 

20

 

nA

INTEGRATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Over Voltage Clamp

VSENSE = VCC

0.62

0.75

0.88

V

 

 

Under Voltage Clamp

VSENSE = GND

0.45

0.55

0.65

V

 

 

Integrator Input Offset Voltage

 

-4

 

-4

mV

 

 

VSENSE-VREF

 

 

 

 

 

IVSENSE

 

Input Bias Current

 

 

20

 

nA

GATE DRIVERS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High side rise time

VDR=3.3V; C=7nF

 

50

90

ns

 

 

High side fall time

HGATE - PHASE from 1 to 3V

 

50

100

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low side rise time

VDR=3.3V; C=14nF

 

50

90

ns

 

 

 

 

LGATE from 1 to 3V

 

 

 

 

 

 

Low side fall time

 

50

90

ns

 

 

 

 

 

 

 

 

 

 

 

 

PGOOD UVP/OVP PROTECTIONS

 

 

 

 

 

OVP

 

Over voltage threshold

with respect to VREF

118

121

124

%

UVP

 

Under voltage threshold

 

67

70

73

%

 

 

 

 

 

 

 

 

 

 

Upper threshold

VSENSE rising

110

112

116

%

 

 

(VSENSE-VREF)

 

 

 

 

 

 

 

Lower threshold

VSENSE falling

85

88

91

%

 

 

(VSENSE-VREF)

 

 

 

 

 

VPGOOD

 

 

 

ISink=2mA

 

0.2

0.4

V

4/30

ST L6997S User Manual

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc

 

.4 Figure

 

 

 

SHDN

PGOOD

OVP

 

overvoltage comparator

VCC

 

GND

 

 

 

 

 

 

Functional

 

 

 

 

 

 

 

+

VSENSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

1.12 VREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

undervoltage comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

&

 

 

 

 

 

 

 

-

VSENSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

0.6 VREF

 

 

 

 

 

 

 

 

 

Block

 

SS

 

 

IC enable

 

S

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

soft-start

 

 

pgood comparators

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

1.075 VREF

 

 

 

 

 

 

 

 

 

 

5 uA

 

 

control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

VSENSE

 

 

LS and HS anti-cross-conduction comparators

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

VSENSE

 

 

V(LGATE)<0.5V

 

 

 

 

 

 

ILIM

 

 

 

 

 

 

 

comp

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOOT

 

 

 

 

power management

 

 

-

0.925 VREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

Q

 

 

level shifter

HS driver

HGATE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V(PHASE)<0.2V

 

 

 

 

 

 

 

 

 

 

 

Toff min

 

 

 

 

 

 

 

 

VOUT

 

 

positive current limit

 

 

 

S

 

comp

 

 

 

 

PHASE

 

 

 

comparator

 

 

delay

 

 

 

 

 

 

 

 

 

 

 

PHASE

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

Ton min

 

 

 

 

 

 

 

 

VDR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

one-shot

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.05

 

+

 

 

 

 

 

 

 

 

 

 

 

 

LGATE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LS driver

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ton

 

 

 

 

 

 

 

 

 

 

 

 

VREF

+

 

 

one-shot

 

 

 

 

 

 

 

 

PGND

 

 

 

 

 

VSENSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC

 

 

 

 

 

S

 

 

 

 

 

 

FB

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pwm comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ton= Kosc V(VSENSE)/V(OSC)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

Ton

 

 

 

 

 

INT

-

 

 

 

 

 

 

 

 

S

Q

 

 

 

 

 

 

 

HS control

 

 

 

 

 

 

 

 

 

 

 

 

 

Gm

 

 

 

 

 

 

 

 

 

 

one-shot

 

 

 

 

 

 

-

VREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

VSENSE

 

 

 

 

V IN

VREF

 

 

 

 

 

 

 

 

 

R

 

 

OSC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSENSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSEGND

 

 

 

 

 

 

 

 

 

 

Ton= Kosc V(VSENSE)/V(OSC)

 

 

 

 

OSC

 

 

 

 

 

 

no-skip

 

 

no-skip

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mode

 

 

mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

PHASE

negative current limit

 

 

 

 

 

 

 

bandgap

 

 

PHASE

+

 

 

comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.236V

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

VREF

 

 

 

 

 

 

 

 

-

0.05

ILIM

 

 

 

 

 

 

 

1.416

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6V

 

 

 

 

 

zero-cross comparator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference chain

 

NOSKIP

 

LS control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5/30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L6997S

L6997S

4 DEVICE DESCRIPTION

4.1 Constant On Time PWM topology

Figure 5. Loop block schematic diagram

Vin

 

 

 

 

 

R1

 

One-shot generator

 

 

 

OSC

 

 

 

 

 

 

 

 

 

 

FFSR

 

R2

Vsense

 

R

Q

HS

 

 

 

 

 

Vout

 

 

 

 

 

HGATE

 

 

Vref

S

Q

 

 

 

 

 

 

 

 

 

 

 

LS

 

 

+

 

 

DS

 

 

 

 

LGATE

 

 

 

 

 

 

 

-

 

 

 

 

 

 

PWM comparator

 

 

 

FB

 

 

 

 

R4

 

R3

 

 

The device implements a Constant On Time control scheme, where the Ton is the high side MOSFET on time duration forced by the one-shot generator. The On Time is directly proportional to VSENSE pin voltage and inverse to OSC pin voltage as in Eq1:

T

 

=

K

 

VSENSE

+ τ

(1)

ON

OSC

---------------------

 

 

 

V

OSC

 

 

 

 

 

 

 

 

 

 

where KOSC = 180ns and τ is the internal propagation delay time (typ. 40ns). The system imposes in steady state a minimum On Time corresponding to VOSC = 1V. In fact if the VOSC voltage increases above 1V the corresponding Ton will not decrease. Connecting the OSC pin to a voltage partition from VIN to GND, it allows a steady-state switching frequency FSW independent of VIN. It results:

VOUT

1

=

α

OSC

1

α OSC = fSW KOSC α OUT (2)

fSW = ---

V-----IN------

----------

-------------- --------------

 

TON

α

OUT KOSC

 

 

where

 

 

 

 

 

 

 

 

α

OSC

=

VOSC

=

R2

 

(3)

----V----IN------

-------------

 

 

 

 

R2 + R1

 

α

OUT

=

VFB

=

R4

 

(4)

V-----OUT---------

-------------

 

 

 

 

R3 + R4

 

The above equations allow setting the frequency divider ratio α OSC once output voltage has been set; note that such equations hold only if VOSC<1V. Further the Eq2 shows how the system has a switching frequency ideally independent from the input voltage. The delay introduces a light dependence from VIN. A minimum Off-Time constraint of about 500ns is introduced in order to assure the boot capacitor charge and to

6/30

L6997S

limit the switching frequency after a load transient as well as to mask PWM comparator output against noise and spikes.

The system has not an internal clock, because this is a hysteretic controller, so the turn on pulse will start if three conditions are met contemporarily: the FB pin voltage is lower than the reference voltage, the minimum off time is passed and the current limit comparator is not triggered (i.e. the inductor current is below the current limit value). The voltage at the OSC pin must range between 50mV and 1V to ensure the system linearity.

4.2 Closing the loop

The loop is closed connecting the output voltage (or the output divider middle point) to the FB pin. The FB pin is internally conncted to the comparator negative pin while the positive pin is connected to the reference voltage (0.6V Typ.) as in Figure 5. When the FB goes lower than the reference voltage, the PWM comparator output goes high and sets the flip-flop output, turning on the high side MOSFET. This condition is latched to avoid noise. After the On-Time (calculated as described in the previous section) the system resets the flip-flop, turns off the high side MOSFET and turns on the low side MOSFET. For more details refers to the Figure 4.

The voltage drop along ground and supply metal paths connecting output capacitor to the load is a source of DC error. Further the system regulates the output voltage valley value not the average, as shown in Figure 6. So, the voltage ripple on the output capacitor is a source of DC static error (well as the PCB traces). To compensate the DC errors, an integrator network must be introduced in the control loop, by connecting the output voltage to the INT pin through a capacitor and the FB pin to the INT pin directly as in Figure 7. The internal integrator amplifier with the external capacitor CINT1 introduces a DC pole in the control loop. CINT1 also provides an AC path for output ripple.

Figure 6. Valley regulation

Vout

DC Error Offset

<Vout>

Vref

Time

The integrator amplifier generates a current, proportional to the DC errors, that increases the output capacitance voltage in order to compensate the total static error. A voltage clamp within the device forces anINT pin voltage range (VREF-50mV, VREF+150mV). This is useful to avoid or smooth output voltage overshoot during a load transient. Also, this means that the integrator is capable of recovering output error due to ripple when its peak- to-peak amplitude is less than 150mV in steady state.

In case the ripple amplitude is larger than 150mV, a capacitor CINT2 can be connected between INT pin and ground to reduce ripple amplitude at INT pin, otherwise the integrator will operate out of its linear range. Choose CINT1 according to the following equation:

CINT1

gINT

α OUT

(5)

= ----------

---

π-----

---F----u------

 

2

 

where gINT=50 µs is the integrator transconductance, α OUT is the output divider ratio given from Eq4 and FU is

the close loop bandwidth. This equation holds if CINT2 is connected between INT pin and ground. CINT2 is given by:

7/30

L6997S

CINT2

=

VOUT

(6)

C-----INT---------1-

------V----INT--------

Where VOUT is the output ripple and VINT is the required ripple at the INT pin (100mV typ).

Figure 7. Integrator loop block diagram

Vin

 

 

 

 

 

R1

One-shot generator

 

 

PCB TRACES

OSC

 

 

 

 

 

 

 

 

 

FFSR

 

 

R2

 

R

Q

HS

Vout

 

From Vsense

 

HGATE

 

 

 

 

Vref

S

Q

 

 

 

 

 

 

 

 

 

 

 

LS

LOAD

 

 

 

 

DS

 

 

+

 

 

FB

 

 

LGATE

 

 

-

 

 

 

 

 

 

 

 

 

PWM comparator

 

 

 

 

Vref

 

 

 

 

-

 

Vsense

 

INT

 

+

 

 

 

Cint2

 

-

 

 

 

 

+

 

Gndsense

 

 

Integrator amplifier

 

 

 

 

Cint1

 

 

 

Respect to a traditional PWM controller, that has an internal oscillator setting the switching frequency, in a hysteretic system the frequency can change with some parameters. For example, while in a standard fixed switching frequency topology, the increase of the losses (increasing the output current, for example) generates a variation in the On Time and Off Time, in a fixed On Time topology , the increase of the losses generates only a variation on the Off Time, changing the switching frequency. In the device is implemented the voltage feedforward circuit that allows constant switching frequency during steady-sate operation and withinthe input range variation. Any way there are many factors affecting switching frequency accuracy in steady-state operation. Some of these are internal as dead times, which depends on high side MOSFET driver. Others related to the external components as high side MOSFET gate charge and gate resistance, voltage drops on supply and ground rails, low side and high side RDSON and inductor parasitic resistance.

During a positive load transient, (the output current increases), the converter switches at its maximum frequency (the period is TON+TOFFmin) to recover the output voltage drop. During a negative load transient, (the output current decreases), the device stops to switch (high side MOSFET remains off).

4.3 Transition from PWM to PFM/PSK

To achieve high efficiency at light load conditions, PFM mode is provided. The PFM mode differs from the PWM mode essentially for the off phase; the on phase is the same. In PFM after a On cycle the system turns-on the low side MOSFET until the inductor current goes down zero, when the zero-crossing comparator turns off the low side MOSFET. In PWM mode, after On cycle, the system keeps the low side MOSFET on until the next turnon cycle, so the energy stored in the output capacitor will flow through the low side MOSFET to ground. The PFM mode is naturally implemented in an hysteretic controller enabling the zero current comparator by enabling, in fact in PFM mode the system reads the output voltage with a comparator and then turns on the high side MOSFET when the output voltage goes down to reference value. The device works in discontinuous mode

8/30

L6997S

at light load and in continuous mode at high load. The transition from PFM to PWM occurs when load current is around half the inductor current ripple. This threshold value depends on VIN, L, and VOUT. Note that the higher the inductor value is, the smaller the threshold is. On the other hand, the bigger the inductor value is, the slower the transient response is. The PFM waveforms may appear more noisy and asynchronous than normal operation, but this is normal behaviour mainly due to the very low load. If the PFM is not compatible with the application it can be disabled connecting to VCC the NOSKIP pin.

4.4 Softstart

After the device is turned on the SS pin voltage begins to increase and the system starts to switch. The softstart is realized by gradually increasing the current limit threshold to avoid output overvoltage. The active soft start range for the VSS voltage (where the output current limit increase linearly) is from 0.6V to 1V. In this range an internal current source (5 A Typ) charges the capacitor on the SS pin; the reference current (for the current limit comparator) forced through ILIM pin is proportional to SS pin voltage and it saturates at 5 A (Typ.). When SS voltage is close to 1V the maximum current limit is active. Output protections OVP & UVP are disabled until the SS pin voltage reaches 1V (see figure 8).

Once the SS pin voltage reaches the 1V value, the voltage on SS pin doesn't impact the system operation anymore. If the SHDN pin is turned on before the supplies, the power section must be turned on before the logic section. While if the supplies are applied with the SHND pin off, the start up sequence doesn't meter.

Figure 8. Soft -Start Diagram

 

Vss

 

4.1V

 

 

1V

 

 

0.6V

 

Soft-start active range

 

 

Ilim

current

Time

5

 

 

A

 

 

 

 

Maximum current limit

 

 

Time

Because the system implements the soft start by controlling the inductor current, the soft start capacitor should be selected based on of the output capacitance, the current limit and the soft start active range (VSS).

In order to select the softstart capacitor it must be imposed that the output voltage reaches the final value before the soft start voltage reaches the under voltage value (1V). After this UVP and OVP are enable.

The time necessary to charge the SS capacitor up to 1V is given by:

T

 

(C

 

) =

1V

C

 

(7)

SS

SS

-------

SS

 

 

 

Iss

 

 

In order to calculate the output voltage chargin time it should be considered that the inductor current function can be supposed linear function of the time.

IL

(t,CSS) =

(Rilim/Rdson KILIM ISS

t)

--------------------(------V-----SS--------

---C----SS--------)--------------

------ (8)

 

 

 

9/30

Loading...
+ 21 hidden pages