Datasheet L6561 Datasheet (ST)

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
Fi
L6561
POWER FACTOR CORRECTOR
1 FEATURES
VERY PRECISE ADJUSTABLE OUTPUT
OVERVOLTAGE PROTECTION
MICRO POWER START-UP CURRENT (50µA
VERY LOW OPERATING SUPPLY
CURRENT(4mA TYP.)
INTERNAL START-UP TIMER
CURRENT SENSE FILTER ON CHIP
DISABLE FUNCTION
1% PRECISION (@ T
= 25°C) INTERNAL
j
REFERENCE VOLTAGE
TRANSITION MODE OPERATION
TOTEM POLE OUTPUT CURRENT: ±400mA
DIP-8/SO-8 PACKAGES
2 DESCRIPTION
L6561 is the improv ed versi on of the L 6560 stan ­dard Power Factor Corrector. Fully compatible with the standard version, it has a superior perfor­mant multiplier making the device capable of work­ing in wide input voltage range application s (from 85V to 265V) with an ex ce ll ent T HD. Fur th er more the start up current has be en red uced at f ew tens of mA and a disable function has been implement­ed on the ZCD pin, guaranteeing lower current consumption in stand by mode.
gure 1. Packages
DIP-8
SO-8
Table 1. Order Codes
Part Number Package
L6561 DIP-8
L6561D SO-8
L6561D013TR Tape & Reel
Realised in mixed BCD technology, the chip gives the following benefits:
– micro power start up current – 1% precision internal reference voltage – (Tj = 25°C) – S oft Output Over Voltage Protection – no need for external low pass filter on the cur-
rent sense
– v ery low operating quiescent current minimis-
es power dissipation The totem pole ou tput stage is capable of driving a Power MOS or IGBT with source and sink cur­rents of ±400mA. The device is ope rating in tran­sition mode and it is optimised for Electronic Lamp Ballast application, AC-DC adaptors and SMPS.
Figure 2. Block Diagram
INV
V
June 2004
COMP MULT CS
1
VOLTAGE
REGULATOR
8
CC
20V
R1
R2
2.1V
1.6V
6
GND
INTERNAL
SUPPLY 7V
+
-
V
REF2
2.5V
5
ZCD
23 4
­+
OVER-VOLTAGE
DETECTION
UVLO
+
-
ZERO CURRENT
DETECTOR
DISABLE
MULTIPLIER
-
RSQ
+
STARTER
5pF
40K
DRIVER
D97IN547E
V
CC
7
GD
REV. 16
1/13
L6561
Table 2. Absolute Maximum Ratings
Symbol Pin Parameter Value Unit
I
Vcc
I
GD
INV , COMP
MULT
CS 4 Current Sense Input -0.3 to 7 V
ZCD 5 Zero Current Detector 50 (source)
P
tot
T
j
T
stg
Figure 3. Pin Connection (Top view)
8Iq + IZ; (IGD = 0) 30 mA 7 Output Totem Pole Peak Current (2µs) ±700 mA
1, 2, 3 Analog Inputs & Outputs -0.3 to 7 V
-10 (sink)
Power Dissipation @T
Junction Temperature Operating Range -40 to 150 °C Storage Temperature -55 to 150 °C
= 50 °C (DIP-8)
amb
(SO-8)
1
0.65
mA mA
W W
INV
COMP
MULT
CS
1 2 3 4ZCD
DIP8
8 7 6 5
V
CC
GD GND
Table 3. Thermal Data
Symbol Parameter SO 8 MINIDIP Unit
R
th j-amb
Thermal Resistance Junction to ambient 150 100 °C/W
Table 4. Pin Description
N. Name Function
1 INV Inverting input of the error amplifier. A resistive divider is connected between the output
2 COMP Output of error amplifier. A feedback compensation network is placed between this pin and the
3 MULT Input of the multiplier stage. A resistive divider connects to this pin the rectified mains. A voltage
4 CS Input to the comparator of the control loop. The curren t is sense d by a resisto r and the resulti ng
5 ZCD Zero current detection input. If it is connected to GND, the device is disabled. 6 GND Current return for driver and control circuits. 7 GD Gate driver output. A pu sh pul l ou tpu t st ag e is a ble to drive the Power MOS with peak current of
8V
(1) Parameter guaranteed by design, not tested in production.
regulated voltage and this point, to provide voltage feedback.
INV pin.
signal, proportional to the rectified mains, appears on this pin.
voltage is applied to this pin.
400mA (source and sink). Supply voltage of driver and control circuits.
CC
2/13
L6561
Table 5. Electrical Characteristics
= 14.5V; T
(V
CC
Symbol Pin Parameter Test Condition Min. Typ. Max. Unit
SUPPLY VOLTAGE SECTION
V
V
CC ON
V
CC OFF
CC
8 Operating Range after turn-on 11 18 V 8 Turn-on Threshold 11 12 13 V 8 Turn-off Threshold 8.7 9.5 10.3 V
Hys 8 Hysteresis 2.2 2.5 2.8 V
SUPPLY CURRENT SECTION
I
START-U
I
q
I
CC
8 Start-up Current before turn-on (VCC =11V) 205090µA 8 Quiescent Current 2.6 4 mA 8 Operating Supply Current CL = 1nF @ 70KHz 4 5.5 mA
Iq 8 Quiescent Current V
8V
V
Z
8 Zener Voltage ICC = 25mA 18 20 22 V
ERROR AMPLIFIER SECTION
V
INV
I
INV
G
V
1 Voltage Feedback Input
1 Input Bias Current -0.1 -1 µA
GB Gain Bandwidth 1 MHz
I
COMP
V
COMP
2 Source Current V
2 Upper Clamp Voltage I
MULTIPLIER SECTION
V
MULT
VCS∆
-----------------
V
mult
3 Linear Operating Voltage 0 to 3
KGain V
CURRENT SENSE COM PARATOR
V
I
CS
t
d (H-L)
CS
4 Current Sense Reference
4 Input Bias Current VOS = 0 -0.05 -1 µA 4 Delay to Output 200 450 ns 4 Current Sense Offset 0 15 mV
ZERO CURRENT DETECTOR
V
V V
ZCD
ZCD ZCD
5 Input Thre shold Voltage Rising
5 Upper Clamp Voltage I 5 Upper Clamp Voltage I
= -25°C to 125°C;unless otherwise specified)
amb
= 2.7V 1.4 2.1 mA
pin1
off
CC off
20 50 90 µA
1.4 2.1 mA
Threshold Line Regulation V
in OVP condition V
150mV, VCC > VCC
PIN5
150mV, VCC < V
PIN5
T
= 25°C 2.465 2.5 2.535 V
amb
12V < V
CC
< 18V 2.44 2.56 V
CC
= 12 to 18V 2 5 mV
Voltage Gain Open loop 60 80 dB
Sink Current V
Lower Clamp Voltage I
= 4V, V
COMP
= 4V, V
COMP
= 0.5mA 5.8 V
SOURCE
= 0.5mA 2.25 V
Sink
= 2.4V -2 -4 -8 mA
INV
= 2.6V 2.5 4.5 mA
INV
0 to 3.5
Output Max. Slope V
Clamp
= from 0V to 0.5V
MULT
V
= Upper Clamp Voltage
COMP
= 1V V
MULT
V
= 2.5V
MULT
V
= Upper Clamp Voltage
COMP
= 4V 0.45 0.6 0.75 1/V
COMP
1.65 1.9
1.6 1.7 1.8 V
(1) 2.1 V
Edge Hysteresis (1) 0.3 0.5 0.7 V
= 20µA4.55.15.9V
ZCD
= 3mA 4.7 5.2 6.1 V
ZCD
V
3/13
L6561
Table 5. Electrical Characteristics (continued)
= 14.5V; T
(V
CC
Symbol Pin Parameter Test Condition Min. Typ. Max. Unit
V
ZCD
I
ZCD
I
ZCD
I
ZCD
V
DIS
I
ZCD
OUTPUT SECTION
V
GD
t
r
t
f
I
GD off
OUTPUT OVERVOLTAGE SECTION
I
OVP
RESTART TIMER
t
START
5 Lower Clamp Voltage I 5 Sink Bias Current 1V ≤ V 5 Source Current Capability -3 -10 mA 5 Sink Current Capability 3 10 mA 5 Disable threshold 150 200 250 mV 5 Restar t Cu rre nt Aft er Dis able V
7 Dropout Voltage I
7 Output Voltage Rise Time CL = 1nF 40 100 ns 7 Output Voltage Fall Time CL = 1nF 40 100 ns 7 IGD Sink Current VCC =3.5V VGD = 1V 5 10 - mA
2 OVP Triggering Current 35 40 45 µA
= -25°C to 125°C;unless otherwise specified)
amb
= -3mA 0.3 0.65 1 V
ZCD
4.5V 2 µA
ZCD
< V
ZCD
GDsource
I
GDsource
I
GDsink
I
GDsink
Static OVP Threshold 2.1 2.25 2.4 V
Start Timer 70 150 400 µs
; VCC > V
dis
= 200mA 1.2 2 V
= 20mA 0.7 1 V = 200mA 1.5 V = 20mA 0.3 V
CCOFF
-100 -200 -300 µA
3 OVER VOLTAGE PROTECTION OVP
The output voltage is expected to be kept by the opera tion of the PFC circui t close to it s nomi nal value. This is set by the r atio of the t wo exte rnal r esistors R1 and R2 (see fig . 5), tak ing i nto co nsider ation t hat the non inverting input of the error amplifier is biased inside the L6561 at 2.5V.
In steady state conditions, the current through R1 and R2 is:
V
2.5
out
I
R1sc
------------------------- - I R1
and, if the external compensation network is made only with a capacitor C equals zero.When the output voltage increases abruptly the current through R1 becomes:
V
I
R1
outsc
----------------------------------------------------- I
Since the current through R2 does not change, ∆I
V
2.5+
out
R1
must flow through the capacitor C
R1
error amplifier. This current is monitored inside the L6561 and when reaches about 37µA the output volt a ge of th e mu lti-
plier is forced to decrease, thu s redu ci ng th e ener g y drawn fro m the ma ins . If the curr ent exceed s 40µA, the OVP protection is triggered (Dynamic OVP), and the external power transistor is switched off until the current falls approximately below 10µA.
However, if the over voltage persists, an interna l comparator (Static OVP) confirms the OVP conditi on keeping the external power swi tch turned off (see fig. 4).Finally, the overv oltage that triggers the OVP function is:
V
= R1 · 40µA.
out
Typical values for R
, R2 and C are shown in the application circuits. The overvoltage can be set indepen-
1
R2
R1scIR1
2.5V
------------===
R2
+==
, the current through C
comp
comp
comp
and enter the
4/13
L6561
dently from the average output voltage. The precision in setting the overvoltage threshold is 7% of the ov­ervoltage value (for instance V = 60V ± 4.2V).
3.1 Disable function
The zero current detector (ZCD) pin can be used for device disabling as well. By grounding the ZCD volt­age the device is disabled reducing the supply current consumption at 1.4mA typical (@ 14.5V supply volt­age).
Releasing the ZCD pin the internal start-up timer will restart the device.
Figure 4.
OVER VOLTAGE
V
OUT nominal
40µA 10µA
I
SC
E/A OUTPUT
2.25V
DYNAMIC OVP
STATIC OVP
Figure 5. Overvoltage Protection Circuit
Ccomp.
+Vo
R1
1
-
E/A
R2
D97IN591
+
2.5V
I
40µA
2.25V
D97IN592A
I
2
X PWM DRIVER
-
+
5/13
L6561
gap
g
Figure 6. Typical Application Circuit (80W, 110VAC)
C7
10nF
R2 100
C6
10nF
R1
8
3
FUSE 4A/250V
Vac
(85V to 135V)
NTC
(*) R3 = 2 x 120K R6 = 0.619/2 R7 = 2 x 475K, 1% R9 = 2 x 475K
BRIDGE
4 x 1N4007
+
-
R3 (*)
D3 1N4150
240K
R9 (*)
C1
950K
1µF
250V
R10 10K
TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A7) primary 90T of Litz wire 10 x 0.2mm secondary 11T of #27 AWG (0.15mm)
1.8mm for a total primary inductance of 0.7mH
D2
1N5248B
C2
22µF
25V
Figure 7. Typical Application Circuit (120W, 220VAC)
C7
10nF
R2
100
C6
10nF
R1
8
3
FUSE 2A/250V
Vac
(175V to 265V)
NTC
(*) R3 = 2 x 220K R6 = 0.82/2 R7 = 2 x 499K, 1% R9 = 2 x 909K
BRIDGE
4 x 1N4007
+
-
R3 (*)
D3 1N4150
440K
C1
R9 (*)
560nF
1.82M
400V
R10 10K
TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8) primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm) gap 1.25mm for a total primary inductance of 0.8mH
D2
1N5248B
C2
22µF
25V
68K
5
L6561
6
68K
5
L6561
6
T
C3 680nF
21
T
C3 1µF
21
7
4
7
4
D1 BYT03-400
R5 MOS
10
R5 MOS 10
R6 (*)
0.31 1W
R6 (*)
0.41
1W
STP7NA40
D97IN549B
D1 BYT13-600
R7 (*) 998K
STP5NA50
6.34K
D97IN550B
R7 (*)
950K
R8
10K
1%
R8
1%
+
Vo=240V
Po=80W
C5
100µF
315V
Vo=400V
Po=120W
C5 56µF 450V
-
+
-
Figure 8. Typical Application Circuit (80W, Wide-range Mains)
68K
5
L6561
6
T
C3 1µF
21
FUSE 4A/250V
Vac
(85V to 265V)
NTC
(*) R3 = 2 x 120K R6 = 0.82/2 R7 = 2 x 499K, 1% R9 = 2 x 620K
6/13
4 x 1N4007
+
-
C7
10nF
R2 100
C6
12nF
R1
8
3
R3 (*)
D3 1N4150
240K
BRIDGE
C1
R9 (*)
1µF
1.24M
400V
R10 10K
TRANSFORMER T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT (OREGA 473201A8) primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm)
ap 1.25mm for a total primary inductance of 0.8mH
D2
1N5248B
C2
22µF
25V
7
4
D1 BYT13-600
R5 MOS
STP8NA50
10
R6 (*)
0.41 1W
D97IN553B
R7 (*)
998K
R8
6.34K 1%
+
Vo=400V
Po=80W
C5 47µF 450V
-
Figure 9. Demo Board (EVAL6561-80) Electrical Schematic
NTC
D1
MOS
R10
0.41
2.5
R11
750 k
R12
750 k
R13
9.53 k
1W
4A/250V
Vac
(85V to 265V)
FUSE
R4
180 k
R1
750 k
BRIDGE
C1
W04M
+
-
Boost Inductor Spec (ITAC OIL E2543/E)
1 µF
400V
R2
750 k
C2
10nF
R3
10 k
E25x13x 7 core, 3C85 ferrite
1.5 mm gap for 0.7 mH primary inductance Primary: 105 turns 20x0.1 mm Secondary: 11 turns 0.1mm
180 k
22 µF
R5
C29
25V
D8
1N4150
D2
1N5248B
C5 12 nF
C4
100 nF
R14
100
R6
68 k
5
8
3
6
D3 1N4148
C7
10 µF
35 V
T
R50 12 k
C3 470 nF
C23
1 µF
21
91 k
R16
7
4
R15
220
L6561
THD RE DUCER (optio n al)
STTH1L06
R7
33
STP8NM50
R9
0.41 1W
Figure 10. EVAL6561-80: PCB and Component Layout (Top view, real size 57x108mm)
Vo=400V
Po=80W
C6 47 µF 450V
L6561
-
Table 6. EVAL6561-80: Evaluation Results.
Vin (Vac)
Pin (W)
Vo (Vdc)
Vo (Vdc)
Po (W) η (%)
85 87.2 400.1 14 80.7 92.8 0.999 3.7 0.999 2.9 110 85.2 400.1 14 80.7 94.7 0.996 5.0 0.996 3.2 135 84.2 400.1 14 80.7 95.8 0.989 6.2 0.989 3.7 175 83.5 400.1 14 80.7 96.6 0.976 8.3 0.976 4.3 220 83.1 400.1 14 80.7 97.1 0.940 10.7 0.941 5.6 265 82.9 400.1 14 80.7 97.3 0.890 13.7 0.893 8.1
w/o THD reducer with THD reducer
PF THD (%) PF THD (%)
7/13
L6561
)
(˚C)
Figure 11. OVP Current Threshold vs.
Temperature
I
OVP (µA)
41
40
39
38
-50 -25 0 25 50 75 100 125T (˚C
D94IN047A
Figure 13. Supply Current vs. Supply
Voltage
I
CC
(mA)
10
5 1
0.5
0.1
0.05
0.01
0.005 0
0 5 10 15 20 VCC(V)
D97IN548A
CL = 1nF f = 70KHz TA = 25˚C
Figure 12. Undervoltage Lockout Threshold
vs. Temperature
V
CC-ON
(V)
V
CC-OFF
(V)
13
12
11
10
9
-25 0 25 50 75 100 125 T
D94IN044A
Figure 14. Voltage Feedback Input Threshold
vs. Temperature
V
REF
(V)
2.50
2.48
2.46
-50 0 50 100
D94IN048A
T (˚C)
8/13
L6561
Figure 15. Output Saturation Voltage vs. Sink
Current
V
PIN7 (V)
VCC = 14.5V
2.0
1.5
1.0
0.5
0
0 100 200 300 400 IGD (mA)
D94IN046
SINK
Figure 17. Multiplier Characteristics
Family
V
(pin4)
CS
upper voltage
(V)
clamp
1.6
1.4
1.2
5.0
4.5
4.0
1.0
0.8
0.6
0.4
0.2 0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
V
MULT
D97IN555A
(pin3) (V)
V
COMP
3.5
3.2
3.0
2.8
2.6
(pin2)
(V)
Figure 16. Output Saturation Voltage vs.
Source Current
V
PIN7
(V)
VCC = 14.5V
VCC -0.5
VCC -1.0
VCC -1.5
VCC -2.0
0
0 100 200 300 400 IGD (mA)
D94IN053
SOURCE
9/13
L6561
Figure 18. DIP-8 Mechanical Data & Package Dimensions
DIM.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 6.6 0.260
I 5.08 0.200
L 3.18 3.81 0.125 0.150
Z 1.52 0.060
OUTLINE AND
MECHANICAL DATA
DIP-8
10/13
Figure 19. SO-8 Mechanical Data & Package Dimensions
L6561
DIM.
A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
(1)
D
E 3.80 4.00 0.15 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k 0˚ (min.), 8˚ (max.)
ddd 0.10 0.004
Note: (1) Dimensions D does not include mold flash, protru-
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
4.80 5.00 0.189 0.197
sions or gate burrs. Mold flash , pot rus ions or ga t e burr s shall not exce ed
0.15mm (.006inch) in total (both side).
OUTLINE AND
MECHANICAL DATA
SO-8
0016023 C
11/13
L6561
Table 7. Revision History
Date Revision Description of Chan g es
January 2004 15 First Issue
June 2004 16 Modified the Style-look in compliance with the “Corporate Technical
Publications Design Gu ide ”. Changed input of the power amplifier connected to Multiplier (Fig. 2).
12/13
L6561
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infri ngement of patents or other rights of third parties which may result from its use. No licens e is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without no tice. This publication supersedes and replaces all information previously supplied. STMicroelectronics pro d uc ts are not authorized for use as critical components in life support devices or systems without express writt en approval of STMicroelectro nics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
Australia - Belgium - Brazil - Canada - China - Czec h Republic - Finland - France - Germany - Hong Kong - India - Is rael - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
STMicroelectronics GROUP OF COMPANIES
www.st.com
13/13
Loading...