ST L6506, L6506D User Manual

ST L6506, L6506D User Manual

 

L6506

®

L6506D

 

 

CURRENT CONTROLLER FOR STEPPING MOTORS

DESCRIPTION

The L6506/D is a linear integrated circuit designed to sense and control the current in stepping motors and similar devices. When used in conjunction with the L293, L298, L7150, L6114/L6115, the chip set forms a constant current drive for an inductive load and performs all the interface function from the control logic thru the power stage.

Two or more devices may be synchronized using the sync pin. In this mode of operation the oscillator in the master chip sets the operating frequency in all chips.

DIP18

SO20

ORDERING NUMBERS:

L6506

L6506D

 

 

BLOCK DIAGRAM (pin’s number referred to DIP-18)

July 2003

1/8

L6506 -L6506D

PIN CONNECTIONS (top view)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DIP18

 

 

 

 

 

 

SO20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSOLUTE MAXIMUM RATINGS

Symbol

Parameter

Value

Unit

VCC

Supply Voltage

10

V

Vi

Input Signals

7

V

Ptot

Total Power Dissipation (Tamb = 70°C) for DIP18

1

W

 

for SO20

0.8

W

Tj

Junction Temperature

150

°C

Tstg

Storage Temperature

-40 to 150

°C

THERMAL DATA

 

 

Symbol

Parameter

 

DIP18

SO20

Unit

Rth j-amb

Thermal Resistance Junction-ambient

Max.

80

100

°C/W

ELECTRICAL CHARACTERESTICS (VCC = 5.0V, Tamb = 25°C; unless otherwise noted)

Symbol

Parameter

Test Conditions

Min.

Typ.

Max.

Unit

VCC

Supply Voltage

 

4.5

 

7

V

ICC

Quiescent Supply Current

VCC = 7V

 

 

25

mA

COMPARATOR SECTION

Symbol

Parameter

Test Conditions

Min.

Typ.

Max.

Unit

VIN

Input Voltage Range

Vsense Inputs

–0.3

 

3

V

VIO

Input Offset Voltage

VIN = 1.4V

 

 

±5.0

mV

IIO

Input Offset Current

 

 

 

±200

nA

IIB

Input Bias Current

 

 

 

1

μA

 

Response time

VREF = 1.4V VSENS = 0 to 5V

 

0.8

1.5

μs

2/8

L6506 - L6506D

ELECTRICAL CHARACTERISTICS (continued)

COMPARATOR SECTION PERFORMANCE (Over Operating Temperature Range)

Symbol

Parameter

Test Condtions

Min.

Typ.

Max.

Unit

VIO

Input Offset Voltage

VIN = 1.4V

 

 

±20

mV

IIO

Input Offset Curent

 

 

 

±500

nA

LOGIC SECTION (Over Operating Temperature Range - TTL compatible inputs & outputs)

Symbol

Parameter

Test Condtions

Min.

Typ.

Max.

Unit

VIH

Input High Voltage

 

2

 

Vs

V

VIL

Input Low Voltage

 

 

 

0.8

V

VOH

Output High Voltage

VCC = 4.75V

2

3.5

 

V

 

 

IOH = 400μA

 

 

 

 

VOL

Ouptut Low Voltage

VCC = 4.75V

 

0.25

0.4

V

 

 

IOH = 4mA

 

 

 

 

IOH

Ouput Source Current - Outputs

VCC = 4.75V

2.75

 

 

mA

 

1 - 4

 

 

 

 

 

OSCILLATOR

Symbol

Parameter

Test Condtions

Min.

Typ.

Max.

Unit

fosc

Frequency Range

 

5

 

70

KHz

VthL

Lower Threshold Voltage

 

 

0.33 VCC

 

V

VthH

Higher Threshold Voltage

 

 

0.66 VCC

 

V

Ri

Internal Discharge Resistor

 

0.7

1

1.3

kΩ

CIRCUIT OPERATION

The L6506 is intended for use with dual bridge drivers, such as the L298, quad darlington arrays, such as the L7150, quad DMOS array such as L6114L6115, or discrete power transistors to drive stepper motors and other similar loads. The main function of the device is to sense and control the current in each of the load windings.

A common on-chip oscillator drives the dual chopper and sets the operating frequency for the pulse width modulated drive. The RC network on pin 1 sets the operating frequency which is given by the equation

:

f =

1

for R > 10 K

0.69 RC

The oscillator provides pulses to set the two flipflops which in turn cause the outputs to activate the drive. When the current in the load winding reaches the programmed peak value, the voltage across the sense resistor (Rsense) is equal to Vref and the corresponding comparator resets its flip-flop interrupting the drive current until the next oscillator pulse occurs. The peak current in each winding is programmed by selecting the value of the sense resis-

tor and Vref. Since separate inputs are provided for each chopper, each of the loads may be programmed independently allowing the device to be used to implement microstepping of the motor. Lower threshold of L6506’s oscillator is 1/3 VCC. Upper threshold is 2/3 VCC and internal discharge resistor is 1 KΩ ± 30 %.

Ground noise problems in multiple configurations can be avoided by synchronizing the oscillators. This may be done by connecting the sync pins of each of the devices with the oscillator output of the master device and connecting the R/C pin of the unused oscillators to ground.

The equations for the active time of the sync pulse (T2), the inactive time of the sync signal (T1) and the duty cycle can be found by looking at the figure 1 and are :

T2 = 0.69 C1

R1 RIN

(1)

R1 + RIN

T1 = 0.69 R1 C1

(2)

DC =

T2

(3)

T1 + T2

 

3/8

Loading...
+ 5 hidden pages